
sensors

Article

Accurate Imputation of Greenhouse Environment Data for Data
Integrity Utilizing Two-Dimensional Convolutional
Neural Networks

Taewon Moon 1 , Joon Woo Lee 2 and Jung Eek Son 1,3,*

����������
�������

Citation: Moon, T.; Lee, J.W.; Son, J.E.

Accurate Imputation of Greenhouse

Environment Data for Data Integrity

Utilizing Two-Dimensional

Convolutional Neural Networks.

Sensors 2021, 21, 2187. https://

doi.org/10.3390/s21062187

Academic Editor: Vassilis

S. Kodogiannis

Received: 21 January 2021

Accepted: 18 March 2021

Published: 20 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
ataraxno@snu.ac.kr

2 Department of Smart Agriculture, Jeonju University, Jeonju 55069, Korea; jweee2@jj.ac.kr
3 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
* Correspondence: sjeenv@snu.ac.kr; Tel.: +82-2-880-4564; Fax: +82-2-873-2056

Abstract: Greenhouses require accurate and reliable data to interpret the microclimate and maximize
resource use efficiency. However, greenhouse conditions are harsh for electrical sensors collecting
environmental data. Convolutional neural networks (ConvNets) enable complex interpretation by
multiplying the input data. The objective of this study was to impute missing tabular data collected
from several greenhouses using a ConvNet architecture called U-Net. Various data-loss conditions
with errors in individual sensors and in all sensors were assumed. The U-Net with a screen size of
50 exhibited the highest coefficient of determination values and the lowest root-mean-square errors
for all environmental factors used in this study. U-Net50 correctly learned the changing patterns
of the greenhouse environment from the training dataset. Therefore, the U-Net architecture can be
used for the imputation of tabular data in greenhouses if the model is correctly trained. Growers
can secure data integrity with imputed data, which could increase crop productivity and quality
in greenhouses.

Keywords: artificial intelligence; deep learning; interpolation; machine learning; plant environment

1. Introduction

Agricultural systems and their models vary across spatial and temporal scales [1].
Greenhouses, which represent a small agricultural system, increase the yield and quality
of agricultural crops [2]. The greenhouse microclimate is manipulated to reduce energy
input and increase crop yield and quality [3–5]. Growers’ strategies make distinctive
microclimates to maximize resource use efficiency. Therefore, the microclimate is partly or
totally anthropogenic in any form of greenhouse.

Since the greenhouse environment should be monitored for precise control, mul-
tidimensional information is accumulated and interpreted in different ways [6–8]. The
accumulated data can explain the interactions between the environment and the crops [9,10].
Recent developments in sensors and algorithms have also allowed machine learning and
deep learning to be applied to agricultural data [11].

However, the internal environment of a greenhouse can be harsh for electrical sen-
sors. The greenhouse may be close to water, and high solar radiation could heat the
sensors [12]. Root-zone sensors could also be blocked by irrigational problems [13]. In this
case, sensors cannot obtain complete data without errors, resulting in low data integrity.
In addition, sensors in greenhouses are likely to lose their connection because of various
external causes, such as blackouts or floods. Under such conditions, relatively long-term
datasets could be lost, which can distort the accumulated environmental data [14]. Because
past environments cannot be inferred from distorted data, a method to restore lost data
is required.
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Because environmental factors in greenhouses influence each other interactively and
temporally, complex interpretation should be considered in interpolating environmental
data. Convolutional neural networks (ConvNets) enable complex interpretation by mul-
tiplying the input data [15]. ConvNets are mainly used for image processing, but they
also exhibit high performance in the extraction of interactive features within inputs [16,17].
Therefore, data imputation using a two-dimensional ConvNet can be performed for the
obtained greenhouse environmental data. The objective of this study is to impute missing
tabular data collected from several greenhouses using a ConvNet.

