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Abstract: Obtaining an understanding of the mechanism underlying the interrelations between the
structure and function of HIV-1 is of pivotal importance. In previous decades, this mechanism
was addressed extensively in a variety of studies using conventional approaches. More recently,
atomic force microscopy, which is a relatively new technique with unique capabilities, has been
utilized to study HIV-1 biology. Atomic force microscopy can generate high-resolution images at the
nanometer-scale and analyze the mechanical properties of individual HIV-1 virions, virus components
(e.g., capsids), and infected live cells under near-physiological environments. This review describes
the working principles and various imaging and analysis modes of atomic force microscopy, and
elaborates on its distinctive contributions to HIV-1 research in areas such as mechanobiology and the
physics of infection.
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1. Introduction

Structural virology has become a field of increasing interest in recent years with the
development of tools and techniques that enable researchers to study viruses as solid-state
objects from a physical perspective. Investigating viruses and their infection mechanisms
from this viewpoint opens an important avenue of research to study the mechanical
properties of viruses, such as stiffness, elasticity, plasticity, and material fatigue. The use of
traditional techniques, such as conventional electron microscopy, cryo-electron microscopy,
X-ray crystallography, nuclear magnetic resonance spectroscopy, fluorescence, and circular
dichroism have enabled researchers to determine the structure of viruses and other nano-
molecules over the years. However, recent advances in physical and mechanical mapping
techniques enable new light to be shed on virus structure and replication mechanisms.
Extensive studies focused on the mechanical properties of enveloped and non-enveloped
viruses have been summarized in several reviews. In the current review, we provide an
overview of the physics and mechanics underlying HIV-1 infection.

2. Atomic Force Microscopy and Mechanical Measurements

Advances in scanning probe microscopy were initially obtained from the development
of scanning tunnelling microscopy by Binnig and Rohrer in the early 1980s [1]. To overcome
the limitation that this technique could image only conducting or semi-conducting samples,
an analogous technique of scanning probe microscopy, known today as atomic force
microscopy, was developed in 1986 [2]. This technique utilizes atomic forces between the
sample and the tip of the scanning probe. A sharp tip “feels” the surface of the sample,
and by scanning the sample, a high-resolution topographical image is generated [3]. To
maintain a constant force or a constant distance between the scanning probe and the sample,
a laser beam is reflected from the probe cantilever onto a position-sensitive photodiode
detector. A feedback loop mechanism between the detector and the z-piezo keeps the height
of the probe above the sample constant during the entire image acquisition (Figure 1).
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Figure 1. A schematic drawing of the main components of an atomic force microscope (AFM). The
AFM is composed of an XYZ piezoelectric scanner, a laser source, a position-sensitive photodiode
detector (PSD), and a controller. The AFM probe is a sharp tip that is attached to the end of a
cantilever. A laser beam is reflected onto the PSD to detect small deflections of the cantilever as it
scans the sample topography at very high force sensitivity. The two principal imaging modes of AFM,
contact and dynamic modes, are schematically displayed. Contact mode is probably the simplest
AFM imaging mode. In this mode, the probe is in continuous contact with the sample while scanning
the surface at a constant force. In dynamic mode, the cantilever oscillates at or near the resonance
frequency of the cantilever. As a result, the probe interacts with the sample as the probe “taps” along
the surface, reducing the interactions between the sample and the probe. This mode is particularly
powerful for imaging soft and gentle biological samples.

