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Patients with schizophrenia are at an increased risk for the development of depression.
Overlap in the symptoms and genetic risk factors between the two disorders suggests
a common etiological mechanism may underlie the presentation of comorbid depression
in schizophrenia. Understanding these shared mechanisms will be important in informing
the development of new treatments. Rodent models are powerful tools for understanding
gene function as it relates to behavior. Examining rodent models relevant to both schizo-
phrenia and depression reveals a number of common mechanisms. Current models which
demonstrate endophenotypes of both schizophrenia and depression are reviewed here,
including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, gluta-
mate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1,
and its interacting partners, reelin, maternal immune activation, and social isolation. Neu-
rotransmission, brain connectivity, the immune system, the environment, and metabolism
emerge as potential common mechanisms linking these models and potentially explaining
comorbid depression in schizophrenia.
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INTRODUCTION
Schizophrenia and depression are devastating mental illnesses that
contribute substantially to the global burden of disease (1–3).
Moreover, schizophrenia patients have an elevated risk for devel-
oping depressive symptoms compared to the already high lifetime
prevalence of depression in the general population (4). Depression
has been reported during all stages of the course of schizophrenia
(5–8), and depressive symptoms are associated with an increased
risk of suicide (9, 10). Methodological differences in diagnosis
and time course of evaluation mean that there is a wide variance
of depressive symptoms reported by patients with schizophrenia
in the literature, with prevalence rates as high as 61% (11). Never-
theless, reviews of the literature convincingly show that depression
is elevated in schizophrenia (4).

Conversely, depressed patients have also been shown to be at a
higher risk of developing psychosis, and depression is often seen
in people at high risk for schizophrenia prior to the emergence
of psychotic symptoms (12–17). Furthermore, the emergence of
psychotic symptoms in depression, considered as a distinct clin-
ical subtype of depression called psychotic depression or depres-
sion with psychotic features, is associated with increased sever-
ity of depressive symptoms (18, 19). This mutual relationship
of risk between schizophrenia and depression suggests poten-
tial overlap in the pathophysiology and/or etiology of the two
disorders.

The relationship between psychotic and affective symptoms has
been a controversial issue within psychiatric nosology for years.
A central question in the debate is reflected by the discussion
surrounding schizoaffective disorder, which currently remains a

distinct diagnosis characterized by the presence of a major mood
episode (depressive or manic) concurrent with schizophrenia (20).
Low diagnostic reliability has led some to question the inclusion of
schizoaffective disorder as a separate condition (21, 22). It remains
unclear whether depressive symptoms should be considered as
a symptom of schizophrenia, comorbid symptoms, or unrelated
epiphenomena (23).

There is an overlap between certain negative symptoms of
schizophrenia and depressive symptoms; for example, anhedo-
nia, abulia, alogia, amotivational and avolitional states, and social
withdrawal (24). Hence, some argue depressive symptoms should
be part of the schizophrenia syndrome (25–28). This view is
supported by the high prevalence of depressive symptoms in schiz-
ophrenia and the association between trait depression and other
trait-like features of schizophrenia. Alternatively, depressive symp-
toms in schizophrenia could partly be a side-effect of neuroleptics,
secondary to other comorbidities such as substance abuse, or an
understandable reaction to the consequences of the disorder (29–
34). Regardless of the status of depressive symptoms as core or
comorbid with schizophrenia, there is clearly some overlap in the
presentation of both disorders.

There is increasing evidence of shared genetic risk factors
for both schizophrenia and depression. A genome wide associ-
ation study (GWAS) of five major psychiatric disorders found
that SNPs within chromosomal regions 3p21 and 10q24, and
calcium channel subunit genes CACNA1C and CACNB2 were
significantly associated with schizophrenia, depression, bipolar,
attention deficit-hyperactivity (ADHD), and autism spectrum dis-
orders (ASD) (35). Additionally, the subgroup of schizophrenia
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patients who also suffer from depression has proved useful in find-
ing genetic associations. The NMDA receptor subunit gene GRIN1,
the hippocampal stress modulating glycoprotein gene GPM6A,
and chromosomal regions 4q28.3 and 20q11.21 were associated
with depression comorbidity in schizophrenia patients (36–38).
These studies hint at potential shared molecular pathways that
underlie both schizophrenia and depression.

The etiology and pathophysiology of both schizophrenia and
depression remain poorly understood. It is clear that there is some
relationship between the two disorders, which affects the risk and
severity of disability for both disorders. Understanding the neuro-
biology linking schizophrenia and depression could provide great
insight into both disorders. Animal models are some of our best
tools for understanding the complex pathways that connect genes
and behavior. Many excellent reviews have been written on the use
of animal models in studying neuropsychiatric disorders and out-
lining many of the current models (39–42). Rather than reviewing
the literature on neuropsychiatric disorders as a whole or focus-
ing specifically on one disorder, this review will focus on what
animal models can teach us about schizophrenia and depression
comorbidity. Here, we provide a broad overview of the rodent
models that express phenotypes resembling comorbid schizophre-
nia and depression, and what they reveal about the neurobiology
of comorbidity in psychiatric illness.

FINDING ANIMAL MODELS FOR NEUROPSYCHIATRIC
DISORDERS
When modeling neuropsychiatric disorders in animals, it is desir-
able that the criteria for the three types of validity are fulfilled:
face (i.e., similar symptoms), construct (i.e., similar etiology or
genetic/environmental cause), and predictive (i.e., responds to rel-
evant drug treatments) (39, 43). Given that depression and partic-
ularly schizophrenia are defined by complex multidimensional sets
of symptoms that can be highly heterogeneous between patients,
it has been proposed that these disorders may be approached
by examining endophenotypes, which are easier to measure, and
may be more proximal to the underlying genetic and biological
mechanisms (44). Therefore, the typical approach for modeling
these disorders in mice or rats is to manipulate some genetic
or environmental factor, which has a plausible etiological link to
either schizophrenia or depression, and then examine the animal
for endophenotypes that resemble those seen in either disorder.
Models typically will display only a subset of all the endopheno-
types, which define either disorder, which is expected given the
heterogeneous and polygenetic nature of both schizophrenia and
depression.

Behavioral endophenotypes have been particularly useful for
studying neuropsychiatric illness in rodent models. For instance,
certain features of schizophrenia have behavioral correlates that
are measurable in rodents. Pre-pulse inhibition (PPI) is a phe-
nomenon in which the response to a stimulus is inhibited by a
preceding similar stimulus. For example, the startle response to a
loud noise is less intense if a quieter preceding warning noise is
played. PPI deficits are seen in schizophrenia patients and their
unaffected relatives, and are measurable in rodents (45–48). PPI
is framed as a measure of sensorimotor gating, which is known
to be affected in schizophrenia (49). Sensorimotor gating deficits

in rodents can also be exhibited as sustained hyperactivity in
a novel environment caused by a failure to habituate to novel
stimuli (50).

Cognition is another area in which many sophisticated rodent
tests have been developed. Even complex cognitive processes such
as executive function are measurable in rodents. For instance,
a rat version of the Wisconsin-card-sorting test used to mea-
sure the ability learn rules and adapt to change in humans has
been developed (51). Rats must switch between learned scent
and texture cues to locate hidden food rewards. Schizophrenia
patients are known to have deficits in executive function, and
have impaired performance in the Wisconsin-card-sorting test
(52–55). Animal behavioral tests that can predict clinical drug
effects in humans are also important. For example, antidepres-
sants can reduce immobility in the forced swim test (FST) and
tail suspension test (TST). Therefore, these behavioral tests have
been used to screen potential antidepressant medications (56, 57).
Increased immobility in these tests has been suggested to indi-
cate behavioral despair or the inability to cope with stress, but
the meaning of these tests and how they translate to behavior in
humans remains unclear (39). Table 1 provides a few examples of
rodent behavioral paradigms that are relevant for neuropsychiatric
disorders.

Disorders of the human brain are complex, and while animal
models are useful tools in understanding neurobiology and gene
function, caution must be exercised when using animal models for
the translational study of human psychiatric disorders. Despite
high conservation of gene structure and function, there can be
large interspecies differences in gene expression patterns, gene
regulation, and protein translation between human and mouse
or rat. Furthermore, the correlations between genes, biology, and
behavior we measure in animals may not map perfectly to the
symptoms in humans we wish to model. Behavioral findings are
sometimes idiosyncratic and specific to particular laboratories
(92), so it is sometimes difficult for models developed in one lab
to be replicated and used by others without careful attention to
environmental and test conditions (93).

Nevertheless, animal models have greatly contributed to the
understanding and treatment of neuropsychiatric disorders. For
instance, latent inhibition (LI) is a class of cognitive tests that
measure a learning effect in which exposure to conditioned stimuli
alone in associative learning paradigms can interfere with subse-
quent learning. LI is an established model of attentional deficits
in schizophrenia (61). Assessing mouse LI has been productive
in validating new candidate genes for schizophrenia (94). Addi-
tionally, animal behavioral testing has been integral in assessing
the efficacy of new compounds with potential antidepressant and
antipsychotic effects (95–97).