2. Materials and Methods
2.1. U-Net Model Architecture and Prediction Workflow

A fully convolutional network architecture called U-Net was used for data imputation
(Figure 1). From the original input size, N, the size was compressed to one-quarter, and the
abstracted features were restored in stages. U-Net is often used for image segmentation
tasks in medical image datasets where the output has similar features and the same size as
the input [18]. The architecture was the same as that of vanilla U-Net, which has a skip
connection (Figure 1).
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Figure 1. The U-Net structure used in this study. N was 5, 10, 20, or 100, which was the same as the
screen size and input size. The numbers with horizontal writing represent the dimensions of the
relevant vectors. Black and gray arrows represent max pooling and skip connection.

Every layer in a neural network algorithm is expected to abstract the relation between
the input and output hierarchically [19]. However, the layers could become short-sighted
and learn only the relation between the previous and the next layers. This can reduce
the model performance, especially when the model should restore the original input size.
The skip connection architecture delivers the previous abstraction to the deeper layers
directly [20]. In this study of data imputation, not only did the output have to be the same
size as the input, but also, the output was largely related with the original input. Therefore,
the U-Net architecture was expected to be effective for the data imputation. Zero padding
was added to sustain even-numbered inputs for the convolutional layer. The cost function
was the mean square error.

2.2. Experimental Greenhouse Environmental Data

Greenhouses cultivating sweet peppers (Capsicum annuum L.) and tomatoes (Solanum
lycopersicum L.) in various regions of South Korea were used to obtain the experimental
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datasets. The covering materials varied from arch-type plastic to Venlo-type glasses. The
minimum and maximum sizes of the sweet pepper greenhouses (width × length × height)
were 7 m × 80 m × 5 m and 100 m × 110 m × 5.7 m, respectively; those of the tomato
greenhouses were 7 m × 53 m × 3 m and 66 m × 100 m × 4.5 m, respectively. The data
collection periods varied according to the greenhouse (Figure 2a).
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Figure 2. (a) Cultivation periods of the greenhouses. Solid and dashed lines represent tomato and
sweet pepper greenhouses, respectively. (b) Examples of manipulated data loss. Each color from
the top represents five target factors of internal temperature, external temperature, internal relative
humidity, internal CO2 concentration, and radiation. Black blanks represent the data loss. Refer to
Table 1 for the units of environmental factors.

The data interval was one hour, and the collected environmental factors were inter-
nal temperature (Tin), external temperature (Tout), internal relative humidity (RH), CO2
concentration (CO2), and radiation (Rad). The collected data included erroneous values
(Table 1).

Table 1. Ranges of environmental data used for the experiment.

Environmental Factor Abbreviation Range

Internal temperature (◦C) Tin 5.3 to 60.3
External temperature (◦C) Tout −21.2 to 38.0

Internal relative humidity (%) RH 19.4 to 101.3
Internal CO2 concentration (µmol mol−1) CO2 1.7 to 2999.0

Radiation (W m−2) Rad 0.0 to 1669.9.

2.3. Manipulation of the Data-Loss Conditions and Data Preprocessing

In this study, incomplete data with errors and short-term losses were used. Outliers of
the measured data were deleted, and short-term missing data were linearly interpolated.
After processing, the data were considered intact. The data loss was manipulated with
the collected environment factors for the experiments (Figure 2b). The random seed for
generating random numbers was fixed for the comparisons. Various data-loss conditions
with errors in individual sensors and in all sensors were assumed. Losses in all sensors can
result from electrical malfunctions such as a blackout, which makes it impossible to refer
to other sensor values at the current loss time. The error rates of the individual sensors
and all sensors were 30%. Because all-sensor losses usually accompany long-term loss,
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all-sensor loss times were set to two days (48 data indices). All losses were randomized
using a random number generator.

The input matrices had specific screen sizes of 5, 10, 20, and 100 to ensure that they
were rectangular (Figure 3).
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Figure 3. Diagram of data preprocessing for U-Net. Each color represents each environmental factor.
Each color from the left to right represents the five target factors of internal temperature, external
temperature, internal relative humidity, internal CO2 concentration, and radiation. Black cells are
missing data. The values in a mask were 0 and 1 for black and white, respectively.

