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Background. Fluconazole is lifesaving for treatment and prevention of cryptococcosis; however, optimal dosing is unknown. 
Initial fluconazole doses of 100  mg to 2000  mg/day have been used. Prevalence of fluconazole nonsusceptible Cryptococcus is 
increasing over time, risking the efficacy of long-established standard dosing. Based on current minimum inhibitory concentration 
(MIC) distribution, we modeled fluconazole concentrations and area under the curve (AUC) relative to MIC to propose a rational 
fluconazole dosing strategy.

Method. We conducted a systematic review using the MEDLINE database for reports of fluconazole MIC distribution against 
clinical Cryptococcus isolates. Then, we utilized fluconazole concentrations from 92 Ugandans who received fluconazole 800mg/day 
coupled with fluconazole’s known pharmacokinetics to predict plasma fluconazole concentrations for doses ranging from 100 mg to 
2000 mg via linear regression. The fluconazole AUC above MIC ratio were calculated using Monte Carlo simulation and using the 
MIC distribution elucidated during the systemic review.

Results. We summarized 21 studies with 11 049 clinical Cryptococcus isolates. Minimum inihibitory concentrations were nor-
mally distributed with a geometric mean of 3.4 µg/mL, median (MIC50) of 4 µg/mL, and 90th percentile (MIC90) of 16 µg/mL. The 
median MIC50 trended upwards from 4 µg/mL in 2000–2012 to 8 µg/mL in 2014–2018. Predicted subtherapeutic fluconazole con-
centrations (below MIC) would occur in 40% with 100 mg, 21% with 200 mg, and 9% with 400 mg. The AUC:MIC ratio >100 would 
occur in 53% for 400 mg, 74% for 800 mg, 83% for 1200 mg, and 88% for 1600 mg.

Conclusions. Currently recommended fluconazole doses may be inadequate for cryptococcosis. Further clinical studies are 
needed for rational fluconazole dose selection.
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INTRODUCTION

Cryptococcus is the leading cause of meningitis in persons with 
AIDS [1]. Cryptococcosis accounts for approximately 15% of 
AIDS-related deaths worldwide [2]. Globally, deaths from cryp-
tococcal meningitis are still unacceptably high despite the ex-
panded rollout of antiretroviral therapy (ART) and increased 
availability of effective antifungal agents [2]. Cryptococcal 
meningitis can be prevented by cryptococcal antigen (CrAg) 
screenings of at-risk populations with advanced AIDS and then 

providing preemptive fluconazole therapy [3]; however, the op-
timal fluconazole dose is not known. Varying fluconazole doses 
between 100mg/day and 2000mg/day have been used for treat-
ment or preemptive therapy [3].

One of the crucial factors influencing fluconazole dosing 
is the in vitro minimum inhibitory concentration (MIC) of 
fluconazole against Cryptococcus. The MIC ≤8 µg/mL is con-
sidered fully susceptible to fluconazole; above this threshold, 
treatment outcomes could be less optimal [4, 5]. Fluconazole 
therapeutic drug monitoring is not routinely used in clinical 
practice due to relatively predictable pharmacokinetics and 
infrequent resistance of initial Cryptococcus isolates [6–8]. 
However, a recent systematic review of 4995 clinical isolates 
in 29 studies from 1988 to 2017 revealed that fluconazole 
nonsusceptible Cryptococcus neoformans and Cryptococcus 
gattii isolates ranged from 0%–50% with a mean preva-
lence of 12%, and an increasing trend over time [9]. The 
concentration-time area under the curve (AUC) relative to the 
MIC is a central pharmacodynamic principle associated with 
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fluconazole’s mycologic activity. Based on pharmacokinetic 
and pharmacodynamic modeling in animals, an AUC:MIC 
ratio ≥389 is the mean stasis endpoint desired for maximal 
fluconazole activity against Cryptococcus in mice [10–12]. 
The correlation between the MIC distribution, steady-state 
fluconazole concentrations in humans, and exposure in an 
HIV-infected population have not been well studied. Our 
study aimed to characterize the MIC distribution using a 
systematic review of published Cryptococcus MICs, simulate 
steady-state fluconazole exposures in humans, and propose a 
rational fluconazole dose for different phases of cryptococcal 
meningitis treatment and preemptive therapy in asympto-
matic CrAg-positive persons.