MODELS
Many animal models have been generated to explore various
factors associated with both depression and schizophrenia. The
presence of both schizophrenia and depression-related endophe-
notypes in a single model may be useful in understanding comor-
bidity and the shared symptomology between the two disor-
ders. Hence, this review will focus exclusively on rodent models
that display endophenotypes relevant for both schizophrenia and
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Samsom and Wong Schizophrenia and depression co-morbidity

Table 1 | Mouse behavioral phenotypes related to neuropsychiatric disorders.

Mouse behavioral test Ethological correlate Disease associations

Elevated plus/0 maze Decreased time in open arms of a maze with open and enclosed arms models

state anxiety (58)

BPD, GAD, OCD, panic disorder,

phobias, PTSD (59)

Forced swim/tail

suspension test

Increased immobility possibly related to behavioral despair or coping with

stress (55)

Related to antidepressant activity,

depression (39)

Latent inhibition The effectiveness of conditioning in mice previously exposed vs. not exposed to

a stimulus. Related to the ability to ignore irrelevant stimuli during learning (60)

SCZ (61)

Morris water maze (MWM) Latency to find a hidden platform in a pool of murky water and memory for

platform position tests spatial learning and memory (62)

AD, OCD, SCZ (63–65)

MWM reversal learning Ability to learn a new position when the platform is moved from its previous

position tests cognitive flexibility (66)

ADHD, ASD, Huntington’s, OCD,

SCZ (67–69)

Novel object recognition

test

Preference for exploring new vs. familiar objects tests recognition memory,

episodic memory, and visual attention (70, 71)

ADHD, ASD, learning disability, PTSD,

SCZ (72–74)

Open field test Tests exploration and motor activity (75) Altered motor activity linked to ADHD,

BPD, depression, SCZ (53, 76)

Willingness to enter the center of the field measures anxiety (75) BPD, GAD, OCD, panic disorder,

phobias, PTSD (59)

Pre-pulse inhibition Magnitude of the startle response to a loud noise in the presence and absence

of a preceding noise, tests sensorimotor gating (74)

ASD, Huntington’s, OCT, SCZ,

Tourette’s (77)

Psychostimulant-induced

locomotor activity

Excess hyperactivity after injection with a psychostimulant tests sensitivity.

Connected to the functioning of brain reward circuits (78)

Drug addiction, psychostimulant-induced

mania, SCZ (39, 79, 80)

Set-shifting test Ability to switch between different cues to locate a food reward tests cognitive

flexibility (54)

ADHD, ASD, Huntington’s, OCD,

SCZ (68, 69)

Sucrose preference test Mouse preference for sugar vs. normal water tests anhedonia (81) Alcohol dependence, depression,

hysteria (82, 83)

T-maze/Y-maze Alternation of entry onto the arms of the maze during reward retrieval

(T-maze)/exploration (Y-maze) tests working memory (84, 85)

SCZ (68)

Three-chamber social

interaction test

Time spent with mouse vs. object tests social motivation, time spent with

familiar vs. new mouse tests social memory (86)

ASD, BPD, depression, SCZ (87–91)

AD, Alzheimer’s disease; ASD, autism spectrum disorder; ADHD, attention deficit-hyperactivity disorder; BPD, bipolar disorder; GAD, generalized anxiety disorder;

OCD, obsessive–compulsive disorder; PTSD, posttraumatic stress disorder.

depression. Investigating the common elements between such
models may provide clues about the shared pathways which lead
to comorbidity for these two disorders.

CUB AND SUSHI MULTIPLE DOMAINS 1
Human genetic studies have found significant links between
CSMD1 and schizophrenia, with nominally significant links
reported for depression and bipolar disorder (98–102). Further-
more, risk variants in CSMD1 were shown to have effects on
cognition and brain activation in healthy participants (103, 104).
CUB and SUSHI multiple domains 1 (CSMD1) is a comple-
ment control-related protein that inhibits C3 in vitro (105, 106).
Complement is tightly regulated in the CNS as it is involved in
microglia-dependent synaptic pruning and phagocytosis. For this
reason, it is hypothesized that CSMD1 could play a role in aber-
rant synaptic elimination in neurodegenerative disorders (107).

Hence, both immune and synaptic regulation may mediate the
effects of Csmd1 in the development of both schizophrenia and
depression-related phenotypes.

Steen et al. generated a Csmd1 knockout (KO) by deleting a
1 kb sequence from exon/intron1 (108). These mice developed an
anxiety-like phenotype in the open field test (OFT) and elevated
plus maze (EPM). The mice also had increased exploratory activity
in the novel object recognition test (NORT). However, this did not
affect working memory, recognition, or preference, so it may sim-
ply be a reflection of increased anxiety. The mice had a potential
depression-like phenotype in the TST, but no changes were seen in
PPI. Finally, the KO mice had a significant increase in body weight
accumulation over time, and increased glucose tolerance.

Interestingly, a previous study tested an exon1 deletion Csmd1-
KO mouse on schizophrenia endophenotypes (109). This group
found no significant changes in schizophrenia-related behaviors:
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Samsom and Wong Schizophrenia and depression co-morbidity

PPI, social interaction test (SIT), sucrose preference test (SPT), or
sensitivity to amphetamine in the amphetamine-induced locomo-
tor activity test (amphetamine-ILAT). This agrees with the results
of Steen et al.; however, this group did not test for depressive
endophenotypes. The lack of a significant effect on classical schizo-
phrenia endophenotypes may be due to mouse–human differences
in CSMD1. Nevertheless, Steen et al. suggest that CSMD1 may
play a role in the common symptoms between bipolar disorder,
depression, and schizophrenia. Steen et al. found that depletion
of Csmd1 had very little effect on the whole transcriptome, and
identified a Csmd1 promoter-associated lncRNA, possibly respon-
sible for brain-specific promoter activity in the CNS. This suggests
that Csmd1 was directly responsible for the manifestation of
schizophrenia and depression-like behavior in these mice (108).

PDZ AND LIM DOMAIN 5
PDZ and LIM domain 5 (PDLIM5) has been associated with
schizophrenia, depression, and bipolar disorder in human genetic
and expression studies (110–117). PDLIM5 encodes the enigma
homolog (ENH), of which five protein isoforms have been identi-
fied in humans (118). PDLIM5 is known to interact with protein
kinase C (PKC), and may be involved in the regulation of intracel-
lular calcium levels through PKC epsilon (PCKE) and Ca2+ chan-
nel interactions (119). In the nervous system, PDLIM5 is localized
in presynaptic terminals and the postsynaptic density; further-
more, PDLIM5 was shown to interact with spine-associated Rap-
GAP (SPAR, SIPA1L1), and to stimulate the shrinkage of dendritic
spines (120, 121). Combined with the genetic results implicating
L-type calcium channel genes CACNA1C and CACNB2 in schiz-
ophrenia, depression, bipolar disorder, autism, and ADHD, this
model further implicates Ca2+ channels in neuropsychiatric illness
(35). Hence, Pdlim5 may affect schizophrenia and depression-
related behaviors through regulation of Ca2+ channels as well as
synapse regulation.

Horiuchi et al. generated a Pdlim5 KO using a gene trap embry-
onic stem cell line (122). Homozygotes for the Pdlim5-KO were
embryonic lethal; however, heterozygotes were viable with nor-
mal weight and brain size. Pdlim5 deficiency in heterozygotes had
a protective effect on schizophrenia-like phenotypes in chronic
and acute methamphetamine-induced locomotor hyperactivity in
the open field (METH-ILAT) and methamphetamine impairment
of PPI. Furthermore, the effects on PPI and METH-ILAT were
replicated when Pdlim5 was inhibited with PKCE-TIP in wild
type mice. Pdlim5-deficient heterozygotes expressed a depression-
like phenotype in the TST that was rescued by the antidepressant
imipramine. Pdlim5 expression was shown to increase in the pre-
frontal cortex (PFC) of mice with chronic methamphetamine
injection and in the brains of mice with chronic imipramine injec-
tion, but did not change with acute dosing or with injection of the
classical antipsychotic haloperidol. This study is limited by the
lack of data from complete KO mice; furthermore, PKCE-TIP is
not specific to Pdlim5. Nevertheless, the data suggest that increased
Plim5 levels may cause schizophrenia-like behavioral phenotypes,
whereas decreased Pdlim5 may result in depression.

