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Abstract

Background: In bioinformatics, we pre-process raw data into a format ready for answering medical and biological
questions. A key step in processing is labeling the measured features with the identities of the molecules
purportedly assayed: “molecular identification” (MI). Biological meaning comes from identifying these molecular
measurements correctly with actual molecular species. But MI can be incorrect. Identifier filtering (IDF) selects
features with more trusted MI, leaving a smaller, but more correct dataset. Identifier mapping (IDM) is needed
when an analyst is combining two high-throughput (HT) measurement platforms on the same samples. IDM
produces ID pairs, one ID from each platform, where the mapping declares that the two analytes are associated
through a causal path, direct or indirect (example: pairing an ID for an mRNA species with an ID for a protein
species that is its putative translation). Many competing solutions for IDF and IDM exist. Analysts need a rigorous
method for evaluating and comparing all these choices.

Results: We describe a paradigm for critically evaluating and comparing IDF and IDM methods, guided by data on
biological samples. The requirements are: a large set of biological samples, measurements on those samples from at
least two high-throughput platforms, a model family connecting features from the platforms, and an association
measure. From these ingredients, one fits a mixture model coupled to a decision framework. We demonstrate this
evaluation paradigm in three settings: comparing performance of several bioinformatics resources for IDM between
transcripts and proteins, comparing several published microarray probeset IDF methods and their combinations,
and selecting optimal quality thresholds for tandem mass spectrometry spectral events.

Conclusions: The paradigm outlined here provides a data-grounded approach for evaluating the quality not just of
IDM and IDF, but of any pre-processing step or pipeline. The results will help researchers to semantically integrate
or filter data optimally, and help bioinformatics database curators to track changes in quality over time and even to
troubleshoot causes of MI errors.
Background
A key step in preparing raw high-throughput (HT) data
into analyzable data suitable for answering medical and
biological questions is labeling the measured features with
the identities of the molecular species purportedly assayed:
“molecular identification” (MI). There are many ways to
get these MIs, thanks to a proliferation of annotation data-
bases and algorithms. MI may come from (a) an online
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annotation resource (example: Ensembl/EnVision from
ENFIN [1]), (b) an annotation data object in a
bioinformatics-capable software environment (example:
one of bioconductor’s “annotationDBI” objects [2]), or (c)
an algorithm (examples: Sequest [3] in proteomics or
Tophat [4] for short read alignments in RNA-Seq). If the
MI process is done well, then the analysis of HT biological
data has the best chance of yielding meaningful results.
Incorrect MIs appear to be frequent [5]. It is common

for two well-respected MI methods or resources to diverge
substantially [6]. Thus many MIs are likely to be incorrect.
If so, then any analysis which depends on biological inter-
pretation risks missing or mischaracterizing an important
ntral Ltd. This is an Open Access article distributed under the terms of the
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discovery , because biological interpretation depends on
correctly identifying the assessed molecular species.
In choosing MI methods, HT data analysts have limited

guidance. Which techniques they use for filtering and map-
ping are typically based on convenience, habit, and heuris-
tics. Further, research articles seldom report which
techniques they chose. When their choices are data-driven,
the same data set under scientific study is also used to as-
sess the choices, leading to potential biases.
To improve MI, we need to measure its quality. The

approach promoted here provides a “measuring instru-
ment” for the quality of an MI method, an instrument to
be used for comparing MI methods and for tracking
changes in MI quality over time.
One kind of MI is identifier filtering (IDF): deciding

which features in a data set to include and which to ex-
clude based on some believability criterion, whether
computed or curated. Each HT platform produces a
large set of features; each feature is labeled by an identi-
fier (ID). Prior filtering of features is especially important
in light of the multiple testing quandary, which is aggra-
vated when many incorrect features compete with the
genuine features for the attention of a statistical testing
procedure. There are numerous criteria for filtering out
less believable features, but the practical question is
which single IDF criterion is best, or how to construct a
combination better than any single one.
Another kind of MI is mapping between the identifiers

from two platforms: ID mapping (IDM). More than ever,
bioinformatics analysis involves integrating data from
multiple platforms. Data integration across platforms is
needed for a sufficiently full picture of biological sys-
tems. But the term “data integration” has multiple mean-
ings. Integrating HT data from multiple platforms on
the same samples can occur at three levels.