METHODS

We determined the MIC distribution of Cryptococcus from a sys-
tematic review of the literature, and distribution of fluconazole 
plasma concentrations from a Uganda HIV-infected crypto-
coccal cohort to then model the probability of achieving thera-
peutic fluconazole concentrations for the population as well as 
for specific MICs.

MIC Distribution

We performed a systematic literature search from the 
MEDLINE database using key words from the Medical Subject 
Heading (MeSH) database. Search terms were [“fluconazole” 
or “antifungal agents”] and [“Cryptococcus” or “Cryptococcus 
gattii” or “Cryptococcus neoformans” or “cryptococcosis”] and 
[“microbial sensitivity test” or “fungal drug resistance”]. The 
search strategy identified studies reporting the MIC distribu-
tion of fluconazole against clinical Cryptococcus isolates from 
January 1, 2000, to May 31, 2018. The inclusion criteria in-
cluded experimental studies, observational studies, and case 
series describing fluconazole MIC distribution in clinical 
isolates. Environmental isolates or animal studies were ex-
cluded. Data extracted from the selected studies were year, 
country, the number of isolates, and the pattern of overall MIC 
distribution.

Plasma Fluconazole Concentration

Plasma fluconazole concentrations were determined as part of 
the Adjunctive Sertraline for the Treatment of HIV-associated 
Cryptococcal Meningitis (ASTRO-CM) trial (Clinical Trials 
registration number NCT01802385) [13]. We used fluconazole 
plasma concentrations obtained at steady state in 92 HIV-
infected Ugandan adults with cryptococcal meningitis who re-
ceived 800mg of oral fluconazole daily. One to three fluconazole 
concentrations were measured per participant during the 
second week of induction of meningitis therapy and aver-
aged within participant. The details of the protocol, including 
fluconazole measurement method, were described in a previous 
study [14, 15].

Fluconazole Concentration and AUC Above the MIC Prediction Model

Fluconazole is well known to have linear pharmacokinetics 
[11, 16–18]. For this reason, we used a linear regression 
model for predicting the plasma concentrations following oral 
fluconazole at 100 mg, 200 mg, 400 mg, 1200 mg, 1600 mg, and 
2000 mg/day from the measured concentrations following oral 
fluconazole 800  mg daily given as directly observed therapy 
while hospitalized [15, 19]. We performed a Monte Carlo simu-
lation with 1 million replicates based on the normal distribution 
of steady-state fluconazole concentrations from the different 
doses. We restricted the modeled distribution to ±2 standard 
deviations (SD), thereby truncating at <2.5% or >97.5% dis-
tributions. This truncation eliminated nonsensical, negative 
modeled fluconazole values. We modeled the MIC distribution 
with 1 million replicates using a normal distribution of a log2 
geometric mean MIC  ±  SD and then back transforming into 
the geometric MIC. The proportion of fluconazole concen-
tration relative to MIC then was calculated from the 1 million 
replicates. Fluconazole’s long terminal half-life leads to little 
variability across the dosing interval [20], so the AUC:MIC 
ratio also was calculated from the simulated patients using 
fluconazole concentration multiplied by 24 hours and divided 
by MIC. Analyses were performed using Excel 2016 (Microsoft, 
Redmond, WA).

 We summarized the proportions of simulated patients 
achieving plasma exposures above the MIC (relevant as a target 
for secondary prophylaxis). We additionally summarized pro-
portions achieving a >100 AUC:MIC ratio. This ratio is less than 
the optimal AUC:MIC ratio of 389 for induction therapy deter-
mined in a murine model using ~7 log10 Cryptococcus colony 
forming units/g tissue [10]. This lower target (>100 AUC:MIC) 
is an approximation consistent with clinical success with con-
solidation therapy of 400mg/day in the setting of historically 
lower MICs ≤2 µg/mL and lower fungal burdens at the time of 
consolidation therapy.