GLUTAMATE Delta 1 RECEPTOR
Human GWAS has associated GRID1 with schizophrenia, bipolar
disorder, and depression (123–127). Glutamate Delta 1 receptor

(GluD1) is a member of the orphan family of delta ionotropic glu-
tamate receptors (iGluRs), and has widespread neuronal expres-
sion in adult mice particularly in the forebrain, with diffuse
expression in the CNS during development (128–131). While typ-
ical iGluR ligands fail to generate current responses in the GluD1
receptor, there is evidence that the NMDA receptor allosteric
activator d-serine binds to GluD1 receptors (132). d-serine bind-
ing is hypothesized to affect receptor function indirectly; for
instance, through alteration of dimer stability. Studies in vitro
suggest GluD1 may be involved in the induction of presynap-
tic differentiation and synapse formation (133–136). Synaptic
regulation and glutamate signaling mediated by GluD1 may influ-
ence the development of schizophrenia and depression-related
symptoms.

Yadav et al. used targeted disruption to delete exons 11 and 12
of the GluD1 gene Grid1 in mice (137). GluD1-KO mice showed
hyperactivity in the OFT, decreased anxiety-like behavior in the
EPM and marble burying tests, depression-like behavior and anhe-
donia in the FST and SPT, and increased aggressive behavior.
GluD1-KO mice had deficits in social interaction, which could
be rescued by treatment with the GluN1 NMDA receptor subunit
agonist d-cycloserine. The GluD1-KO mice also had enhanced
working memory in the Y-maze and radial arm maze, but they had
deficits in reversal learning in the Morris water maze (MWM) with
no changes in spatial learning, and deficits in cue and contextual
fear conditioning, but no changes in LI (138). The authors found
significantly higher expression of GluA1, GluK2 (ionotropic GluR
subunits), and PSD95, and a trend for higher expression of GAD67
(inhibitory neuron marker) in the amygdala of GluD1-KO mice.
They also found decreased expression of GluA1 and GluA2 in the
PFC and hippocampus of the KO mice, as well as decreased GluK2
and GAD67 and elevated GluN2B and PSD95 in the hippocampus.
Decreased GluA1 levels could be rescued by d-cycloserine treat-
ment. While this mouse lacks schizophrenia-associated deficits in
PPI and LI, violence has been associated with schizophrenia (139,
140); therefore, the hyper-aggression seen in these mice could be
relevant to schizophrenia. Furthermore, changes in working mem-
ory, reversal learning, and anhedonia could reflect cognitive and
negative symptoms of schizophrenia.

Given the known role of GluD1 in synaptic regulation, synaptic
deficits are likely to underlie the changes in behavior seen in the
GluD1-KO mice. However, the exact nature of the effects of GluD1
on the synapses in these mice remains to be thoroughly explored.
The expression data also hints at an inhibitory–excitatory imbal-
ance in the synapses of the KO mice. This type of imbalance has
also been seen in other animal models of schizophrenia (141–
143). Certainly, alterations in synaptic regulation and function
are becoming a common theme among animal models showing
schizophrenia and depression-like behaviors.

DIABETIC db/db MICE
The leptin receptor-deficient db/db mouse is an established mouse
model of metabolic conditions such as diabetes mellitus, obesity,
and dyslipidemia. The db/db mice were shown to have impaired
spatial learning in the MWM accompanied by deficits in long-
term potentiation (LTP) (144). Dinel et al. showed that db/db
mice have increased anxiety-like behaviors in the OFT and EPM,
and impaired spatial working memory at long stimulus intervals
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in the Y-maze with no impairments in working or recognition
memory in the NORT (145). These behavioral deficits were asso-
ciated with hippocampal inflammation. These authors found the
db/db genotype did not associate with depression-like behavior
in the FST and TST. A more recent study reconfirmed previous
results of impaired memory and anxiety-like behaviors; however,
this group found increased immobility time of both juvenile and
adult db/db mice in the FST and impaired PPI of adult, but not
juvenile mice, suggesting both schizophrenia-like and depression-
like phenotypes (146). The contradictory results of the two studies
in the FST may be explained by differences in experimental pro-
cedures, as increased immobility in the FST is likely to occur with
increasing stress, which could be affected by the order and number
of tests in each paper.

An analysis of CNS protein expression in db/db mice found
overlap in protein expression in shared pathways in neuropsychi-
atric disorders; notably, decreased peptide YY, which is seen in drug
free cerebrospinal fluid of schizophrenia patients, and inflamma-
tory and Ca2+ regulatory molecules, which share pathways with
cognitive disorders, depression, Alzheimer’s, and schizophrenia
(147). Metabolic conditions such as obesity and diabetes are fre-
quently comorbid with depression and schizophrenia (148–151).
Furthermore, there is considerable evidence that antipsychotics
and possibly schizophrenia itself may disrupt important meta-
bolic pathways (152). The db/db mouse could be useful for linking
schizophrenia and depression to important metabolic pathways,
which also increase susceptibility to obesity and diabetes.

NEUROPEPTIDE Y
The 36 amino-acid peptide neuropeptide Y (NPY) is widely dis-
tributed in the CNS and recognized to play a role in eating
behavior, energy balance, and cardiovascular functions (153, 154).
The NPY system has been implicated in schizophrenia by post-
mortem human studies, which found decreased NPY in the cortex
of schizophrenia and bipolar disorder patients (155, 156). The Y2
receptor is also known to interact with the dopamine (DA) system
in humans and rodents, providing a further link to schizophrenia
(157, 158). The NPY system has been implicated in depression
via its role in modulating stress response, mood, and affective
behaviors (159–161). Hence, disruptions in the NPY system could
potentially be involved in both schizophrenia and depression,
while also linking both disorders to metabolic conditions, appetite
changes, and obesity.

Multiple rodent models of the NPY system have been used
to investigate the role of NPY in depression and schizophre-
nia. Stadlbauer et al. administered NPY receptor agonist peptide
YY (PYY3–36) intraperitoneally in mice (162). This treatment
caused deficits in social interaction with no significant increase in
anxiety-like behaviors in the EPM. Schizophrenia-like deficits in LI
and PPI were also induced by PYY administration. PYY-induced
PPI deficits could be reversed by haloperidol, but not the atypi-
cal antipsychotic clozapine. Additionally, PYY injection impaired
spatial learning in the MWM. Y2 receptor-deficient male (but
not female) mice displayed hyperactivity in the OFT, increased
social interaction, and moderately improved PPI, suggesting a
protective effect against schizophrenia-associated behaviors (163).
Y2 deficiency also caused decreased anxiety-like behavior in the

EPM and OFT (164). Implicating NPY in depression-like phe-
notypes, administration of the NPY Y1 receptor agonist NPY
(Leu31, Pro34) had anxiolytic and antidepressant effects on
cholecystokinin-4 (CCK-4)-induced anxiety-like behavior in the
SIT and depression-like behavior in the FST (165). Furthermore, it
was found that PYY3–36 administration increased the immobility
time of olfactory bulbectomized rats in the FST (166). These mod-
els are part of a larger body of work implicating the NPY system
in stress-related depressive disorders (161). These models suggest
that activation of the NPY system via Y2 receptors may cause
schizophrenia-like behavior while exerting an antidepressant-like
effect.

DISRUPTED IN SCHIZOPHRENIA 1
A chromosomal translocation intersecting DISC1 was first found
in a Scottish pedigree with a high frequency of severe psychiatric
disorders, including schizophrenia, depression, and bipolar disor-
der (167, 168). Additional genetic associations between DISC1
and neuropsychiatric illness were found in other populations
(169–171). Disrupted in schizophrenia 1 (DISC1) is a scaffolding
protein implicated in multiple downstream functions, including
embryonic and adult neurogenesis; and neuronal proliferation,
differentiation, and migration (169, 172–174). DISC1 interacts
with many other proteins involved in synaptic function, neurode-
velopment, the cytoskeleton, and centrosomal pathways, some of
which are also associated with schizophrenia and depression (e.g.,
AKT, DPYSL2, GSK-3β, PDE4, CREB, and β-arrestin) (175–181).
The distinct pathways by which DISC1 mediates its effects have
been intensely studied, and a detailed discussion is beyond the
scope of this review. Essentially, Disc1 may affect behavior via
its roles in neurodevelopment, synaptic transmission, and synap-
tic plasticity mediated through multiple downstream interacting
partners such as PDE4, Ndel1, GSK-3, and Dixdc1.

The numerous animal models that have been generated to
investigate the role of DISC1 in the neurobiology of mental illness
have been reviewed in considerable detail elsewhere (174). Cogni-
tive, schizophrenia-like, and depression-like deficits are common
in the various models, but not all are present simultaneously in
every model. Table 2 provides a summary of the behavioral phe-
notypes of relevant Disc1 mouse models. Disruptions in Disc1
caused alterations in neurodevelopment, such as changes in brain
structure, abberant formation of cortical layers, reductions in
GABAergic interneurons, and altered neuronal morphology, mat-
uration, neurite growth, and axonal targeting (182–190). Disc1
alterations also caused reductions in dopaminergic and hippocam-
pal synaptic transmission, and short-term plasticity but not LTP
(185–188). Changes were also seen in the activity of downstream
Disc1 interacting partners, notably in the PDE4 family of phos-
phodiesterases and glycogen synthase kinase 3 (GSK-3) pathways
(181, 182, 186). This implicates Disc1 in both neurodevelopment
and synaptic transmission through its interactions with multiple
downstream pathways.