An atomic force microscope (AFM) can be used to construct topographic images (using
its contact, dynamic, or quantitative modes) or to analyze surface forces per se (using its
force mode), with both the quantitative and force modes relying on the production of force-
versus-distance curves. In the contact imaging mode, the AFM probe scans the surface in
a zig-zag pattern, thereby generating relatively high lateral (shear) forces on the sample.
These forces may eventually damage either the sample or the AFM tip [4], thus, this mode
of operation is not usually suitable for imaging biological samples, which are typically soft
and more sensitive. In the dynamic imaging mode (also known as intermittent contact or
tapping mode), a piezo crystal drives the cantilever to oscillate near or at its resonance
frequency. As a result, imaging is obtained from a series of intermittent taps on the sample
surface that drastically reduce the tip–sample contact time, thereby minimizing damage to
both the sample and the tip [5]. More recently, a new quantitative imaging (QI) mode has
been developed for gentle non-destructive imaging of soft samples. The QI imaging mode
involves producing force-versus-distance curves (also called force curves) by controlling the
vertical application of force at every pixel of the image while minimizing the lateral shear
force generated from the horizontal movement of the tip. Force-curve-based imaging not
only generates topographical images with high resolution but also permits the extraction of
physical sample parameters, such as local stiffness, elasticity and adhesion [6]. In addition
to its imaging functions, the AFM can be operated in force mode to assess the mechanical
properties of the sample. In this mode, the probe is positioned at a fixed location and then
repetitively pushed against and retracted from the sample. During each cycle, the elastic
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response of the probe cantilever is recorded in the form of a force–distance curve. From
these force–distance curves, sample properties, such as point stiffness, elasticity, plasticity,
adhesion, and mechanical strength, can be derived [7].

One of the main advantages of atomic force microscopy as a high-resolution imaging
technique is its ability to analyze non-fixed samples in fluid environments; thus, it is
capable of measuring biological samples under near-physiological conditions. However,
samples must be adhered or immobilized to a supporting surface. Thus, much care must
be taken when immobilizing a soft and delicate biological sample so that it is attached
sufficiently strongly to the substrate to allow successful scanning without impairing its
native morphology and structure. Depending on the sample, a wide range of substrates (e.g.,
mica, graphite or glass coated with poly-lysine or with hydrophobic hexamethyldisilazane
(HMDS)) can be used to adhere the biological samples to the substrate.

3. Atomic Force Microscopy in Virology

Atomic force microscopy is finding increasing applications in the study of the me-
chanical and physical properties of biological samples (reviewed in [7]). The ability of
the AFM to image untreated samples in fluid under near-physiological conditions and
at high spatial resolutions makes it a powerful tool in structural and molecular biology,
while its ability to visualize structural changes at the single particle level has made it a
valuable tool for exploring the nano-mechanics governing biological processes (reviewed
in [8]). External conditions can easily be manipulated, thus enabling researchers to follow
highly regulated biological processes involving a myriad of complex biomolecules, such as
protein aggregates, virus capsid assembly, biopolymers, cytoskeletal infrastructure, cells,
and tissues, using atomic force microscopy in combination with conventional microscopy
techniques and advanced optical methods (reviewed in [9,10]).

In virology, atomic force microscopy has been widely used to image single virus
structure as well as individual virus components. In parallel, it has been used to study
the mechanical properties of virus particles as well as interaction forces between viruses
and their physical environment. In bacteriophages, atomic force microscopy studies have
revealed the unique properties of the viral shell of bacteriophages (called the capsid), in
which nucleic acid is tightly packed prior to being injected under extremely high-pressure
into a bacterial cell during infection. Bacteriophage capsids are relatively stiff to protect
the viral genome but also brittle, which makes them susceptible to failure. Interestingly,
bacteriophages overcome the brittleness problem during capsid maturation by initially
forming thin-walled capsids while maintaining intermolecular integrity [11]. Similarly,
eukaryotic viruses form a mechanically rigid and pressurized structure that may withstand
large deformation without undergoing any significant structural failure [12]. By contrast,
some eukaryotic viruses and virus capsids demonstrate an anisotropic distribution of
stiffness and elasticity along the capsid structure, thus permitting them to withstand shear
forces during rapid movement through viscous physiological fluids or while passing
through narrow openings such as nuclear pores [7,13–16].