RESULTS

Cryptococcus Susceptibility to Fluconazole

A total of 681 studies were identified and screened for 
Cryptococcus susceptibility. Only 96 studies met the inclu-
sion criteria, 75 of these studies were excluded due to the ab-
sence of presenting MIC distribution (Supplementary Figure 
1). The final quantitative synthesis included 11  049 clinical 
Cryptococcus isolates reported from 21 studies (Table 1) [6, 7, 
21–37]. Overall, 68% of the clinical isolates came from 2 large 
global studies [7, 37] that were collected from multiple geo-
graphic sites. All studies used broth microdilution methods for 
MIC determination. The MICs were normally distributed on a 
log2 scale (Supplementary Figure 2) with a geometric mean of 
3.4 µg/mL and a geometric standard deviation of ±1.53 log2 µg/
mL. The median MIC50 was 4 µg/mL. A total of 1255 clinical 
isolates (11.3%) had MIC >8 µg/mL with 90th percentile (MIC90) 
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being 16 µg/mL. When the MIC distribution was divided into 
2 groups by date of publication, 13 studies (n = 9507) published 
in 2000–2012 and 8 studies (n = 1542) published in 2014–2018, 
the median MIC50 trended upwards from 4 µg/mL to 8 µg/mL 
(Figure 1).

Modeled Fluconazole Concentrations

The mean plasma fluconazole concentration at steady state in 
92 patients who received 800mg of oral fluconazole from the 
previous study as described above was 42.6 (±21.3 SD) µg/mL 
(median, 41.2; interquartile range, 29.8 to 52.7  µg/mL). The 

Table 1. Distribution of Cryptococcus Clinical Isolates Minimum Inhibitory Concentrations

First Author Year Population N

Cryptococcus Minimum Inhibitory Concentrations, µg/mL

≤0.125 0.25 0.5 1 2 4 8 16 32 ≥64

Cogliati [21] 2018 Italy 295 3 17 35 46 67 88 35 4 0 0

Kassi [22] 2018 Ivory coast 50 9 14 13 8 0 1 5 0 0 0

Worasilchai [23] 2017 Thailand 74 0 0 5 17 35 17 0 0 0 0

Gago [24] 2016 Spain 28 0 0 0 0 0 2 8 6 4 8

Cordoba [25] 2016 Argentina 702 2 7 8 19 43 116 256 172 63 16

Smith [26] 2015 Uganda 198 1 2 8 20 20 39 49 37 17 5

Van Wyk [27] 2014 South Africa 155 0 0 9 19 42 53 23 6 1 2

Morales [28] 2014 Brazil 40 0 0 8 14 9 6 0 0 3 0

Espinel-Ingroff [7] 2012 Global 5733 97 149 319 705 1629 1868 668 206 67 25

Matos [29] 2012 Brazil 60 0 0 0 1 2 12 28 9 2 6

Lockhart [7] 2012 USA 298 0 0 9 17 41 71 100 40 20 0

Govender [30] 2011 South Africa 487 0 1 27 92 196 138 30 3 0 0

Pfaller [31] 2011 Global 285 0 3 2 24 62 140 45 8 1 0

Mdodo [32] 2011 Kenya 66 0 2 1 5 16 32 8 2 0 0

Illnait-Zaragozí [7] 2010 Cuba 19 0 2 2 4 4 5 2 0 0 0

Iqbal [33] 2009 USA 43 0 0 1 0 4 16 10 10 2 0

Fusco-Almeida [34] 2007 Brazil 83 0 0 0 2 0 12 42 20 7 0

Bii [35] 2007 Kenya 80 0 0 0 1 3 3 12 46 6 9

Serena [36] 2005 Spain 20 0 0 0 1 1 1 4 2 7 4

Pfaller [37] 2005 Global 1811 0 7 11 72 327 598 489 235 72 0

Brandt [6] 2001 USA 522 0 0 0 77 77 77 189 85 9 8

Total (Cumulative %)   11 049 112 
1.0%
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Figure 1. Fluconazole Minimum Inhibitory Concentration Distribution for Cryptococcus from Years 2001–2012 and 2014–2018 Minimum inhibitory concentration dis-
tribution of 11 049 clinical isolates published from January 1, 2000, to May 31, 2018, were normally distributed with a geometric mean of 3.4 µg/mL, median (MIC50) of 
4 µg/mL, and 90th percentile (MIC90) of 16 µg/mL. When divided into 2 groups from the publication years of 2000–2012 (13 studies, n = 9507) and years of 2014–2018  
(8 studies, n = 1542), the median MIC50 was up trending from 4 µg/mL to 8 µg/mL.
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predicted mean plasma fluconazole concentrations (µg/mL) are 
reported in Table 2.