DISC1 INTERACTING PARTNERS
Mouse models for a number of DISC1 interacting partners also
display behaviors relevant to both schizophrenia and depression.
Mice deficient in fasciculation and elongation protein zeta 1 (Fez1)
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Table 2 | Behavioral phenotypes of Disc1 genetic mouse models.

Name of mouse line Behavioral phenotypes Reference

SCZ-like Depression-like Cognitive

CaMK-DN-DISC1 tg Hyperactivity, PPI deficits ↑ Immobility in FST Working memory deficit in Y-maze (184)

CaMK-DISC1-cc tg at PND 7 ↑ Immobility in FST; ↓ sociability Working memory deficit (187)

DN-DISC1 tg Hyperactivity ↑ Aggression Spatial memory deficit in MWM (189)

Pre- and post-natal Tet-off

DN-DISC1 tg

↑ Immobility in TST; ↓ sociability;

↑ aggression

(191)

DISC1 KD (transient in utero

cortical)

PPI deficits Impaired long-term but normal

short-term operant conditioning;

working memory deficit in T-maze

(188)

DISC1tr ↑ Immobility in FST/TST Fear memory deficit (190)

DISC1-129 PPI deficits Working and fear memory deficits (185, 192)

DISC1-Q31L PPI and LI deficits ↑ Immobility in FST; social

anhedonia

Working memory deficit in T-maze (181, 182)

DISC1-L100P Hyperactivity, PPI, and LI

deficits

Working memory deficit in T-maze (182, 193)

Gene × environment models

DN-DISC1 tg×polyl:C at E9 Hyperactivity ↑ Immobility in FST; ↑ anxiety;

↓ sociability

(194)

DISC1-L100P+/−
×polyl:C PPI and LI deficits ↓ Sociability Spatial operant conditioning deficit (195)

DN-DISC1-Tg-PrP× social

isolation

Hyperactivity; PPI deficit ↑ Immobility in FST (196)

CaMK-DN-DISC1 tg, transgenic mice expressing dominant-negative C-terminal truncated human DISC1 under control of the α-calmodulin kinase II promoter; CaMK-

DISC1-cc tg, transgenic mice expressing C-terminal portion of the human DISC1 under control of the-calmodulin kinase II promoter; DN-DISC1 tg, transgenic mice

with inducible expression of dominant-negative C-terminal truncated human DISC1 (hDISC1) limited to forebrain regions, including cerebral cortex, hippocampus, and

striatum, using the Tet-off system under the regulation of the CAMKII promoter; DISC1 KD, DISC1 knockdown; DISC1tr, transgenic mice expressing two copies of

the truncated human DISC1 encoding the first eight exons using a bacterial artificial chromosome; DISC1-129, 129S6/SvEv inbred mouse strain carries a termination

codon at exon 7 of DISC1 gene, which abolishes production of the full-length DISC1 protein; DISC1-Q31L, point mutation in the second exon of DISC1 leading to the

substitution of glycine on leucine at 31 amino acid of DISC1 protein; DISC1-L100P, point mutation in the second exon of DISC1 leading to the substitution of leucine

on proline at 100 amino acid of DISC1 protein. Table adapted from Lipina and Roder copyright (174), with permission from Elsevier.

displayed a schizophrenia-like hypersensitivity to psychostimu-
lants and antidepressant-like reduced immobility in the FST (197).
These changes were associated with increased DA transmission in
the nucleus accumbens. Mice deficient in the phosphodiesterase
PDE4B not only showed a similar behavioral phenotype to the
Fez1-KO mice but also had increased anxiety and deficits in PPI
(198,199). A GSK-3α KO mouse model actually had facilitated PPI,
reduced immobility in the FST, and reduced aggression, suggesting
a protective effect against both schizophrenia and depression-like
behaviors; however, these mice also had increased anxiety, reduced
locomotion, and deficits in fear memory (200). Mice with dimin-
ished serine racemase (Srr) activity were found to have deficits
in sociability and PPI (201). Kalirin (Kalrn) KO mice not only
showed a similar phenotype to the Srr model but also showed
increased anxiety, deficits in spatial learning and memory, and
deficits in working memory (202). Given that deficits in sociability
are seen in both depression and schizophrenia, the Srr and Kalrn
mouse models could be interpreted as models for schizophrenia
only.

Fez1 is involved in intracellular transport and has functions
in neurodevelopment (172, 203). PDE4B and Srr are involved in
cAMP and NMDA neurotransmission, respectively, and therefore

affect diverse aspects of neuronal functioning (204, 205). GSK-3α

is a serine–threonine kinase, and has been implicated in neu-
rodevelopment, neurotransmitter function, neuroinflammation,
and synaptic plasticity (206–209). Kalrn is a brain-specific gua-
nine nucleotide exchange factor (GEF) that is a known regulator
of spine morphogenesis (202). In addition to their link through
DISC1, many of these molecules have their own links to schizo-
phrenia and depression. Human genetic studies and expression
studies have associated PDE4B, FEZ1, SRR, and KALRN with
schizophrenia (177, 210–213). PDE4 and GSK-3 are associated
with the action of antipsychotics and antidepressants (207, 214).
Additionally, SRR metabolite d-serine is known to be beneficial in
schizophrenia (215). These molecules regulate schizophrenia and
depression-associated pathways downstream of DISC1 and fur-
ther implicate neurodevelopment, synaptic processes such as spine
regulation, and cAMP and NMDA signaling in schizophrenia and
depression-associated behaviors.

REELIN
Reelin (RELN ) has been identified as a top candidate gene for
schizophrenia in genetic association studies (216–219). Reelin
levels were also shown to be decreased in schizophrenia and
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Samsom and Wong Schizophrenia and depression co-morbidity

bipolar disorder (220–222), and altered with antipsychotic,
antidepressant, and mood stabilizing medications (223). Reelin is a
glycoprotein that is critical for development. The characteristically
disorganized cortex of reeler mice demonstrates the importance
of reelin in neuronal migration (224–226). Reelin is also impor-
tant in synapse formation and plasticity, neuronal development,
glutamatergic neurotransmission, and adult neurogenesis (225,
227–230). The intricacies of reelin signaling have been intensively
studied and go beyond the scope of this review (231). Briefly, the
effects of reelin on behavior and its connections to schizophrenia
and depression may be realized through multiple pathways, from
alterations in glutamate signaling and synapse regulation to wide-
spread neurodevelopmental effects related to neuronal migration.
Further work is needed to understand the specific contributions
of these different pathways in mediating the effects of reelin on
behavior, as well as their relationship to specific neuropsychiatric
disorders such as schizophrenia and depression.

Reelin-deficient “reeler” mice are not suitable for behavioral
testing due to disruptions in motor activity (225). However, het-
erozygous reeler mice have been used as a model for schizophrenia,
although their validity in this context has been questioned (232).
Some studies found that heterozygous reeler mice have cognitive
deficits in operant conditioning and executive function (233–235),
deficits in PPI, LI, and fear conditioning (236–238), male-specific
hyperactivity in the MK-801-ILAT (239), and anxiety-like behav-
ior in the EPM and OFT (237, 240). Others groups found no signif-
icant effects in these mice (232, 235, 241). Heterozygous reeler mice
were also found to have altered LTP, and brain region-specific alter-
ations in NMDA receptor subunit levels and ratios (233, 239, 242).
Teixeira et al. found that reelin overexpressing mice had normal
behavior under basal conditions; however, the mice had reduced
immobility time in the FST after chronic corticosterone treatment,
and reduced cocaine sensitization in the cocaine-ILAT (243). Fur-
thermore, reelin overexpression prevented ketamine-induced PPI
deficits. This group found no significant differences in heterozy-
gous reelin-deficient mice, adding to the controversial findings
associated with this model. Reelin models demonstrate the dif-
ficulties that can be encountered when attempting to replicate
behavioral effects across different labs. Minute differences in envi-
ronmental and test conditions can have consequences on behavior.
Nevertheless, there are multiple lines of evidence supporting a role
for reelin in neuropsychiatric disorders.