The screen sizes are represented as subscripts of the model name. Five input features
were used; therefore, the input features were duplicated to increase the input size to match
the screen size when needed. Consequently, the output also followed the screen sizes, and
the duplicated outputs were averaged, except for two outliers in both extremes, expecting a
similar effect to the model ensemble. To make the U-Net consider adjacent data, the tabular
data in the previous and next date time from the target were used as the input. A mask
matrix representing missing values was also added to the input. Intact and missing data
were 1 and 0 in the matrix, respectively. In the same manner, the prediction ranges were
also the same as the screen sizes. The data were normalized in the range of 0–1. Missing
values were replaced with −1, which is outside the normalized range. ConvNets usually
receive images in gray or RGB scale, but the networks can interpret other data types such
as go board, shogi board, or chessboard [21]. The ConvNets mathematically calculate the
input, whatever the input is; it acts just a series of numbers. Therefore, rather than images,
the input of the U-Net used in this study consisted of target tabular data with the specific
screen size, previous and next data of the target, and masking matrix for missing data of
the target. The number of data input channels was four. Considering it as images, this
input becomes an image with N × N pixels and one more dimension than RGB. It was
expected that each feature and dimension were considered complex by convolution.

2.4. Model Evaluation

To compare the U-Net architecture with existing methodologies, linear interpolation
(LI), a feedforward neural network (FFNN), and a long short-term memory (LSTM) were
selected. LI is a simple approach to impute missing data; it simply linearly connects intact
data. The FFNN is a basic architecture of a neural network algorithm [22]. LSTM is often
used for sequence data and exhibits state-of-the-art performance [23]. Since FFNN and
LSTM showed reliable accuracies for predicting environmental changes and microclimates
in greenhouses, they were selected as comparable models. Owing to structural limitations,
the FFNN and LSTM could not have the same input matrices as U-Net (Table 2). The target,
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previous, and next environmental factors and a loss mask were linearly arranged for the
FFNN input.

Table 2. Architectures of the compared models. Layer parameters are denoted as type of layer
and number of nodes in the layer (number of trainable parameters). FFNN and LSTM represent a
feedforward neural network and long short-term memory, respectively.

Model FFNN LSTM

Input size 1 × 20 100 × 20
Layers Dense 64 (384) BiLSTM 64 (43,520)

Dense 64 (4160) BiLSTM 64 (98,816)
Dense 5 (325) Dense 5 (645)

Output size 1 × 5 100 × 5

The most accurate U-Net and existing models were tested with different all-sensor
losses from 10% to 95% to determine the limits of the model robustness by loss percentage
(Figure 2b). All losses were randomized using a random number generator with the
same random seed. The U-Net and existing models were trained with 30% data loss.
Ablation tests with input matrices were also conducted to verify the efficiency of each input
component. In all evaluations, the coefficient of determination (R2) and root-mean-square
error (RMSE) were used as indicators of the accuracy.

3. Results
3.1. Imputation Accuracies of U-Nets and Other Methods

U-Net50 exhibited the highest R2 values (Table 3) and the lowest RMSEs (Table 4) for
all environmental factors. Among them, the R2 value for Tout was the highest, while that
for CO2 was the lowest. In particular, the prediction ability for the missing CO2 data was
relatively poor, given that the R2 values for predicting other environmental factors were
near 0.8.

Table 3. R2 values of the models. The boldface values are the highest R2 values for each factor.
FFNN, LSTM, and LI represent the feedforward neural network, long short-term memory, and linear
interpolation, respectively. The subscript represents the screen size. See Table 1 for the abbreviations
of environmental factors.

U-Net5 U-Net10 U-Net20 U-Net50 U-Net100 FFNN LSTM LI

Tin 0.32 0.45 0.67 0.80 0.66 −3.34 0.13 0.71
Tout 0.49 0.69 0.87 0.92 0.85 −14.81 0.07 0.88
RH 0.33 0.49 0.75 0.81 0.57 −1.74 −0.04 0.76
CO2 0.23 0.23 0.21 0.66 0.23 −85.32 0.03 0.62
Rad 0.22 0.41 0.69 0.79 0.68 −14.25 0.01 0.17

Table 4. Root-mean-square error (RMSE) values of the models. The boldface values are the lowest
RMSE values for each factor. FFNN, LSTM, and LI represent the feedforward neural network, long
short-term memory, and linear interpolation, respectively. The subscript represents the screen size.
Refer to Table 1 for the abbreviations of environmental factors.