Projected Fluconazole Concentrations Above MICs

The Monte Carlo simulation with 1 000 000 simulated patients 
based on the normal distribution pattern of MICs and meas-
ured fluconazole concentrations demonstrated the projected 
fluconazole concentration above MICs. Only 60% of those re-
ceiving oral fluconazole at 100 mg daily were projected to reach 
a therapeutic concentration in blood above the Cryptococcus 
MIC, and the remaining 40% would be expected to have 
subtherapeutic concentrations. For oral fluconazole at 200 mg, 
the percentage of predicted fluconazole concentration above 
MICs was 79%, 400 mg was 91%, 800 mg was 97%, 1200 mg 
was 98%, and 1600 mg was 99% based on the total distribution 
of Cryptococcus isolates (Table 2).

Projected AUC:MIC Therapeutic Ratios

The projected AUC:MIC ratio was calculated from simu-
lated patients, using steady state concentrations. Therapeutic 
concentrations with AUC:MIC ratio of >100 were present in 
13% of fluconazole 100 mg, 31% of fluconazole 200 mg, 53% 
of fluconazole 400  mg, 74% of fluconazole 800  mg, 83% of 
fluconazole 1200 mg, 88% of fluconazole 1600 mg, and 91% of 
fluconazole 2000  mg (Table 2). Regarding induction therapy, 
the percent of AUC:MIC ratio above 389 for fluconazole 400 mg 
was 17%, 800  mg was 36%, 1200  mg was 50%, 1600  mg was 
59%, and 2000 mg was 66% (Figure 2).

The Projected Dose of Fluconazole Based on Given MIC

Based on the given MIC, the percentage of fluconazole doses 
reaching therapeutic exposures above MIC can be projected 
(Table 3). For MICs ≤4 µg/mL, standard secondary prophylaxis at 
200 mg/day will achieve levels above the MIC in >90% of persons. 
Yet as the MIC rises to 8 µg/mL, only 70% achieve therapeutic ex-
posures, and only 14% of persons receiving 200 mg are projected 
to achieve therapeutic exposures in plasma above the MIC when 
it is 16 µg/mL. Among Cryptococcus isolates with higher MICs, 
higher fluconazole doses would be necessary to achieve thera-
peutic concentrations. Overall, >90% would achieve therapeutic 
exposures with 400 mg at MIC of 8 µg/mL, >90% with 800mg at 
16 µg/mL, and >85% with 1200 mg at 32 µg/mL, and >70% with 
1600 mg at 64 µg/mL (Supplementary Table 1).

For consolidation therapy or preemptive therapy, higher 
AUC:MIC ratios may be necessary but less than necessary 
for induction therapy. The traditional 400mg/day dose would 
achieve >100 AUC:MIC ratio in >90% of persons with a MIC 
of 2 µg/mL and 68% of persons with a MIC of 4 µg/mL, but 
only 11% of persons would achieve >100 AUC:MIC ratio with 
a MIC of 8 µg/mL. As Cryptococcus MICs double, similar pro-
portions achieve >100 AUC:MIC ratio target as fluconazole 
doses double (Supplementary Table 2). Thus, at 800 mg/day of 
fluconazole therapy, >90% of persons with MIC of ≤4 µg/mL 
and ~68% of persons with MIC of 8 µg/mL would achieve >100 
AUC:MIC target.

DISCUSSION

In our systematic review, we found that the susceptibility to 
fluconazole was normally distributed with a geometric mean 
of 3.4  µg/mL, MIC50 of 4  µg/mL, and MIC90 of 16  µg/mL. 
Cryptococcus MIC to fluconazole appears to be increasing over 
time when comparing reported isolates from the year 2000–
2012 versus 2014–2018. Ongoing surveillance of antifungal 
susceptibilities is needed. Based on steady-state fluconazole 
concentrations from people with advanced HIV disease in 
Uganda, we found that currently recommended doses are far 
below optimal AUC targets for induction therapy, projected in 
~50% of persons receiving 1200  mg/day and 36% of persons 
receiving 800 mg/day. Although with induction amphotericin 
therapy, “optimal” consolidation therapy may not be essen-
tial with induction amphotericin therapy [26]. Subtherapeutic 
concentrations below the MIC would be achieved in 40% of 
persons receiving 100 mg/day, 21% receiving 200 mg/day, and 
9% receiving 400 mg/day. This implies among those receiving 
the 400 mg/day consolidation dosing, 9% would achieve levels 
below the MIC and 21% below the MIC when receiving sec-
ondary prophylaxis with 200  mg/day. Whether low plasma 
levels of fluconazole are associated with mortality is an area of 
further exploration.