The fine balance of mechanical properties exhibited by viral particles during the
course of infection makes the field of physical virology an interesting area to explore.
Since viruses and virus capsids are biologically soft in nature, it becomes imperative
to understand the mechanics governing the physical properties of these small entities,
especially during infection, which involves overcoming several harsh physical and chemical
barriers. Extensive studies focused on the mechanical properties of enveloped and non-
enveloped viruses have been summarized in several reviews [4,6–8,10,17,18]. In this review,
we provide an overview of the physics and mechanics underlying HIV-1 infection.

4. Human Immunodeficiency Virus Type 1

HIV-1 is an enveloped lentivirus studded with viral gp120/gp41 trimers. The lipid
bilayer acquired during budding has a relatively low copy number of envelope protein
moieties [19,20]. Underneath the viral membrane, the virus has a shell composed of the
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matrix protein. The characteristic conically shaped viral core (Figure 2A), which is made
of a lattice of mostly capsid hexamers and 12 pentamers, contains two copies of genomic
RNA as well as reverse transcriptase and integrase enzymes.

Figure 2. HIV-1 uncoating. (A) High resolution topographic imaging of wild type conical capsid
protein assemblies using atomic force microscopy. (a) The molecular architecture of the core derived
from electron tomography (taken from [21]). (b) An image of the surface of a conical capsid showing
a honeycomb lattice on its surface. (c) Scanning the top region of the conical capsid reveals the capsid
lattice structure. Scale bars are 20 nm (taken from [22]). (B) Changes in the average stiffness values
of HIV-1 cores during reverse transcription in the absence or presence of the reverse transcription
inhibitor efavirenz (taken from [23]). (C) The morphology of IP6 treated HIV-1 core as a function
of reverse transcription time. (a) A representative cone-shaped core prior to reverse transcription.
(b–d) Deformed and damaged cores visualized after 5 h of reverse transcription. Openings in the
capsid in the topographic AFM images are identified by enclosure within a dashed yellow rectangle.
Scale bars, 50 nm (taken from [24]).
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HIV-1 infection begins with binding of the virus to target cells via interaction between
the viral gp120 envelope protein and the cellular CD4 receptor and co-receptor CCR5
or CXCR4. This binding results in fusion between the viral and cell membranes, which
permits entry of the viral core into the target cell. The viral core must travel through the
viscous and densely packed cytoplasm of the target cell to the cell nucleus and dock at the
narrow nuclear pore [25–28]. To successfully infect the target cells, the viral genome, which
is in the form of ssRNA, must be reverse transcribed into dsDNA and integrated with the
host chromosomal DNA. Release of genetic material from the core requires disassembly of
the core capsid shell and is referred to as uncoating. Next, viral proteins are transcribed
from the integrated viral genome and then transported to the vicinity of the cell membrane,
where they assemble into a newly formed spherical viral particle that buds from the host
cell. After budding from the cell, HIV-1 undergoes a maturation process that is required for
infectivity. During maturation the viral Gag protein is cleaved into the structural proteins
(matrix, capsid, nucleocapsid), and the virus acquires its mature-state morphology.

The various stages of the HIV-1 life cycle have been extensively studied in detail using
multiple biochemical and fluorescence techniques. From a biophysics perspective, the virus
particles must overcome mechanical forces during both entry and exit from target cells.
There are multiple points in the complete process at which they are vulnerable to loss of
structural integrity and failure. In the proceeding sections, we will describe studies that
utilized atomic force microscopy to provided new insights into the fundamental biophysical
mechanism at the following mechanical checkpoints in the HIV-1 life cycle: viral entry,
maturation, uncoating, and budding.

5. HIV-1 Mechanical Properties, Maturation and Entry

Unlike other viral genomes [13,29–32], the HIV-1 genome is not maintained under
pressurized conditions. Thus, the rationale for studying the mechanical properties of HIV-1
particles is not immediately apparent. However, the virion must satisfy several potentially
conflicting demands during its lifetime: durability during budding and in the outside
environment to protect the genomic cargo and sufficient malleability to enable membrane
fusion during entry into the target cell. It is therefore reasonable to assume that the virus
must adopt a different set of physical properties at different stages of its life cycle.