U-Net5 U-Net10 U-Net20 U-Net50 U-Net100 FFNN LSTM LI

Tin 5.44 4.90 3.79 2.95 3.88 13.82 6.18 3.57
Tout 7.16 5.57 3.61 2.81 3.83 39.98 9.69 3.54
RH 11.02 9.63 6.75 5.91 8.77 22.25 13.70 6.58
CO2 141.33 141.61 143.00 93.19 141.17 1494.73 158.64 99.42
Rad 210.03 182.91 132.40 109.40 134.71 927.42 238.57 216.69

The accuracies of the trained U-Nets increased with screen size, but U-Net100 exhibited
lower accuracy than U-Net50. The values imputed by U-Net100 tended to be biased, which
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could indicate overfitting (Figure 4). Aside from the U-Nets, LI had the highest accuracy
for imputation of the missing data. Similar to the U-Nets, the highest prediction accuracy
was obtained with Tout, while the lowest was obtained with Rad. This result contrasts
with the high imputation accuracy for radiation obtained by the trained U-Net50. The
FFNN and LSTM did not exhibit competitive accuracies, although they are deep learning
methodologies. According to the R2 values, they could not relate the remaining intact data
with the missing data.
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3.2. Model Robustness as Ascertained by the Loss Percentages

Because U-Net50 exhibited the highest accuracy among the U-Nets, it was used to
compare the models by their losses. The accuracy of the trained U-Net decreased sharply
in the case of CO2 (Figure 5). For factors other than CO2, U-Net sustained its accuracy at
loss rates of <50%. LI sustained its accuracy even with losses of >50%. The RMSE values
of the FFNN and LSTM were also changed, although they could not correctly impute the
missing data.

Sensors 2021, 21, 2187 7 of 12 
 

 

subscript represents the screen size. Refer to Tables 1 and 4 for the abbreviations of environmental 

factors and for the coefficients and intercepts of regression lines, respectively. 

3.2. Model Robustness as Ascertained by the Loss Percentages 

Because U-Net50 exhibited the highest accuracy among the U-Nets, it was used to 

compare the models by their losses. The accuracy of the trained U-Net decreased sharply 

in the case of CO2 (Figure 5). For factors other than CO2, U-Net sustained its accuracy at 

loss rates of <50%. LI sustained its accuracy even with losses of >50%. The RMSE values 

of the FFNN and LSTM were also changed, although they could not correctly impute the 

missing data. 

 

Figure 5. R2 and RMSE values ascertained by the loss rates. Colors with low alpha values represent RMSE values. R2 values 

less than zero are depicted as 0.0. FFNN, LSTM, and LI represent the feedforward neural network, long short-term 

memory, and linear interpolation, respectively. Refer to Table 1 for the abbreviations of environmental factors and the 

units of RMSE values. 

3.3. Ablations for Key Components of the Input 

Because the R2 values decreased by almost 0.6 without the previous and next 

matrices, these matrices were the most influential input components (Figure 6). 

 

Figure 6. R2 and RMSE values ascertained by the loss rates. Colors with low alpha values 

represent RMSE values.  

Figure 5. R2 and RMSE values ascertained by the loss rates. Colors with low alpha values represent RMSE values. R2
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3.3. Ablations for Key Components of the Input

Because the R2 values decreased by almost 0.6 without the previous and next matrices,
these matrices were the most influential input components (Figure 6).
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The absence of the mask matrix barely reduced the accuracy. Unexpectedly, the current
matrix was the next least influential, after the mask matrix. Although the current matrix
was the target, the decrease in accuracy was relatively lower compared to that of other input
components. In contrast, the trained U-Net could not correctly impute the missing data
with only current and mask matrices, although the screen size of 50 included a long-term
dataset (>2 days). The magnitude of the decrease could be small, but the exclusion of each
component resulted in a decrease in accuracy.