Witt et al studied the treatment of AIDS-associated crypto-
coccal meningitis and found that the MIC of Cryptococcus is 
an essential factor in determining the treatment outcome [38]. 
Nevertheless, the breakpoint for Cryptococcus species was not 
well established given the Clinical and Laboratory Standards 
Institute Performance Standards for Antifungal Susceptibility 

Table 2. Distribution of Plasma Fluconazole Concentrations and Proportion Achieving Therapeutic Concentrations

Fluconazole Dose 100 mg 200 mg 400 mg 800 mg 1200 mg 1600 mg 2000 mg

Mean plasma concentration (±SD), µg/mL 5.3 ± 2.7 10.7 ± 5.3 21.3 ± 10.7 42.6 ± 21.3 63.9 ± 31.9 85.2 ± 42.6 106 ± 53

% below MIC 39.8% 20.7% 8.8% 3.3% 1.7% 1.1% 0.8%

Mean AUC24 (±SD) mg*h/L 127.8 ± 63.9 255.6 ± 127.8 511.2 ± 255.6 1022.4 ± 511.2 1533.6 ± 766.8 2044.8 ± 1022.4 2556 ± 1278

% AUC:MIC > 100 13.4% 30.6% 53.2% 74.2% 83.3% 88.3% 91.2%

% AUC:MIC > 389 optimal 1.5% 6.1% 17.2% 36.3% 49.7% 59.2% 66.1%

Abbreviations: AUC, area under the curve; MIC, minimum inhibitory concentration; SD, standard deviation.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofz369#supplementary-data
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Figure 2. Proportion Achieving Target Fluconazole AUC:MIC Ratio The percent of AUC:MIC ratio presented by category for various doses of fluconazole. The desired op-
timal target dose for induction therapy would be a >389 AUC:MIC ratio, which is directly proportional to the fluconazole dose. The percent of <MIC reflects the percent of 
subtherapeutic fluconazole levels below the MIC, which decrease with higher fluconazole doses. At present, ~21% of persons receiving 200 mg/day are projected to not 
achieve fluconazole plasma levels above MIC based on the current MIC distribution of Cryptococcus isolates.

Table 3. Possible Rational Fluconazole Dosing Based on Cryptococcus Minimum Inhibitory Concentration

Cryptococcus MIC

Fluconazole Therapy

Consolidation/Preemptive Therapy Projected at Target of >100 AUC:MIC Secondary Prophylaxis

Prophylaxis 
Above 
MIC

Current Recommendations [3, 42] 400–800 mg 53–74% 200 mg 79%

Customized Recommendations     

Unknown MIC 800–1200 mg 74–83% 400 mg 91%

≤2 µg/mL 400 mg >91% 200 mg 97%

4 µg/mL 800 mg 91% 200 mg 92%

8 µg/mLa 1200 mg 85% 400 mg 92%

16 µg/mL 1600 mg 68% 800 mg 92%

32 µg/mL 2000 mg 30%b 1200 mg 86%

64 µg/mL 2000 mg 0%b 1600 mg 70%

Abbreviations: MIC, minimum inhibitory concentration.
aThere are no official breakpoints for Cryptococcus, but the 2017 Clinical and Laboratory Standards Institute Performance Standards for Antifungal Susceptibility Testing of Yeasts guidelines 
for Candida albicans cite MICs ≥8 µg/L as considered resistant [39]. Some microbiology laboratories may provide Candida susceptibility breakpoints for context, but physicians should be 
aware that such thresholds are not clinically validated for Cryptococcus. These suggestions would be relevant for settings where alternative therapies are unavailable or cost-prohibitive.
bFor isolates with MIC ≥32 µg/mL, alternative therapy should be considered as probability of achieving therapeutic fluconazole levels is low. 

Refer to Supplementary Table 1 for % above MIC and Supplementary Table 2 for >100 AUC:MIC targets.
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Testing of Yeasts was developed for Candida species [39]. The 
resistance for Candida albicans was defined by MIC ≥8 µg/mL. 
Previous studies have shown that the MIC breakpoint >8 µg/
mL for Cryptococcus species was related to poor outcome and 
considered as resistant [4, 5]. In our systematic review, 30% of 
clinical isolates had MIC >4 µg/mL and 11% had MIC >8 µg/
mL. The recent systematic review showed that the resistance 
rates are varied, ranging from 0%–50% with a mean resistance 
of 10.6% (95% confidence interval [CI], 5.5–15.6) for incident 
isolates and 24.1% (95% CI, −3.1–51.2) for relapse isolates [9]. 
Historically, clinical outcomes have not been associated with 
different MIC breakpoints when using amphotericin [5, 26]; 
however, fluconazole monotherapy for induction meningitis 
therapy is associated with 70% mortality in routine care [40, 
41]. Thus, comparing outcomes versus MIC during induction 
therapy likely may not be the correct metric in choosing consol-
idation therapy doses as the success with consolidation therapy 
is generally high.