MATERNAL IMMUNE ACTIVATION
Maternal infection during pregnancy has consistently been asso-
ciated with increased schizophrenia risk (244, 245). Maternal
immune activation (MIA) was shown to affect DNA methylation
(246). Hence, epigenetic changes caused by immune challenge
during critical periods of development may perturb important
schizophrenia-related pathways, which interact with underlying
genetic susceptibility and lead to the development of symptoms.
Interestingly, MIA has not been associated with depression in
humans. A recent study of over 6,000 subjects failed to find an
association between prenatal viral infection and the development
of non-psychotic depression (247). Nevertheless, animal models
have demonstrated behaviors relevant to both schizophrenia and
depression.

Multiple rodent models have been used to examine the
effects of prenatal immune challenge, primarily in relation to
schizophrenia (248). MIA models have been less thoroughly
explored for endophenotypes of depression. Nevertheless, cer-
tain models have shown phenotypes relevant for both schiz-
ophrenia and depression. Maternal viral infection modeled by
challenge with polyriboinosinic–polyribocytidilic acid (poly I:C)
caused: schizophrenia-like deficits in PPI, LI, and psychostimu-
lant hypersensitivity in adult, but not adolescent animals, abnor-
mal hippocampal–prefrontal synchrony (an electrophysiological
endophenotype for schizophrenia), and changes in DA metabo-
lism and receptor binding (249–263). Adult poly I:C exposed mice
had impairments in recognition memory that were rescued with
clozapine, but not haloperidol, deficits in spatial working learning
and memory, and increased anxiety-like behavior (250, 254–256,
264, 265). Reversal learning was either impaired or improved
depending on the timing of poly I:C exposure (264). The mice also
showed anhedonia in the SPT; although only offspring of moth-
ers that lost weight as a result of poly I:C injection displayed this
effect (266). Additionally, MIA has been used in conjunction with
genetic models to study gene× environment (G× E) interactions.
For example, poly I:C MIA exacerbated the schizophrenia-like
phenotype in Disc1-L100P heterozygotes (Table 1) (195). Inter-
estingly, poly I:C MIA at embryonic day 9 in DN-DISC1 tg mice
caused the development of anxiety-like and depression-like behav-
iors that were not seen in untreated DN-DISC1 tg mice (194).
These changes were associated with enlarged ventricles, reduced
hippocampal serotonin (5-HT), and reduced reactivity in the
hypothalamic–pituitary–adrenal (HPA) axis.

The aberrant neuroanatomy and DA signaling seen in MIA
models has long been associated with schizophrenia (267, 268).
While MIA has not yet been associated with depression in humans,
MIA interacted with DISC1 mouse models to generate depression-
like behaviors. It may be that MIA is linked specifically to comorbid
depression, but does not affect the development of major depres-
sive disorder on its own. The effects of MIA on gene expression, DA
and 5-HT signaling, neuroanatomy, and the HPA axis may inter-
act with other genetic risk factors such as disruptions in DISC1,
which leads to the development of schizophrenia and depres-
sion comorbidity. Future research is needed to explore the effects
of MIA in conjunction with genetic risk factors on comorbid
depression.

SOCIAL ISOLATION STRESS
Increased feelings of loneliness and social isolation, and decreased
family and social support were associated with an increased risk
depression and suicidality in schizophrenia patients (269). This is
consistent with the long-standing hypothesis that environmental
stressors such as social isolation can trigger depression in geneti-
cally susceptible individuals (270–272). The stress associated with
social isolation may therefore be a factor in triggering comorbid
depression in schizophrenia patients.

Social isolation is known to cause a number of behav-
ioral changes related to neuropsychiatric disorders (273). Iso-
lation during a critical period of post-natal development after
weaning in rats was shown to cause hyperactivity in the OFT,
schizophrenia-like deficits in PPI, but not LI, increased social
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interaction and aggression, and increased anxiety-like behavior
(274–284). Isolation-reared rats showed increased responses to
rewarding stimuli, including increases in sucrose and ethanol pref-
erence, operant responding for ethanol, and initiation of drug
self-administration (285–291). Additionally, social isolation was
shown to cause cognitive deficits in executive function, rever-
sal learning, and spatial learning (291–296); although, spatial
learning deficits were not universally seen, with some groups
seeing no change and others seeing improvements (293, 297,
298). Isolation stress has also been used in conjunction with
genetic mouse models. Social isolation in DN-DISC1-Tg-PrP mice
induced schizophrenia-like deficits in PPI and depression-like
behavior in the FST that were not seen in the socially isolated
wild type mice or DN-DISC1-Tg-PrP control groups (Table 2)
(196). These changes were linked to glucocorticoid and epigenetic
control of genes related to DA signaling.

Social isolation causes brain region-specific alterations in DA
and 5-HT activity in rodents; for example, heightened dopamin-
ergic activity in the nucleus accumbens and ventral striatum, but
reduced DA function in the PFC (273). Isolation was also shown
to cause alterations in the expression and localization of glutamate
receptor subunits, decrease numbers of GABAergic interneurons
in the hippocampus, and decrease hippocampal brain-derived
neurotrophic factor (BDNF) (50, 299–302). Additionally, isola-
tion affected dendritic spine density and morphology in the PFC,
striatum, and hippocampus (303–306). Post-weaning social iso-
lation may therefore influence the development of schizophrenia
and depression-related behavior via epigenetic changes – possibly
through the HPA axis – that cause alterations in neurosignaling.
These alterations may also interact with genetic risk factors such
as DISC1, resulting in the development of symptoms. Isolation
stress demonstrates that environmental input can induce schizo-
phrenia and depression-related behavioral deficits in animals and
is an excellent tool to use in conjunction with genetic models to
test G× E interactions.

HONORABLE MENTIONS
This review has focused on animal models that display both schiz-
ophrenia and depression-relevant endophenotypes. However, due
to the large amount of overlap between risk factors for schizophre-
nia and depression, numerous genes show convergent evidence
from human data for a shared association between these disor-
ders. Animal models of these genes do not necessarily display
endophenotypes for both schizophrenia and depression. Never-
theless, below are some of the genes relevant to both disorders
despite less phenotypic relevance to comorbidity than the previous
animal models.

Neuregulin 1
An association between neuregulin 1 (NRG1) and schizophrenia
is strongly supported by human genetic studies (307–313). NRG1
SNPs have also been associated with depression and bipolar disor-
der (314–318). NRG1 is a member of a family of epidermal growth
factor-like proteins, which interact with the ErbB family of recep-
tor tyrosine kinases to play a role in neurodevelopment, neuronal
migration, Schwann cell growth, and brain activity homeostasis
(319, 320).

While homozygous mice are embryonic lethal, heterozy-
gous KO of NRG1, and its various isoforms display multiple
schizophrenia-related behavioral deficits, including impaired PPI
and LI, hyperactivity in the OFT, deficits in fear condition-
ing, impaired working memory, and/or abnormal social behavior
(321–330). Overexpression of NRG1 also results in deficits in PPI,
hyperactivity, and impairments in working memory, contextual
fear conditioning, and social interaction (331–335). Addition-
ally, heterozygous NRG1-KO mice show an increased sensitiv-
ity to the cannabinoid delta9-tetrahydrocannabinol (THC) and
altered behavior in response to chronic social defeat stress (336,
337). Notably, social defeat caused impaired working memory and
decreased aggression in NRG1 mice, but reduced deficits in sucrose
preference relative to wild type mice (337). The relevance of
NRG1 models to depression is weaker. While cognitive and social
deficits and the altered response to psychosocial stress overlap as
endophenotypes for schizophrenia and depression, there is much
less research examining NRG1-KO mice in the specific context
of depression. Future research and improvements in depression-
related endophenotypes will reveal the utility of NRG1 models in
studying comorbidity directly. Nevertheless, these models remain
as excellent tools for understanding a pathway that shows conver-
gent evidence for both depression and schizophrenia associations
in humans.

Catechol-O-methyltransferase
Catechol-O-methyltransferase (COMT) is a primary DA metabo-
lizing enzyme in the PFC and amygdala (338). COMT has been of
particular interest in human studies because of a functional poly-
morphism (Val158Met), which is associated with a three to four-
fold reduction in enzymatic activity and increased synaptic DA
activity (339). While the COMT gene is located in a region asso-
ciated with high schizophrenia risk (22q11), associations between
the gene itself and schizophrenia have been inconsistent (340, 341).
Likewise, COMT genetic variation does not appear to be associ-
ated with depression diagnosis or severity, and there is conflicting
evidence for an association with response to antidepressants (342,
343). Nevertheless, COMT – particularly the Val158Met allele –
is associated with a number of human endophenotypes, which
are important in schizophrenia and depression, including PFC-
mediated cognition, variations in brain structure, and anxiety
traits (344–350). COMT has also been associated with violent
behavior in schizophrenia patients (351, 352). COMT is therefore
a potentially important player in linking certain cognitive and neu-
roanatomical symptom domains of depression and schizophrenia
to the DA system.