4. Discussion
4.1. U-Nets

Various screen sizes were compared to evaluate the U-Net architecture for data imputa-
tion, and U-Net50 exhibited the best performance (Figure 4). That is, U-Net was optimized
with a screen size of 50. U-Nets usually handle an image size of >500 × 500 because
the input should be compressed and abstracted in multiple layers [18,24]. However, the
optimal size was 50 for tabular data, which was 10% of the usual input size of U-Nets. The
columns in the images are independent of their size. The small optimal screen size could
be due to the strong relation between duplicated columns. Likewise, the low accuracy of
the trained U-Net100 could be a result of overfitting because the five features of tabular
data were too few for this architecture. This could also be due to receptive fields. ConvNet
has specific receptive fields according to its architecture, and this could change the way of
recognizing input [25]. In this study, all U-Nets had the same receptive fields for model
comparison. The same receptive fields could be too small for U-Net100, resulting in a
narrow view of the inputs. Changing the hyperparameters could improve the performance
of the U-Nets. However, U-Net100 with the same architecture could be used in other con-
ditions. Environmental factors that can be used for microclimate monitoring have more
than five features [26,27]. The optimal screen size could be >50 when more features are in
the tabular dataset. In this study with five input features, we found that, even when the
number of features is small, the features can be duplicated and imputed.

In the ablations, the absence of each input component caused different decreases in
accuracy (Figure 6). A mask with 0 and 1 can be used to train non-image inputs using a
ConvNet [16,21]. However, the mask was ineffective for U-Net50, as shown by the accuracy
being barely changed. In this study, missing values were marked as −1 in the tabular
data, which is outside of the normalization range. Therefore, U-Net50 could recognize the
missing values without the mask matrix. Unlike in the positioning of hostile and friendly
markers as in a board game, empty data could be marked as −1. In the case where target
positioning is necessary with fully existing real data (e.g., proofreading of tabular data),
the mask matrix could be useful.

For the other input components, the trained U-Net50 succeeded in imputation of the
missing data with comparable accuracy, even without the current matrix. In the case of
the current matrix only, U-Net50 exhibited the lowest accuracy. That is, the imputation
performance was determined by patterns in the previous and next data, not adjacent
data. Greenhouse environments exhibit 24-hour patterns, although they may vary by
season [28,29]. Therefore, a screen size of 20 can yield a high accuracy. However, all-sensor
losses were designed to be 48 h. It seems that the screen size of 50 exceeded the length of
all-sensor losses; therefore, it could be the optimal length. In generalization of the U-Net,
high accuracy will be obtained only when it matches the appropriate pattern range of
tabular data.

However, because the accuracy slightly decreased without the current matrix, the
current matrix was not inoperative. The U-Net somewhat weighted existing values adjacent
to missing values, like LI. Although it could be a small decrease, all components were likely
used correctly because ablation of all components resulted in a decrease in accuracy.

For U-Net50, even when almost half of the data were missing, the accuracy was
maintained to some extent (Figure 5). Compared to the intact data, the imputation was also
reasonable (Figures 7 and 8). The sustained accuracy of the U-Net could be due to the fact
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that the model learned from the training dataset [30]. The model can learn more patterns
and increase its accuracy by continuing training in the same environment.
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4.2. Other Models

LI is a method used to simply splice the nearest intact data. Although it was evident
that LI did not properly impute all-sensor losses, which were two days long, it yielded
comparable accuracy (Table 3). Therefore, a new type of metric is needed to clearly compare
models in missing data imputation.