The current treatment dose of fluconazole for cryptococcal 
infection depends on the phase of treatment and HIV infection 
status. In the 2010 guidelines from the Infectious Disease Society 
of American [42] and the 2011 guidelines from World Health 
Organization (WHO) [43], the recommended fluconazole dose 
was 400  mg/day for consolidation phase and 200  mg/day for 
maintenance phase in HIV-infected patients with cryptococcal 
infection. The 2018 WHO cryptococcal disease guidelines rec-
ommend 800 mg/day during consolidation therapy [3]. Higher 
doses up to 1600  mg or 2000  mg/day may be preferred if an 
alternative therapy to amphotericin B and flucytosine is neces-
sary in the induction phase. With asymptomatic cryptococcal 
antigenemia, the 2010 IDSA recommendation is fluconazole 
400  mg/day [42], whereas WHO recommends 800  mg/day 
[3]. Previous studies [17, 44, 45] have shown that high dose 
fluconazole up to 2000  mg/day is generally well tolerated. In 
an analysis of patients with coccidioidomycosis receiving high 
dose fluconazole, the cumulative incidence of the adverse ef-
fects was approximately 20% through 8 weeks and continued to 
increase with the longer durations of therapy [46]. Common ad-
verse effects observed with a higher dose of fluconazole include 
dry skin (17%), alopecia (16%), fatigue (11%), nausea (10%), 
hepatic transaminitis (6%), cheilitis (5%), and isolated alkaline 
phosphatase elevation (2%) [45, 46]. Some degree of nausea is 
common with fluconazole doses at or above 800  mg/day and 
generally can be decreased by splitting the dose twice daily. 
Another potential concern would be increasing drug to drug 
interactions, historically a concern with nevirapine, yet there 
are few data on dose dependency of drug to drug interactions.

The IDSA guidelines also recommended against in vitro sus-
ceptibility testing for two main reasons. The first reason is that 
the MIC breakpoint has not been validated well, and the second 
reason is the low resistance rate. Although historically accurate, 
triazole fungicide use in agriculture has increased exponentially 

worldwide, including in Sub-Saharan Africa. Tebuconazole, a 
commonly used agricultural triazole fungicide, readily induces 
cross-resistance to fluconazole in Cryptococcus [47], and it is 
possible that agricultural azole use may be why Cryptococcus 
MICs appear to be increasing per our systematic review. Our 
study reports 11% of isolates to have MICs >8  µg/mL, sug-
gesting current dose recommendations are not adequate for all 
instances of Cryptococcus infection. The predominant focus on 
induction therapy mostly has ignored dosing considerations 
for preemptive therapy for asymptomatic CrAg-positive per-
sons, consolidation phase of meningitis therapy, and secondary 
prophylaxis.

Some recommended fluconazole monotherapy doses 
for asymptomatic cryptococcal antigenemia potentially are 
subtherapeutic, based on our modeling. Among persons with 
cryptococcal meningitis, mortality continues to occur during 
consolidation therapy [48, 49], and relapse occurs in approx-
imately 5% of cryptococcal patients [14, 50]. Although this 
morbidity and mortality may be viewed as expected, using 
subtherapeutic antifungal regimens may be adversely contrib-
uting in addition to the complexities of HIV care. Those with 
nonsterile Cerebrospinal fluid (CSF) at 2 weeks historically have 
been at clear risk of excess 10-week mortality and paradoxical 
immune reconstitution inflammatory syndrome [49, 51, 52]. 
Since 2010 in Uganda, we have used an enhanced consolidation 
therapy of 800 mg/day through 6 weeks and ART initiation or 
switch [48], and others have used 800 mg/day through 10 weeks 
[53]. The duration of this enhanced dosing still may be too short 
and secondary prophylaxis dosing too low depending on the 
efficacy of the induction regimen used.