The mature and immature states of the virus have different morphologies, with the
thickness of the protein inner shell significantly greater in the immature state [33]. In an
initial study on gammaretroviral murine leukemia virus (MLV) particles, the immature
state was twofold stiffer than the mature state [34]. Moreover, finite element simulation
showed that the immature virus shell can absorb local external stresses, thus potentially
providing better protection to the internal genome than the mature shell. A more dramatic
stiffness switch is observed during HIV-1 maturation, with the immature particle being
14-fold stiffer compared with the mature virus particles [35]. Previous studies had shown
that immature virions with high stiffness have low entry activity and infectivity, in contrast
to mature virions [36]. Surprisingly, the absence of the complete envelope protein (Env)
drastically reduces the stiffness of immature virus particles. Specifically, deletion of the
long cytoplasmic (CT) domain of Env results in the same drastic drop in the stiffness of
the immature virion, indicating that the presence of the Env CT domain, rather than the
thickness of the protein shell, contributes to particle stiffness [35]. This is an unexpected
result, given the presence of limited copies of Env on the surface of the virion [19,20,37–40].
Intriguingly, immature virions without the Env CT domain demonstrate higher infectivity,
thus suggesting an inverse correlation between viral stiffness and entry activity. Separating
the CT domain and Env ectodomain revealed that the former regulates stiffness whereas
the latter regulates entry, and that particle stiffness and virus entry are inversely correlated.
Since HIV-1 gp41 undergoes significant conformational change to achieve membrane
fusion, it is probable that stiffer virus particles present a higher energy barrier to membrane
deformation during fusion, thus concurrently failing to enter [41]. Therefore, it is logical to
state that mechanical properties are as important as biological interactions in governing the
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infection process. Unravelling the stiffening mechanism of the Env CT-domain remains an
important goal for future research.

6. The Mechanics of Virus Uncoating

Over the years, three models have been proposed for virus uncoating: (1) immediately
upon entry into the cytoplasm [42–44]; (2) in the vicinity of the nuclear pore; and (3) based
on recent evidence, within the nucleus, which requires entry of a nearly intact core through
the nuclear pore [45–53]. The core must remain structurally intact in order to protect its
cargo from cellular factors, yet be malleable enough to disassemble at the required time
and location to release the viral genome. Thus, the mechanical properties of the viral core
are pivotal for infectivity.

Stiffness measurements reveal that in vitro HIV-1 wildtype capsid assemblies have
lower stiffness values compared with cores isolated from purified wildtype virions [22].
This difference in stiffness may be indicative of the adaptability of virus mechanical proper-
ties in response to their contents. Since the supercoiled structure of ssRNA is not sufficient
to completely occupy the entirety of the core volume [54], interactions between the genome
and the inner walls of the core are probable, as has previously been described in the case
of DNA viruses, which have a highly rigid hydrated dsDNA structure, leading to higher
stiffness values [7]. Capsid-stabilizing mutations significantly stiffen the capsid structure,
which is inversely correlated with the decreased infectivity of these mutations. Similarly,
addition of the host cell factor cyclophilin-A increases HIV-1 capsid stiffness and decreases
infectivity [55,56]. The E45A/R132T double mutant, however, breaks the above inverse
correlation. This double mutant has a stiffness similar to that of the non-infectious E45A
capsid [22], but was shown to partially restore viral infectivity [57]. This discrepancy
indicates that the role of capsid mechanical properties in viral infectivity is far more com-
plicated than the above naïve picture according to which viral infectivity and core stiffness
are directly correlated.