a) Separate analyses
Many studies report combined analyses across assay
platforms, but the data integration consists of reporting
independent separate analyses of each platform, culmin-
ating in combining the results of each in simple ways,
for example, a comparison of biomarker candidate lists
[7] or interpretations of modulated features [8]. This
kind of study does not require merging the data by sam-
ple. Good MI is nevertheless important in these studies,
because good identifier filtering (IDF) will remove mis-
identified features from the data, decreasing false discov-
eries and increasing detection of true discoveries.

b) Merged by sample
One can also merge data by sample to create a combined
collection of measured molecular features. Sample-wise
merging enlarges the feature set by obtaining features
from both platforms. Some studies develop predictive or
prognostic models utilizing these enlarged sets [9,10]. No
IDM is required. Again, good IDF is important.

c) Merged by sample and semantics
To generate deeper understanding and fulfill the prom-
ise of systems biology, the data need to be merged not
just by sample, but by biological meaning as well: se-
mantic merging. This requires identifier mapping, IDM,
to connect the MIs annotating measurements on two
different platforms.
The resources that do algorithm-based and annotation-

based IDM are numerous ([11-14] and many others). But
they disagree with each other. They may even disagree
with themselves, comparing results based on web service
queries to results based on file downloads, or comparing
one year to another [6]. When undertaking a sophisticated
systems analysis performed on a multiple-platform data
set, incorrect MIs will at best complicate analysis, and at
worst obscure the truth and sabotage the chance to build
meaningful systems biology models.
The paradigm we present here give us a way to inter-

rogate the quality of the IDM and IDF methods in the
context of biological material. This approach uniquely
fills a major gap in the effort to improve bioinformatics
analysis. After presenting examples, its potential range
of application is discussed.

Methods
We present a general strategy to compare quality of data
preparation strategies. The essential ingredients are:

� A substantial number of biological samples (roughly
100 or more).

� Two bioinformatic HT datasets measuring related
classes of molecules, such as mRNAs and proteins,
or microRNAs and mRNAs, or gene copy number
and mRNAs, on the same set of samples.

� A set of candidate methods for ways to accomplish
IDM or IDF. The result of each candidate M is a set
S(M) of ID pairs accepted by M. Candidates can be
composites of other candidates: for example
strategies combining one IDM and one IDF strategy,
or Boolean combinations of multiple IDMs or IDFs.

� An IDM method to create the full pool of ID pairs.
When the candidate methods themselves are IDM
methods, the full pool is just the union of the sets of
pairs from the candidate IDM methods.

� A simple target model, relating the measurements,
to be applied separately for each ID pair (P) of
features in the full ID pair set. This will typically be
a regression model, where the primary feature is to
be predicted by the secondary features. The
predictor feature list may be augmented by auxiliary
features, such as sample categories. In the examples,
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the simple model is that, for each pairing of
transcript and putative protein product, protein
abundance is proportional to (or at least
monotonically related to) transcript abundance
when MI and IDM are correct, but unrelated when
it is not.

� A model quality score, notated as MQ(P), for each
ID pair P. In the applications described below, MQ
is the correlation of the two features.

In the case of mapping mRNA expression and protein
expression, we expect a correctly mapped and biologically
coupled feature pair to manifest in a strong positive cor-
relation. In other cases, a correctly mapped pair might
manifest as a strong negative correlation, for example
when the pair consists of a microRNA species and a tran-
script that it putatively downregulates.
We form the collection of all scores MQ(P) for the

union of ID pairs from all the candidate methods M:
∪M{MQ(P) : P ∈ S(M)}. This list of MQ scores can be
analyzed immediately via regression modeling, visualization,
and two-sample tests, to see which of the methods M
are most competent at MI.

The mixture model for evaluation of resources
However, the enterprise is more effective if we first con-
vert the MQ scores into posterior probabilities. Figure 1
illustrates the key argument. The central concept is that
pairs of ostensibly related features from two different
platforms should fall into three categories:
ID pair group True correlation Description

observed mixture All observed p

+: coupled >0 True biologica

0: decoupled =0 Biological deco

x: mis-identified =0 Mapping error

Figure 1 Hypothetical mixture components for correlation. Observed
density of correlations where either feature is mis-identified, or they are inc
correctly mapped but biologically uncorrelated (“discordant”). Coupled (blu
biologically coupled.
“+”: both features are correctly identified and mapped
between platforms, and truly biologically coupled (for
example, correlated) as expected,
“0”: both features are correctly identified and mapped,
but biologically decoupled in the sample group under
study, due to causes unaccounted-for up to now, so
that the correlation, regression coefficient, or other
measure of association is near zero. This decoupling is
sometimes called discordance.
“x”: one or both features are incorrectly identified, or
incorrectly mapped to each other.