COMT-KO mice exhibited an attenuated response to inhibition
of DA transporter (DAT) and amphetamine in the ILAT, female-
specific increases in anxiety-like behavior, male-specific increases
in aggression, altered exploration and habituation in the OFT, and
increased vulnerability to the disruptive effects of THC (353–358).
Male COMT-KO mice displayed mild improvements in spatial and
working memory (359, 360). Additionally, pharmacological inhi-
bition of COMT improved attentional set-shifting performance
in rats (361). Transgenic mice expressing the human COMT Val
variant had impairments in attentional set-shifting, recognition
memory, and working memory (360). Also, pain sensitivity and
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stress reactivity were decreased in transgenic mice and increased in
COMT-KO mice. While COMT mice lack classical depression and
schizophrenia-related endophenotypes, the models demonstrate
relevance for cognitive function, which is an important aspect
of both disorders. These models are therefore excellent tools for
examining the role of DA function in cognition.

Brain-derived neurotrophic factor
Brain-derived neurotrophic factor is the most well studied and
characterized neurotrophin in the CNS; we can only briefly touch
upon the considerable literature here (362–365). BDNF and its
high affinity tropomyosin-related kinase B (TrkB) receptor are
involved in many important neuronal processes, including neu-
rodevelopment, axon targeting, neuronal growth and survival, and
synaptic plasticity (362). Evidence for altered brain and serum
BDNF levels in schizophrenia is controversial, with studies find-
ing both increased and decreased levels in various brain regions
(366–372). However, the BDNF Val66Met polymorphism has been
associated with increased schizophrenia risk (373). Furthermore,
the BDNF Val66Met allele was shown to interact with childhood
trauma to decrease blood BDNF mRNA levels and hippocampal
subfield volumes in schizophrenia and bipolar disorder patients,
suggesting a G× E interaction that may have consequences on
brain development and function in psychosis (374). Decreased
BDNF levels have been consistently reported in depression, partic-
ularly in suicidal patients (375–382). Indeed,a role for BDNF in the
pathophysiology and treatment of depression and schizophrenia
is strongly supported.

Many mouse lines have been developed with various mutations
in BDNF. Homozygous mice possessing a BDNF null mutation are
not viable. However, heterozygotes display many relevant pheno-
types, including hyperactivity, hyperphagia causing excess weight
gain, potentiated response to amphetamine in the ILAT, aggres-
sion, impaired contextual fear conditioning, extinction learning
deficits, and sex-specific vulnerability to the behavioral effects
of THC and corticosterone (383–392). Heterozygous BDNF-KO
mice showed baseline PPI deficits only in paradigms involving
chronic injection, suggesting that this may be a stress-induced
effect (386, 391, 392). Supporting the susceptibility of PPI to envi-
ronmental factors in heterozygous BDNF-KO mice is the finding
that cannabinoid and methamphetamine treatment in young-
adult mice caused sex-specific changes in PPI response to acute
cannabinoid and amphetamine challenge, respectively, in adult
heterozygous mice relative to both wild type and untreated het-
erozygotes (386, 392). Depression-related endophenotypes such
as learned helplessness, anhedonia, and vulnerability to stress
were not seen in heterozygous BDNF-KO mice (393–395). How-
ever, the response to amine-based antidepressants is attenuated
in this model (396). Conditional fetal, post-natal, hippocampal,
and forebrain-inducible BDNF-KO mice displayed depression-like
behaviors in certain tests (397–399). Forebrain-specific BDNF-KO
mice displayed learning and memory deficits (400). Additionally,
a mouse model of the human Val66Met allele displayed increased
aggression, anxiety, and deficits in contextual fear condition-
ing (401). BDNF overexpressing mice showed improved learning
and memory in the MWM and reduced immobility in the FST
(402, 403).

Mice lacking BDNF receptor TrkB in the brain demonstrated a
similar phenotype, displaying hyperactivity, and increased impul-
sivity in the NORT, but not depression-like or anxiety-like behav-
iors in the FST or EPM (404). Conversely, mice overexpress-
ing TrkB show improvements in spatial learning and mem-
ory, contextual fear conditioning, and reduced anxiety in the
EPM (405). Finally, the importance of environmental factors to
BDNF is supported by the finding that maternal separation and
adolescent/young-adult corticosterone treatment caused sex and
brain region-specific changes in BDNF and TrkB function coupled
with male-specific deficits in working memory and female-specific
anhedonia in the SPT (406).

While related endophenotypes of depression and schizophrenia
are seen in various BDNF models, they are not seen simultaneously
in the same model. More research on BDNF models in the con-
text of both schizophrenia and depression is needed. Nevertheless,
various disruptions in the BDNF pathway do lead to both schiz-
ophrenia and depression-related behavioral deficits. This suggests
a role for BDNF in a shared pathway between the two disorders.
Parsing the differences that lead to specific disruptions in behav-
ior will greatly aid in elucidating the contributions of the BDNF
pathway to depression and schizophrenia.

BRINGING THE PICTURE TOGETHER
The emerging picture of the genetic architecture of schizophrenia
is revealing that hundreds of genes with small effect sizes influence
the disorder (407). The genetic picture of depression is far less
clear, with heritability estimates predicting a much greater contri-
bution of environmental effects than in schizophrenia (408, 409).
Hence, it is not surprising that the array of factors that influence
depression and schizophrenia-related phenotypes in rodent mod-
els is diverse. However, a number of common elements between
these models are becoming evident. The emerging pathways that
are shared between these models are represented in Figure 1.

NEUROTRANSMISSION: THE FAMILIAR SUSPECTS
Most current antipsychotics and antidepressants affect neuro-
transmitters in the synapse. A number of the models mentioned
have demonstrated links to various neurotransmitter systems.
NPY, DISC1, and Fez1 pathways interact with the DA system (157,
158, 188, 197, 410, 411). Altered DA and 5-HT activity was seen
after MIA and social isolation. Furthermore, the increased sensitiv-
ity to psychostimulants seen in a number of the aforementioned
models is thought to be related to DA activity (412). A role for
glutamate is also implicated in many of these models. Srr, DISC1,
and reelin are all involved in glutamatergic signaling (205, 413,
414). Social isolation also affected NMDA receptor localization
(299). Many antipsychotics have been used in the treatment of
depressive disorders (415). It is possible that the shared involve-
ment of certain neurotransmitter systems in schizophrenia and
depression underlies both the increased risk of comorbid depres-
sion in schizophrenia and the antidepressant activity of these
antipsychotics.

Involvement of monoamine systems in schizophrenia and
depression is by no means a new hypothesis (267, 416). DA, in
particular, is strongly implicated in schizophrenia. Furthermore,
it is easy to see how the mesocortical and mesolimbic DA reward
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FIGURE 1 | Multiple shared pathways between rodent models
which display both schizophrenia and depression-related
phenotypes. This diagram illustrates the connections between each of
the models (represented in color on the bottom right) and the biological
processes which potentially underlie the observed phenotypes
(represented in gray at the top left). Abbreviations: CSMD1, CUB and

SUSHI multiple domains 1; DISC1, disrupted in schizophrenia 1; FEZ1,
fasciculation and elongation protein zeta 1; GluD1, glutamate receptor
delta 1; GSK-3α, glycogen synthase kinase 3α; MIA, maternal immune
activation; NPY, neuropeptide Y; PDE4B, phosphodiesterase 4B;
PDLIM5, PDZ and LIM domain 5; SRR, serine racemase; SI, social
isolation.

circuits could be involved in anhedonia and amotivational states
associated with both depression and schizophrenia. While these
models provide additional support for this hypothesis, a number
of questions remain regarding the role of monoamine systems in
generating the phenotypes seen in these models. DISC1, NPY, and
Fez1 are all involved in multiple pathways. Future experiments
are needed to determine if the DA system alone is necessary and
sufficient to account for specific observed phenotypes, or if it is
peripheral or supplementary to the development of certain schiz-
ophrenia and depression-related endophenotypes. Likewise, MIA
and social isolation affect more than just neurotransmitter sys-
tems. Some work has been done to uncover the molecular pathways
by which these environmental factors cause perturbations in neu-
rotransmitter systems; for example, social isolation caused DNA
methylation of the promoter region of tyrosine hydroxylase in the
ventral tegmental area of DN-DISC1-Tg-PrP mice. More simi-
lar studies are needed to uncover the complex G× E interactions
which lead to altered neurotransmission in these models.

There is mounting evidence that glutamate plays a major role in
psychiatric illness. The link between glutamate and schizophrenia
was first proposed based on the observation that NMDA recep-
tor antagonists phencyclidine (PCP) and ketamine can induce
schizophrenia-like symptoms in healthy individuals (417–419).
The hypothesis has since gained supporting evidence from human
genetic and imaging studies, as well as animal models of NMDA
receptor hypofunction (419–421). A relationship between the glu-
tamate system and depression is suggested by the rapid and long-
lasting antidepressant effects of ketamine (422). Early evidence is
showing that compounds targeting the glutamate system may have
efficacy in treating positive, negative, and cognitive symptoms of
schizophrenia (423). The efficacy of these compounds in treat-
ing negative symptoms such as anhedonia and social withdrawal,
which overlap with depression, may indicate potential antidepres-
sant activity. Hence, the glutamate system is of particular interest
in treating comorbid depression in schizophrenia. The current
animal models will be useful for investigating the efficacy of new
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compounds targeting the glutamate system in treating symptoms
of schizophrenia and depression.