The nature of the mechanism governing the location and timing of uncoating remains
a pivotal question. Several studies suggest a correlation between capsid stability, uncoating,
and viral infectivity [57–61]. Furthermore, capsid uncoating and reverse transcription
are thought to be coupled. Based on the above, an intriguing proposal was put forward
according to which reverse transcription of the relatively flexible ssRNA to a more rigid
dsDNA creates enough pressure from within to trigger core uncoating. In pioneering
sets of experiments, multiple and individual HIV-1 virus cores were monitored over the
time course of reverse transcription. This time-lapse monitoring of virus cores revealed a
progressive rise in stiffness to reach a maximum value almost 3-fold higher than the initial
stiffness, followed by a sharp drop in stiffness and subsequent disassembly within 20 to 24 h
of reverse transcription [23] (Figure 2B). The rise in capsid stiffness can be attributed to an
increase in the internal pressure, which eventually triggers disassembly of the core. If the
mechanical stability of the core is increased by a point mutation in the capsid protein, the
generated internal pressure is not sufficient to break the core. Alternatively, if the induced
internal pressure is reduced, for example in an RT-defective mutant, core disassembly is
blocked. Cumulatively, the above results point to a delicate biophysical balance between
the mechanical properties of the metastable virus core and reverse transcription-induced
internal pressure. This interplay probably occurs during the transit of the core from the cell
periphery to the nucleus, while interacting with a wide range of cellular factors and yet
preventing detection by cellular defense mechanisms.

Interestingly, AFM analysis reveals that disassembly is observed to begin always near
the narrow end of the core, where the local density of capsid pentamers is highest [21,62,63]
(Figure 2C). However, recent studies using EM show that the virus capsid disassembles by
losing patches of the capsid lattice [64]. PF74, a small molecule that specifically interacts
with hexamers in the capsid lattice to stabilize them while destabilizing the pentamers,
causes a dose-dependent increase in the stiffness of wildtype HIV-1 cores to levels similar
to that of the hyperstable capsid mutant E45A. Nonetheless, PF74-treated cores show
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characteristic partial reverse transcription-induced disassembly at the narrow end of the
core [65]. Further supporting evidence was provided by a transmission electron microscopy
(TEM) and cryogenic electron microscopy (Cryo-EM) imaging study showing that the initial
stages of uncoating involve the loss of relatively small patches to accommodate the growing
length of the stiffer viral DNA [64]. Lentiviruses are characterized by conical-shaped cores
and are more efficient at infecting nondividing cells, and their infectivity depends on capsid
stability. It is therefore tempting to speculate that the cone-shaped cores contribute to
lentivirus infection by introducing inherently structurally weak regions.

To better understand the uncoating mechanism in vivo, it becomes imperative to
understand the role of cellular factors that interact with the virus core during uncoating. A
major player in this regard is IP6 (inositol-hexakisphosphate), which has been shown to
stabilize virus cores by interacting with capsid hexamers and pentamers [66]. Approaches
using molecular dynamics (MD) simulations, AFM, TEM, confocal microscopy, and virus
infectivity assays have been employed to better understand the role of IP6.

Mechanical studies on IP6-treated virus cores showed that their initial stiffness is
elevated to a value similar to the E45A hyperstable mutant. However, cores undergo
complete disassembly after a relatively short time (~7 h) of reverse transcription without
displaying the characteristic stiffness peak [24]. Time-lapse monitoring of individual IP6-
treated wildtype virus cores granted a better temporal resolution of the rapid process
and showed the presence of not one but at least three individual stiffness spikes. A
parallel study of an RT-defective mutant revealed the presence of just one spike in stiffness,
thus providing novel preliminary links between stiffness spikes and reverse transcription
stages. Using efavirenz, an RT-inhibitor, it was shown that all three spikes are necessary
for successful core disassembly [67]. The rapid biomechanical changes fit well with the
existing hypothesis, accounting for the struggles of the virus core to enter the nucleus
through the narrow nuclear pore. Based on the above results, an accumulative damage
model was put forward. According to this proposed model, mechanical changes lead to
the formation of small ruptures on the core surface. The accumulation of these ruptures
on the virus core surface eventually results in loss of the structural integrity of the core
and ultimately triggers capsid disassembly [68]. Our above proposed model for core
disassembly was recently supported by a cryo-tomography imaging of virus cores [69]. It
was shown that HIV-1 cores undergoing active reverse transcription have higher lattice
strain, which increases until an ultimate mechanical failure of the virus core. The crack
propagation occurs along the high strain regions on the capsid lattice, thus showing how
the mechanical properties are critically involved in core disassembly. The acceleration of
reverse transcription kinetics in the presence of IP6, on the other hand, shows how HIV-1
has evolved particularly to utilize cellular IP6 to enhance the importation of nucleotides
while it is in the cytoplasm, where their concentration is relatively low compared to in
the nucleus.