Comparing two methods A and B for IDF or IDM, the
best of the two should be relatively enriched for the “+”
and “0” categories of feature pairs. With enough samples
and enough feature pairs, the identity of the best method
should become clear.
The “0” group deserves further discussion. These pairs

have correct MI, but additional biological factors de-
couple the two identified molecules. These extra factors
may be as simple as unaccounted-for sources of vari-
ation in the target feature, lowering the signal to noise
ratio. For example, in relating transcript to protein, true
biological decoupling could occur, because of variation
in rates of protein degradation, post-translational modifi-
cation, and other factors affecting protein abundance as
detected by mass spectrometry. Decoupling can stem
from more exotic causes. Variation in microRNA might
interfere with translation in a way that does not manifest
itself in the raw abundance of the transcript. Feedback
Pair counts for method M (Aor B) 

airs nM

l coupling nM+

upling nM0

, etc. xM0

coupled
decoupled

(black): marginal density of correlations. Mis-identified (red, dotted):
orrectly mapped. Decoupled (green): density of correlations of pairs
e): density of correlations of pairs correctly mapped and
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loops may buffer or magnify variation in transcript.
There could be variation in transcript splicing, or in the
time delay between transcription and translation. In
measuring transcript expression cross-hybridization of
other transcripts with the probesets targeting the genu-
ine transcript could vary across subjects. Further discus-
sion of decoupling and its causes is in Day 2011 [6].
On the level of individual targets, a single dataset can-

not directly distinguish true decoupling, “0”, from incor-
rect MI, “x”. However, by aggregating tens of thousands
of targets, typical for the HT platforms being merged,
the ensemble of models and scores will overcome the
signal-to-noise problem by volume of the number of
identifier pairs, and help us find the MI performance dif-
ferences we seek.
The following simple argument motivates the claim

that the observed proportions of strong correlations re-
flect the relative quality of A and B. Our notation for the
counts in the three groups is: are coupled and correctly
mapped by A, are correctly mapped by A but not
coupled, and are incorrectly mapped. If the true propor-
tion in the “+” group is greater for A than B, then

nAþ
nAþ þ nA0 þ xA

>
nBþ

nBþ þ nB0 þ xB
: ð1Þ

As the number of samples increases, the measurement
error in assessing whether a single pair is in the “+”
group decreases. With sufficient numbers of ID pairs,
determining which proportion in (1) is larger becomes
more accurate. Suppose also that, given that a pair is
correctly mapped, the coupling/decoupling status (true
correlation) is independent of the method, so that

nAþ= nAþ þ nA0ð Þ ¼ nBþ= nBþ þ nB0ð Þ ð2Þ

is a constant δ+. Then the proportion of correct MI is
greater for method A:

nAþ þ nA0
nAþ þ nA0 þ xA

>
nBþ þ nB0

nBþ þ nB0 þ xB
: ð3Þ

When (2) is true as well as (1), the ratios of the two
sides are the same in (3). The same conclusion holds if,
instead of (2),

nA0= nA0 þ xAð Þ ¼ nB0= nB0 þ xBð Þ ð4Þ

is a constant δ0, so that the proportion of correct map-
pings among those either decoupled or incorrect is the
same for A and B. Note that conditions (2) and (4) are
not equivalent. In summary, under mild assumptions,
the resource with a larger observed proportion of good
correlations is also the better mapping resource, and the
ratio of the two sides in (1), which can be observed, is a
consistent estimator for the ratio of the two sides of (3),
the proportions of correct pairs.