The low accuracies of the FFNN and LSTM could result from clumsiness in the
input [31]. They exhibited comparable accuracies for agricultural estimations or predic-
tions [32–34]. The inputs of the FFNN and LSTM included the previous, next, and mask
matrices for comparison with the U-Nets. The matrices were expected to give more in-
formation about the missing values and the data pattern, but FFNN and LSTM could not
interpret the relations between the input features. Since the data imputation task was not a
simple prediction, it seemed to require more complicated interpretation of the input and
the output. U-Nets succeeded in extracting the importance of each “pixel”, but FFNN and
LSTM seemed to be biased by missing values.

Because the FFNN and LSTM are machine learning methodologies, changes in their
accuracies yielded by different loss rates imply that the models learned something from
the training (Figure 5). However, the FFNN could not interpret a long period of the
previous and next data. LSTM cannot convolute target tabular data because it reads the
data sequence by sequence. Therefore, a wide range of the datasheet should be considered,
and all tabular data should be calculated beyond the sequences.

4.3. Variation in Input Environmental Factors

U-Net50 and LI exhibited the highest accuracy for Tout among the five input factors.
Tout was also less affected by the loss percentages. That is, Tout could be a simple factor to
impute. The chosen greenhouses were in the same climate conditions; thus, the individual
datasets could share a tendency with respect to Tout. Most importantly, Tout was not a factor
controlled by the grower. Therefore, the pattern could be easily extracted by the models.

Meanwhile, the imputation of missing Tin did not exhibit as high an accuracy as in
the case of Tout. The models could not impute Tin, although this factor also has somewhat
constant patterns because the internal environments of greenhouses are controlled to be
within specific ranges [4]. Neural network algorithms yielded high performance in previous
studies [35,36]. Unlike Tout, Tin could be affected by different grower strategies [37].
Therefore, the datasets did not seem to share the changing patterns; thus, the models could
not impute the missing Tin with as high an accuracy as for Tout.

U-Net50 exhibited a higher variance when imputing the RH than when imputing
other environmental factors, even though the measured RH was sustained at almost 100%
(Figure 7). In greenhouses, the RH can be sustained at 100%, but it tends to drop and
be restored immediately after sunrise because of thermal screens and ventilation [38,39].
RH sensors have been reported to have high error and failure rates [40]. Therefore, the
measured values could be incorrect. Consequently, it seems that U-Net50 can be used for
proofreading of error data, as well as for the imputation of missing data. Based on the
flexibility of the deep learning algorithm, the U-Nets could be remodeled with only a few
input and output changes.

In terms of CO2, the control strategy barely showed a pattern (Figure 7). In particular,
the imputation accuracy of CO2 declined with an increase in the loss rate (Figure 5). That
is, the relationship between CO2 and other environmental factors could be weak. This
could be due to the control strategies of CO2. CO2 fertilization is usually conducted
empirically [41,42]. In this study, greenhouses used manual CO2 fertilization, except for
some advanced farms. Therefore, the models could not find definite patterns of CO2
changes. In this case, control data could be used to improve the robustness [43]. However,
U-Net50 exhibited adequate accuracy for CO2 imputation, although it was relatively lower
than the accuracy for other environmental factors.

LI failed to impute Rad, but U-Net did so adequately (Table 3). This seems to be
due to the existence of nighttime data, as LI simply splices the intact values; thus, the
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zero Rad at nighttime could cause high errors in imputing Rad. U-Nets could distinguish
day and night regardless of the position of the input screen, although Rad was somewhat
overestimated or underestimated. It can be said that U-Net could learn specific patterns in
tabular data that LI could not, as LI does not have model training.

5. Conclusions

In this study, U-Net architectures were evaluated from the perspective of data impu-
tation based on missing tabular data from 27 greenhouses. The trained U-Net exhibited
an acceptable accuracy (average R2 = 0.80), and the highest accuracy was obtained with a
screen size of 50. Among the other models tested, LI exhibited comparable performance.
The FFNN and LSTM could not be properly trained. Based on the accuracies for imputing
five environmental factors, U-Net seemed to adequately learn the change patterns in the
tabular data, although U-Nets are usually used for images. The trained U-Nets sustained
their robustness with increasing loss rate, demonstrating their usefulness for tabular data
imputation with short-term and long-term losses at the same time.
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