The above in vitro experiments provide insight into the material properties of virus
cores, but it is important to understand how these attributes are relevant and what role they
play during the actual infection process in vivo. The increase in stiffness can be attributed to
the presence of rigid nucleic acid within the capsid, but could also be due to the generation
of free pyrophosphates (PPi) that phosphorylate the inner wall of multiple virus capsids,
causing minor structural changes [70–73]. Similarly, infectivity studies have shown an
increase in the stiffness or stability of the virus core due to point mutations; however, this
increase does not necessarily correlate with reduced infectivity in all cases [22,57]. This
challenges the dictum that high core stiffness reduces infectivity and points to a more
intricate relation between the biophysical properties of the virus core and the mechanics
of uncoating. Furthermore, multiple questions remain unanswered in this regard. Are
these small reverse transcription-induced fractures reversible, thus preventing premature
disassembly? What actually triggers the final stage of uncoating in the HIV-1 virus core?
It would be interesting to approach these questions from a biophysics perspective by
exploring the innate mechanical properties of the HIV-1 core.
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7. HIV-1 Budding

In HIV-1, budding occurs near the plasma membrane where the virus assembles all the
necessary viral components and buds out while acquiring a part of the plasma membrane.
The primary driving force for budding is the Gag protein, which regulates all the activities
for assembly and egress of the virus. Although electron microscopy can generate images
of viral budding at excellent resolutions, it is not possible to obtain real-time kinetics data
using this methodology. Since HIV-1 budding occurs near the cell membrane [74,75], it
creates a perfect scenario for atomic force microscopy. Probing the cell membrane in real
time can provide detailed information on the kinetics of individual budding events.