Mixture model for model quality score (MQ)
Our next step is to make the argument more rigorous
and subject to quantitative analysis. Suppose that we
have chosen an association measure MQ, for use as a
measure of the likely correctness of an ID pair. (For con-
venience of exposition, we use “correlation” in this argu-
ment, but sometimes other measures may be preferable.)
Suppose the observed correlation for pair k depends on
the correctness of the mapping as follows:

MQ pð ÞeN ψG pð Þ; τG pð Þp
� �

where τG pð Þp ¼ σ2p þ VG pð Þ

ð5Þ

Pr G pð Þ ¼ gð Þ ¼ πg for g ∈ }þ }; }0}; }x}f g ð6Þ

where G(p) indicates the group for pair p as defined above.
We assume that ; that is, unless the pair is correct and
coupled (“+”), its MQ has mean zero. The measurement
error variances σp

2 are presumed known or estimated by
bootstrap. The group variances V+, V0, Vx are unknown.
From the observational point of view, the “0” and “x”
groups are indistinguishable, so define π− = π0 + πx and
V− = (π0V0 + πxVx)/π−. We can now estimate the un-
knowns ϕ = (ψ+, π+, V−, V+) easily by an ECM algorithm
[15] (Additional File 1), constraining ψ−=ψ0 =ψx= 0, to yield

the maximum likelihood estimate ϕ̂ ¼ ψ̂þ; π̂þ; V̂ −; V̂ þ
� �

.
Next, we can estimate the probability of each pair be-

longing to the “+” group, using the empirical Bayes “plug-
in” technique, which replaces the parameters by their EM

estimates. Defining π�
þp ¼ Pr G pð Þ ¼ }þ } MQ pð Þ; ϕ̂Þ���

and π�
−p = 1 − π�

þp, the posterior odds are

π�
þp

π�
−p

¼
Pr

�
G pð Þ ¼ }þ }jMQ pð Þ; ψ̂þ; V̂ þ; π̂þ

�
Pr

�
G pð Þ ¼ }−}jMQ pð Þ; ψ̂−; V̂ −; π̂−

�

¼ π̂þ
π̂−

exp − MQ pð Þ−ψ̂þ
� �2

=2 V̂ þ þ σ2p

� �� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ þ þ σ2p

q
exp − MQ pð Þ−ψ̂−ð Þ2=2 V̂ − þ σ2

p

� �� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ − þ σ2p

q :

ð7Þ

In addition, we gain an estimate of the accuracy of this
posterior probability, in the form of a posterior variance,
approximated using the delta method to convert from
the bootstrap estimate of the sampling variance of the
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correlation to an estimate of the variance of the poster-
ior probability:

v�þp ¼ ^var πþp

� �
≐σ2p π�

þpπ
�
−p

� �2 MQ pð Þ−ψ̂−

V̂ − þ σ2
p

−
MQ pð Þ−ψ̂þ
V̂ þ þ σ2p

 !2

:

ð8Þ

Thus for each ID pair p, the mixture model provides a
data-determined estimate of the probability that it is a
correct annotation, and a measure of uncertainty for that
probability. These ingredients provide what we need to
decide which of two methods for ID mapping to use.
(The case of filtering is a little more complicated, be-
cause then any two pairs that share the same ID subject
to filtering also share their fate).
We can contrast this use of mixture models to Schaefer

et al’s study [16] using a mixture model to examine con-
cordance of ChIP-chip and ChIP-seq data, using data from
just two samples. Aside from the difference in the number
of samples studied, Schaefer’s purpose also was different:
to characterize the concordance and discordance of the
platforms. This contrasts with the purpose of our para-
digm, to evaluate ID mapping and filtering methods.

Expected utility to inform selection of best practices
In search of best practices, we want to choose between the
ID pairs provided by method M =A or method M = B. A
simple estimate of the proportion P+M of correct ID pairs
is just the mean of the over the ID pairs from method M.
An optimally weighted mean

P̂þM ¼ Σp∈S Mð Þπ
�
þp v�þp

� �−1
=Σp∈S Mð Þ v�þp

� �−1
ð9Þ

is a more accurate estimate; it takes into account the vari-
ation in standard errors. This is important, since some cor-
relations are highly unstable, for example due to a low
variance in either protein or transcript expression. These will
manifest as having middle-range values for π�

þp, far from 0

or 1. Now we choose a value for LFP= the loss associated
with a “false positive”, and UTP= the utility of including a
“true positive”. With this estimate, one can choose whether
to reject the entire subset of probesets produced by method
M using a standard Bayesian expected loss calculation:

EU 1ð Þ ¼ E

�
utility per pairjmethod M

�
¼ Σp∈S Mð Þ π�

þpUTP −π�
−p LFP

� �
v�þp

� �−1
=Σp∈S Mð Þ v�þp

� �−1
¼ UTPPþM−LFPP−M ð10Þ

EU total ¼ Total expected utility method M ¼ nMEU
1ð Þ
M

���
ð11Þ

The break-even point is P+M = LFP/(UTP + LFP). We can
choose method M =A or B based on which makes either
the average or the total expected utility the largest, de-
pending on the purpose. The posterior probabilities from
(7) utilize as a prior the overall component probability as
estimated by the generalized EM algorithm; this can be
modified to a true Bayesian prior if desired. We also can
take into account that some proportion of the correctly in-
cluded or mapped pairs are in group “0”. One data set
standing alone cannot distinguish “0” from “−”. However,
if the analyst is willing to speculate on the ratio introduced
in (2), then letting δ+ = nM +/(nM0 + nM +) we can modify
(10) by adding an extra term accounting for the appear-
ance of some correct pairs in the “−” group:

EU 1ð Þ ¼ UTP þ LFPð ÞPþM−LFP þ UTP−LFPð ÞPþM δ−1þ −1
� �

¼ PþM UTPδ
−1
þ þ LFP 2−δ−1þ

� �� �
−LFP

ð12Þ

which is just an increasing linear function of P+M. If our
criterion is EU total (11), a more stringent method may
improve P+M but decrease the number of pairs returned,
nM, enough to reverse the optimal choice. This gives the
analyst a basis to choose a more generous method, if it
benefits the analytical purpose.

Results
We illustrate the paradigm with two distinct evaluations
of MI (one for IDF and one for IDM) and one evaluation
of threshold choice, all using the same pair of HT datasets
for samples in an endometrial cancer setting. A full de-
scription of the data is published [6]. Briefly, in a study of
analyses of 91 endometrial cancer and 7 noncancer en-
dometrial samples, liquid chromatography-tandem mass
spectrometry generated 11,879 distinct UniProt acces-
sions, and the Affymetrix U133 Plus 2.0 microarray pro-
vided expression data on the same samples. In a previous
report, we utilized these data to compare the quality of
three annotation resources, DAVID [17-20], EnVision
[1,21], and NetAffx [22,23], for mapping identifiers
between Affymetrix probeset IDs and UniProt accession
IDs, selected by virtue of providing direct mappings of
probesets.
The analysis begins by utilizing only the ID maps re-

trieved from each resource. We comprehensively com-
pared the retrieved sets of ID maps. For example, less
than half (45.3%) of the UniProt protein accessions
pulled identical lists from NetAffx and EnVision. Similar
results were obtained comparing each of NetAffx and
EnVision with DAVID.
For each IDM pair (UniProt, probeset), the data were

merged by sample and the correlation between the two plat-
forms computed. We proceeded under the presumption that
better identifier matching should generate a higher rate of
match pairs with strong correlations between the transcript
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signals and corresponding protein spectral counts. We
decomposed the correlations, as described above, into a
mixture with a zero-centered component and a positive
component (Figure 2). The left-most component can be
interpreted as our “–” group: a mixture of our “0” and “x”
groups, which cannot be distinguished empirically at this
point; the second as our “+” group. The mixture distribu-
tion model sheds light on the degree to which positive
correlations exceed negative ones, allowing estimation
of the distribution of correlations among correctly
mapped protein-probeset pairs, without needing to know
at this point which specific pairs are correctly mapped and
which are not. It also provides a measure more useful than
the correlation itself: the posterior probability of belonging
to the right-hand mixture component. This component
(green dotted line) corresponds to the “+” group:
probeset-protein ID pairs which are both correctly identi-
fied and mapped, and biologically correlated.
Note that the empirical density smooth (black curve)

is raw; it summarizes the observed correlation distribu-
tion. In contrast, the bimodal mixture fit (blue curve)
obtained from the EM algorithm estimates the true
underlying correlation distribution. It properly takes into
account the measurement variances, estimated via indi-
vidual bootstraps, to deconvolve (“unsmooth”) the ob-
served distribution (black curve). It is not expected to
approximate the density smooth unless the correlation
measurement error is zero. Utilizing the bootstrap for
estimating the measurement error variances σp