CONNECTIVITY IS THE KEY
Disruptions in processes related to brain connectivity are a
common theme among the many of the models outlined here.
Almost all of the models mentioned demonstrate links to synap-
tic processes such as synapse formation, regulation, and plasticity.
Pdlim5, GluD1, reelin, Disc1, Kalrn, and social isolation affect
synaptic spine morphology and/or formation, and GSK-3, Disc1,
and reelin affect synaptic plasticity (107, 121, 134, 135, 202, 209,
231, 424, 425). Dynamic changes in synaptic spine morphology
and formation, both developmentally during the establishment
of neuronal circuits and as the result of activity or experience-
dependent remodeling of existing circuits, are thought to be inti-
mately linked to cognitive development and function (426–429).
Disruptions in neurodevelopment may also interfere with brain
connectivity through the “miswiring” of neuronal circuits. Disc1
and reelin are both important for neuronal migration and the
formation of cortex layers, and PDE4B is involved in axon guid-
ance and dendritic growth (183, 186, 224). Miswiring of neuronal
circuits, whether at the level of brain structure from abnormal neu-
rodevelopment or from dysregulation at the level of the synapse,
possibly cause maladaptive alterations in brain connectivity lead-
ing to altered stimulus processing and cognition. This may be
a common mechanism underlying the cognitive and behavioral
symptoms of both schizophrenia and depression.

Broad constructs such as connectivity, synaptic regulation, and
plasticity are far too general to lead to significant advancement in
the mechanistic understanding or treatment of neuropsychiatric
illness (430). Furthermore, these mechanisms are implicated in
a myriad of disorders in addition to depression and schizophre-
nia; for example, neuronal circuit dysfunction is also implicated in
intellectual disability, ASD, and Alzheimer’s (431). Future research
should examine the precise changes in specific neural circuitry and
synaptic processes in these and forthcoming models of schizophre-
nia and depression. Models such as the Pdlim5-KO and Fez1-KO
mice are of particular interest as they display endophenotypes of
one disorder while being protective against endophenotypes of the
other. Hence, these molecules may represent points in the shared
pathway where schizophrenia and depression diverge. Examin-
ing these mechanisms could hint at the subtle changes that can
cause the emergence of disparate symptoms in disorders with
shared genetic susceptibility. Research correlating precise changes
in neural circuitry and synapse function to specific disease-related
endophenotypes in these animal models will be important in com-
pleting the picture linking genetic changes to pathophysiology and
ultimately behavior.

IMMUNE AND ENVIRONMENTAL FACTORS
Dysregulation of the immune system, cytokines, and oxidative
and nitrositive stress have been proposed as important factors
in both schizophrenia and depression (432, 433). This hypothesis
is supported by a myriad of evidence from the study of immuno-
inflammatory markers in humans, genetic association studies, and
animal models (434, 435). Immune and inflammatory processes
were implicated in schizophrenia and depression comorbidity by

a number of models, including Csmd1, db/db, GSK-3, and MIA
(145, 208, 248). Furthermore, Csmd1 provides a link between the
immune system and neuronal processes such as synaptic pruning
(107). It has been proposed that schizophrenia is immunologically
primed for the expression of depression (434). This is supported
by the aforementioned models, particularly by findings such as the
interaction between MIA and Disc1 in mice to illicit depression
and anxiety-like behavior (194).

However, a number of key questions remain in understanding
the role of immune and inflammatory processes. Future research
should reveal the extent to which these processes are responsible
for the observed phenotypes. MIA-induced locomotor changes
could be rescued by maternal treatment with non-steroidal anti-
inflammatory drugs or adolescent treatment with the COX-2
inhibitor celecoxib (436, 437). Similar investigations could be done
using other models; for instance, using the db/db mice in which
hippocampal inflammation is thought to be an important factor in
the observed phenotype. Furthermore, determining the sensitivity
of treatment with anti-inflammatory drugs at different time points
will reveal if immune insult leads to permanent changes in brain
structure and function. This will be important for developing new
therapeutic strategies for schizophrenia and depression.

Models of MIA and social isolation stress demonstrate how
environmental factors can cause broad changes in neurobiology
and behavior. Heritability is estimated at 81% for schizophrenia
and 37% for depression (408, 438). This means almost 1/5th of
the estimated variance in liability for schizophrenia and 3/5ths
for depression is due to non-genetic factors. Clearly, environmen-
tal factors play an important role in influencing brain function,
and are modulated by both genetic and epigenetic factors (439).
Several environmental stressors such as psychosocial stress, drug
abuse, nutrition, and MIA influence schizophrenia and depres-
sion in humans, as well as related endophenotypes in mice (440,
441). Environmental factors have already been combined with
Disc1 genetic models to explore the complex and synergistic
G× E interactions, which trigger the development of pathological
endophenotypes (194–196, 442, 443). Additionally, two-hit mod-
els have been used combining factors such as acute and chronic
response to THC, psychosocial stress, and chronic unpredictable
stress with models of NRG1, COMT, BDNF, and other genes
(336, 337, 358, 444). Future research should apply this type of
hybrid G× E approach to other combinations of genes and envi-
ronmental factors to improve our understanding of how genes
modulate sensitivity to environmental stressors and lead to men-
tal illness. Additionally, correlating these effects with changes in
the epigenome will improve our understanding of the sequence
of molecular events which lead to the emergence of symptoms in
depression and schizophrenia.

METABOLIC SYNDROME: CULPRIT, ACCOMPLICE, OR BYSTANDER?
Patients with both schizophrenia and depression are at an
increased risk for components of metabolic syndrome, including
obesity, hypertension, atherogenic dyslipidemia, hyperglycemia,
and diabetes (445–447). Metabolic syndrome in schizophrenia
patients can be partially explained as a side-effect of antipsychotic
medications (448). Nevertheless, a common mechanism between
these conditions is hinted at by the db/db, Csmd1, and NPY models
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(108, 145, 161–163). Research linking metabolic syndrome and
mental illness is still relatively new. Systemic inflammation and
immune activation are features of schizophrenia, depression, and
metabolic syndrome (434, 447). Hence, immune dysregulation
could be a causal factor in all three disorders. This is supported
by fact that knocking out the immune molecule Csmd1 led to
the development of glucose tolerance as well as schizophrenia and
depression endophenotypes in mice (108). Alternatively, disrup-
tions in systems such as leptin and NPY, which are involved in
hunger and satiety, may cause schizophrenia and depression, while
simultaneously predisposing patients of these disorders to behav-
ioral risk factors for metabolic syndrome such as poor diet and
sedentary lifestyle.

Whether metabolic syndrome is a causal factor, a consequence,
or simply a marker of mental illness is subject to controversy (449).
Future studies should determine if treating metabolic deficits in
models such as the Csmd1-KO and db/db mice rescues schizo-
phrenia and depression-related endophenotypes. This would help
to elucidate the causal status of metabolic conditions in schiz-
ophrenia and depression endophenotypes. A detailed discussion
of the other links between depression, schizophrenia, and meta-
bolic disorder goes beyond the scope of this review (446, 447).
More research is needed to reveal the relationship between these
disorders.

WHOLE PICTURE AND FUTURE DIRECTIONS
Ultimately, all of the factors mentioned here are intimately inter-
connected. Dopaminergic, glutamatergic, and GABAergic neuro-
transmitter systems interact as neural circuits and are influenced
by inputs from multiple other systems (267, 420, 450). Synaptic
processes are regulated by neurotransmitters and immune mol-
ecules, and in turn affect neurotransmission (451–453). Finally,
neurodevelopmental processes wire the machinery necessary for
all this to occur, and are influenced by each of these factors (454,
455). Future research should then focus on differentiating pre-
cise mechanisms and their relationships to these highly integrated
systems. Advancing technologies such as optogenetics and light
sheet microscopy should aid in deciphering the roles of specific
neural circuitry (456). Neural circuits can be further interrogated
through the use of genetic approaches in simple model organ-
isms such as Drosophila larvae and Caenorhabditis elegans (457,
458). Conversely, applying genetic techniques to more complex
organisms such as the rat will allow for the assessment of more
sophisticated cognitive and social behaviors (174).