In an initial study, individual MLV budding events were monitored using an AFM [76]
(Figure 3). The accumulation of Gag protein under the cell membrane and its subsequent
multimerization lead to the development of curvature in the cell membrane. Formation
of a complete spherical Gag particle can be detected as a protrusion on the cell surface
(Figure 3A), and the cross-sectional height determined by the AFM images over time
provides details about the trajectory for budding. Single particle analysis provides insights
into different budding patterns and characterizing these patterns contributes to assessing
budding kinetics (Figure 3B). The complete budding trajectory can be divided into two
parts: the growth of the bud and the excision of the bud to release the virion. Interestingly,
two kinetic pathways were observed: a fast kinetics pathway characterized by the growth
of the particle to maximal height followed by rapid release, and a slow pathway that
includes an additional arrested phase between the growth and the release of the virus
particle. Speculation that the arrest phase represents entrapment of the virion at the plasma
membrane was resolved when the force applied during AFM image acquisition did not
trigger release of the virus particle from the plasma membrane, thus indicating that the
arrested phase is an intrinsic property of slow kinetics budding events [76]. Since growth
phase kinetics are similar in the fast and slow pathways, it is possible that the arrest phase
correlates with recruitment of the cellular machinery to trigger the final nicking of the
bud. A fascinating question therefore arises as to whether poor recruitment or low local
concentration of cellular machinery proteins is responsible for stalling in the arrest phase.
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Figure 3. Imaging retrovirus budding from live cells using atomic force microscopy. (A) AFM
images, acquired in tapping mode, of an (a) uninfected and (b) HIV-1 infected NIH/3T3 live cell.
Virus particles at different stages of budding appear as protrusions of different heights on the cell
membrane. Scale bar is 3 µm. (B) Visualizing a complete budding progress from initial assembly to
release of a single virus particle. Scale bar is 0.5 µm. (C) Imaging the cytoskeleton of live cells using
the AFM in the torsional mode. (a) an AFM image of an uninfected live cell. The cytoskeleton fibers
are clearly detected beneath the cell membrane. (b) An AFM torsion image of an HIV-1 infected cell
reveals the fine actin architecture beneath the cell membrane (an enlargement is shown in (c), scale
bar is 1.5 µm). The virus particles colocalize to form actin star-like shapes. Panels A and B are taken
from [76], while C is taken from [77].
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Several studies on equine infectious anemia virus (EIAV), vaccinia virus, MLV, and HIV,
show the participation of actin in remodeling the cytoskeleton during viral budding [78–84].
Multiple approaches using fluorescence, AFM, and TEM have revealed large scale changes
in cellular infrastructure with concurrent impacts on cellular morphology [85–88]. To better
resolve the cytoskeleton of the cell, the AFM is operated in the torsional force mode. In
this mode, the AFM probe scans perpendicularly to the long axis of the cantilever. As the
tip bumps into a cytoskeletal fiber, which is stiffer than the cell membrane, the cantilever
twists slightly, giving rise to an increase in the torsional signal. Operating the AFM in the
torsional mode, HIV-1 and MLV budding events showed highly dynamic actin-filaments
emerging from viral sites, thus providing direct visual links to the involvement of actin in
retroviral budding (Figure 3C). Although the HIV-1 viral load produced is less in NIH 3T3
cells, the HIV-1 particles released are completely infectious and budding occurs relatively
faster compared with that of MLV [77]. Parallel data from theoretical studies describing
membrane proteins suggests a dynamic instability transition effect due to multimerization
of proteins under the fluid cell membrane leading to formation of convex structures that
eventually bud outwards [89,90]. When considered together with studies on Gag-actin
interaction during budding [91], the observations cumulatively point to the role of actin as
a cellular trigger for retroviral budding. Presently, the involvement of actin polymerization
in HIV-1 budding is subject to debate, with several studies supporting this idea [78,92]
while others suggest otherwise [92–96]. The results from atomic force microscopy and
fluorescence microscopy studies lead to speculation regarding an interesting model in
which viral Gag-proteins need to multimerize to a critical density and form a convex
spherical shape to induce membrane instability and eventually trigger the formation of
a bud. In addition, based on data acquired from AFM imaging combined with in vitro
and theoretical studies, it is suggested that viruses utilize the cellular mechanical force
generated by cytoskeletal assembly to overcome the energetic barrier associated with
budding [77].

Analysis of the relatively fast kinetics of HIV-1 budding using standard atomic force
microscopy revealed that its poor temporal resolution constitutes a weakness of this method.
With the recent development of fast scanning AFMs capable of imaging soft biological
samples with a temporal resolution of a few seconds, detailed characterization of HIV-1
budding has become possible.

8. Summary and Perspectives

After more than three decades of development in the area of near-field microscopy,
atomic force microscopy has emerged as a powerful and significant tool to image and
study the mechanical properties of a wide range of biological systems. By combining force
microscopy and spectroscopy, atomic force microscopy opens a doorway to characterizing
important biological processes from the novel perspective of biophysics and mechanobiol-
ogy. Atomic force microscopy grants key insights into the mechanical properties governing
fundamental biological processes and how their physical characteristics bestow different
functional advantages on small molecular entities, such as protein clusters or viruses, at
different time points in their development.

As elucidated by this review, atomic force microscopy provides uniquely relevant
images and physical information concerning the mechanobiological properties of biolog-
ical systems. Complementing traditional techniques, such as electron microscopy, X-ray
crystallography, and mass-spectroscopy, atomic force microscopy greatly furthers our
understanding of critical biological processes by examining their underlying physics.
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