Although immune reconstitution with ART may ob-
scure overt culture-positive relapse, the failure to eradicate 
Cryptococcus may contribute to paradoxical immune reconsti-
tution inflammatory syndrome (IRIS) [52], including persons 
having higher serum CrAg titers at the time of starting ART (at 
4 weeks) being at higher risk [54]. In Uganda, as we have in-
creased our fluconazole consolidation therapy, our incidence of 
paradoxical IRIS decreased from 45% with 400 mg/day to <15% 
with 800 mg/day [14, 48, 54].

Based on the given Cryptococcus MIC, our model predicted 
rational fluconazole doses for consolidation therapy and pre-
emptive therapy based on the proportion of persons with >100 
AUC:MIC. Given the current population MIC distribution, the 
recommended consolidation dose of 800 mg will yield ~74% of 
persons with >100 AUC:MIC ratio. Yet, in dropping to 400 mg, 
only ~53% would achieve >100 AUC:MIC ratio. The original 
rationale for decreasing preemptive therapy for cryptococcal 
antigenemia to 400 mg after 2 weeks was the potential drug to 
drug interaction with nevirapine. Nevirapine now is used rarely, 
and fluconazole 800  mg/day or 1200  mg/day may be a more 
effective choice with uptrending of MICs. We found that the 
appropriate dose for MIC ≥8 µg/mL likely may be higher than 
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800 mg, and local susceptibility patterns may inform national 
guidelines. Similarly, in secondary prophylaxis, a customized 
fluconazole dose likely should be considered for MIC of 8 µg/mL 
(400 mg), 16 µg/mL (800 mg), 32 µg/mL (1200 mg), and 64 µg/
mL (1600 mg), or alternative therapy used; however, in low and 
middle income countries where there is no alternative therapy 
[55], recommending use of itraconazole or voriconazole is not 
particularly helpful. We provide some considerations of rational 
fluconazole dosing for consolidation therapy and secondary 
prophylaxis in the absence of alternative therapies (Table 3). 

Our study is a large systematic review that compiled the MIC 
distribution from more than 10 000 clinical isolates over the past 
2 decades and predicted the customized fluconazole dose for the 
population-based MIC target, and our study has some limita-
tions. First, the fluconazole concentrations were obtained from 
1 clinical study that included 92 HIV-infected Ugandans that 
used the linear kinetic model for predicting the exposure from 
different doses. Our steady plasma concentrations were within 
10%–20% of observations in US, Vietnamese, and other Ugandan 
patients [12, 17]. Second, the timing of the fluconazole level draw 
was variable, which either could under- or overestimate the AUC 
calculation, but multiple samples were averaged. Third, fungal 
susceptibility testing is fraught with challenges, including re-
producibility as well as inoculum effects where in vivo suscepti-
bility may differ from standardized in vitro susceptibility testing. 
Finally, the exact target AUC above MIC ratio for consolidation 
therapy is unknown, and we have made an arbitrary approxima-
tion. Human data and excellent modeling has been conducted 
for fluconazole induction therapy [12], yet consolidation therapy 
recommendations has been derived mostly from expert opinion. 
Based on historical experience, the doses of fluconazole used 
during consolidation have been less than that used for induc-
tion fluconazole monotherapy. Even now, data are limited in the 
selection of consolidation therapy doses with a lack of clinical 
studies demonstrating strong associations between suboptimal 
fluconazole AUC:MIC ratio and treatment failure [56]. This is an 
area of further research, requiring adequate sample sizes.

In conclusion, we found that MIC distribution of Cryptococcus 
species to fluconazole was normally distributed and there was 
high incident (11%) of fluconazole-“resistant” Cryptococcus. 
Moreover, the standard fluconazole doses developed in 
the 1990s may no longer be sufficient based on increasing 
fluconazole MIC. Consolidation therapy and preemptive 
therapy doses should likely be routinely increased to at least 
800 mg/day. Using low dose fluconazole at 100 mg/day for pre-
emptive therapy in asymptomatic CrAg-positive persons does 
not make rational sense, based on our current understanding 
of fluconazole pharmacokinetics. Clinical studies using phar-
macokinetics of fluconazole and MIC distribution linked to 
outcomes are needed to justify the rational fluconazole dose se-
lection. Testing Cryptococcus susceptibility may allow a rational 

selection of fluconazole dose, especially in resource-limited set-
tings, where alternative antifungal options are limited.
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