While this review specifically focused on schizophrenia and
depression, Table 1 emphasizes that the behavioral endophe-
notypes used in these studies are linked to multiple disorders.
Furthermore, many of the genes targeted in these models have
multiple associations; for example, DISC1 is associated with bipo-
lar disorder, major depression, social anhedonia, chronic fatigue
syndrome, anxiety, neuroticism, emotional stability, schizophre-
nia, schizoaffective disorder, and ASD (179, 459, 460). Given this
level of complexity, it is unrealistic to assume that disorders such
as schizophrenia and depression can be sufficiently approximated
and recognized in rodent models, especially considering the con-
troversy in psychiatric nosology itself regarding the definition of
discrete boundaries between disorders (461). Hence, it may be

useful to focus on correlating specific molecular pathways with
certain endophenotypes rather than attempting to interpret mod-
els as holistic representations of mental illness. Considering the
multidimensional nature of both depression and schizophrenia,
understanding causal mechanisms as they relate to certain dimen-
sions of symptomology reflected in specific endophenotypes may
provide insight into the genetic origins of the heterogeneous and
multidimensional nature of these disorders.

Lastly, if we desire to use animal models for translational
research in drug discovery, we will need models with greater eti-
ological validity. Schizophrenia and depression are highly polyge-
netic, likely resulting from the contribution of multiple low-effect
genetic risk factors combined with environmental stressors (407,
409). Less severe and more specific genetic manipulations such
as point mutation models, genetic hypomorphs, and RNAi gene
knockdown methods cause more subtle changes that better mimic
the types of genetic factors seen in human populations (174). Fur-
thermore, multi-hit models, which combine multiple mutations
and environmental factors, more closely model the polygenetic
nature of these disorders, and allow for the interrogation of both
gene× gene and G× E interactions. New methods such as the
CRISPR/Cas system allow for the one step generation of mul-
tiple mutations to greatly accelerate the development of such
models (462).

CONCLUSION
What has emerged so far from the study of animal models exhibit-
ing both depression and schizophrenia-related phenotypes is a
number of broadly defined mechanisms, which may underlie a
shared pathophysiology between the two disorders. Given the
complex, heterogeneous nature of these disorders, it is likely
that neurotransmission, brain connectivity, immune, and envi-
ronmental factors all contribute to their pathophysiology. As more
models are discovered, the emerging picture of the shared patho-
physiological mechanisms between schizophrenia and depression
will become increasingly coherent. Interrogating precise molec-
ular and neural substrates as they relate to specific endopheno-
types, and carefully examining gene× gene and G× E interactions
will contribute to a better understanding of the neurobiologi-
cal mechanisms of comorbidity in mental illness. This under-
standing will inform future efforts in developing treatments for
neuropsychiatric comorbidity.
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Metabolic syndrome, activity of the hypothalamic-pituitary-adrenal axis and
inflammatory mediators in depressive disorder. Acta Clin Croat (2014)
53:55–71.

448. Daumit GL, Goff DC, Meyer JM, Davis VG, Davis SM, Nasrallah HA, et al.
Antipsychotic effects on estimated 10-year coronary heart disease risk in the
CATIE schizophrenia study. Schizophr Res (2008) 105:175–87. doi:10.1016/j.
schres.2008.07.006

449. Jakovljevic M, Crncevic Z, Ljubicic D, Babic D, Topic R, Saric M. Mental dis-
orders and metabolic syndrome: a fatamorgana or warning reality? Psychiatr
Danub (2007) 19:76–86.

450. Benes FM. Neural circuitry models of schizophrenia: is it dopamine, GABA,
glutamate, or something else? Biol Psychiatry (2009) 65:1003–5. doi:10.1016/j.
biopsych.2009.04.006

451. Spiga S, Mulas G, Piras F, Diana M. The “addicted” spine. Front Neuroanat
(2014) 8:110. doi:10.3389/fnana.2014.00110

452. Banks PJ, Warburton EC, Brown MW, Bashir ZI. Mechanisms of synaptic plas-
ticity and recognition memory in the perirhinal cortex. Prog Mol Biol Transl
Sci (2014) 122:193–209. doi:10.1016/B978-0-12-420170-5.00007-6

453. Xavier AL, Menezes JR, Goldman SA, Nedergaard M. Fine-tuning the central
nervous system: microglial modelling of cells and synapses. Philos Trans R Soc
Lond B Biol Sci (2014) 369:20130593. doi:10.1098/rstb.2013.0593

454. Money KM, Stanwood GD. Developmental origins of brain disorders: roles for
dopamine. Front Cell Neurosci (2013) 7:260. doi:10.3389/fncel.2013.00260

455. Hayashi-Takagi A, Sawa A. Disturbed synaptic connectivity in schizophrenia:
convergence of genetic risk factors during neurodevelopment. Brain Res Bull
(2010) 83:140–6. doi:10.1016/j.brainresbull.2010.04.007

456. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. Whole-brain functional
imaging at cellular resolution using light-sheet microscopy. Nat Methods (2013)
10:413–20. doi:10.1038/nmeth.2434

457. Sasakura H, Tsukada Y, Takagi S, Mori I. Japanese studies on neural circuits
and behavior of Caenorhabditis elegans. Front Neural Circuits (2013) 7:187.
doi:10.3389/fncir.2013.00187

458. Kazama H. Systems neuroscience in Drosophila: conceptual and technical
advantages. Neuroscience (2014). doi:10.1016/j.neuroscience.2014.06.035

459. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in
psychiatric illness. Mol Psychiatry (2008) 13:36–64. doi:10.1038/sj.mp.4002106

460. Thomson PA, Malavasi EL, Grunewald E, Soares DC, Borkowska M, Millar
JK. DISC1 genetics, biology and psychiatric illness. Front Biol (Beijing) (2013)
8:1–31. doi:10.1007/s11515-012-1254-7

461. Maser JD, Norman SB, Zisook S, Everall IP, Stein MB, Schettler PJ, et al. Psychi-
atric nosology is ready for a paradigm shift in DSM-V. Clin Psychol (New York)
(2009) 16:24–40. doi:10.1111/j.1468-2850.2009.01140.x

462. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al.
One-step generation of mice carrying mutations in multiple genes by
CRISPR/Cas-mediated genome engineering. Cell (2013) 153:910–8. doi:10.
1016/j.cell.2013.04.025

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 30 October 2014; accepted: 24 January 2015; published online: 18 February
2015.
Citation: Samsom JN and Wong AHC (2015) Schizophrenia and depression co-
morbidity: what we have learned from animal models. Front. Psychiatry 6:13. doi:
10.3389/fpsyt.2015.00013
This article was submitted to Molecular Psychiatry, a section of the journal Frontiers in
Psychiatry.
Copyright © 2015 Samsom and Wong . This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Psychiatry | Molecular Psychiatry February 2015 | Volume 6 | Article 13 | 24

http://dx.doi.org/10.1016/j.schres.2008.07.006
http://dx.doi.org/10.1016/j.schres.2008.07.006
http://dx.doi.org/10.1016/j.biopsych.2009.04.006
http://dx.doi.org/10.1016/j.biopsych.2009.04.006
http://dx.doi.org/10.3389/fnana.2014.00110
http://dx.doi.org/10.1016/B978-0-12-420170-5.00007-6
http://dx.doi.org/10.1098/rstb.2013.0593
http://dx.doi.org/10.3389/fncel.2013.00260
http://dx.doi.org/10.1016/j.brainresbull.2010.04.007
http://dx.doi.org/10.1038/nmeth.2434
http://dx.doi.org/10.3389/fncir.2013.00187
http://dx.doi.org/10.1016/j.neuroscience.2014.06.035
http://dx.doi.org/10.1038/sj.mp.4002106
http://dx.doi.org/10.1007/s11515-012-1254-7
http://dx.doi.org/10.1111/j.1468-2850.2009.01140.x
http://dx.doi.org/10.1016/j.cell.2013.04.025
http://dx.doi.org/10.1016/j.cell.2013.04.025
http://dx.doi.org/10.3389/fpsyt.2015.00013
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Molecular_Psychiatry
http://www.frontiersin.org/Molecular_Psychiatry/archive

	Schizophrenia and depression co-morbidity: what we have learned from animal models
	Introduction
	Finding animal models for neuropsychiatric disorders
	Models
	CUB and SUSHI multiple domains 1
	PDZ and LIM domain 5
	Glutamate delta 1 receptor
	Diabetic db/db mice
	Neuropeptide Y
	Disrupted in schizophrenia 1
	DISC1 interacting partners
	Reelin
	Maternal immune activation
	Social isolation stress
	Honorable mentions
	Neuregulin 1
	Catechol-O-methyltransferase
	Brain-derived neurotrophic factor


	Bringing the picture together
	Neurotransmission: the familiar suspects
	Connectivity is the key
	Immune and environmental factors
	Metabolic syndrome: culprit, accomplice, or bystander?

	Whole picture and future directions
	Conclusion
	Acknowledgments
	References