2 is
−1.0 −0.5 0.0 0.5 1.0
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0
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5
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Figure 2 Distribution and mixture fit of observed correlations.
Black curve: a crude empirical density smooth for the observed
correlations, which correspond to the “rug” whiskers along the
bottom. Brown bimodal curve: the mixture fit to the underlying
“true” correlation distribution, marginalized over the mixture
component. Pink and green dotted curves: the mixture components,
multiplied by their probabilities. Pink: decoupled (“0”) or mismatched
(“x”). Green: coupled and correctly mapped (“+”).
important. In Figure 3 we see the bootstrap estimates plot-
ted against correlation. Overall, the relationship echoes
the normal-theory variance formula, but there is tremen-
dous variability around that relationship, probably due to
the nature of spectral count data. In Figure 4, we see the
relationship between posterior probability and its posterior
standard deviation. Ordinarily one expects large measure-
ment standard deviations (obtained from the bootstrap) to
associate with large posterior standard deviations. How-
ever, a large measurement standard deviation implies a
paucity of information about the classification, a posterior
probability far from zero or one, and an insensitivity of the
posterior probability as the correlation value changes; this
view of behavior with large σp

2 is confirmed by inspection
of Equation (8) and Figure 4.
Next we examine the mixture from the decision theory

perspective, in order to illuminate selection of best prac-
tices. In Table 1, the consequences of choosing an ID
method are represented for a subset of ID pairs corre-
sponding to proteins with a minimum average spectral
count across the samples. The values guiding the deci-
sion analysis, chosen for illustration, are:

� Utp = 2 = utility of including into further analysis a
“true” correctly mapped pair.

� Lfp = 1 = the loss, or negative utility, of including an
incorrectly mapped pair.

� δ+ = 1 = proportion of correctly mapped pairs which
are coupled.

(Choosing δ+ = 1 means assuming as a working hypoth-
esis that the “0” group of decoupled pairs is empty).
The all-or-none decision is appropriate when the pur-

pose of the evaluation is to select a best practice for ID
mapping, to be applied when integrating other data sets
with the same feature identifiers. Since EnVision reports
out fewer pairs, its relative standing declines if the criter-
ion is the EU total instead of EU mean. Utilizing
weighting reflecting relative measurement precision has a
notable effect. In this case, without weighting DAVID
slightly outperforms NetAffx (data not shown; consistent
with the regression model in [6]), but utilizing the
weighting, as in Table 1, reverses the ranking, though the
difference is still small. The subjective elements in the de-
cision include: Utp, Lfp, δ+ and whether to rely on EU
mean or EU total. The relative ranking of the choices is
usually insensitive to these elements.
To examine all reasonable ID mapping strategies, we

need to include Boolean combinations (Table 2). Utilizing
“EU total” as the criterion, the optimal strategy across in-
dividual and Boolean strategies is to keep ID pairs that En-
vision reports. Using “EU mean” (EU(1)), Table 2 would
favor intersecting EnVision and DAVID pairs, but one
must balance the improvement against the extra effort of



Figure 3 Bootstrap estimates of standard deviation of the correlations. Each point shows the Pearson correlation between features of an ID
pair, versus the square root of its bootstrap variance estimate (R = 200 replications). The blue solid line is a loess smooth of these points. The red
dotted line is from the normal theory expression for the variance (1 − ρ2)/(n − 3) of a Pearson correlation coefficient estimate p̂ . The smooth fit for
the relationship between the correlation and the bootstrap standard deviation follows the normal theory curve well except at large values, but
the individual bootstrap estimates vary from the curve substantially.
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retrieving an ID map from a second data source. In the
rest of the paper, where we turn the focus away from ID
mapping strategies, we take this conclusion into consider-
ation, and utilize only the microarray/mass spectrometry
ID pairs that EnVision provides to integrate the data.
Assessing probeset filtering
Another application of the paradigm uses the same inte-
grated proteotranscriptomic data, restricted to the
EnVision-selected pairing, to evaluate the performance of
probeset filtering mechanisms. (A comprehensive analysis
of nine mechanisms is in final preparation. Next, we de-
scribe four of those methods for filtering out probesets, in
Figure 4 Relationship between posterior probability and
posterior standard deviation. The sizes of the circles are
proportional to the measurement standard deviation. The curve is a
density estimate for the posterior probability.
chronological order of their introduction into use, and
present their quality assessments alone and in combination.
“Affytag” remove probesets for which the Affymetrix ID

contains a qualifier; that is, the ID ends in “_[agirxsf]_at”,
reflecting original doubts concerning the correct and
unique hybridization of the probes in each probeset, as
documented by Affymetrix when the array was designed.
Although the identifier tags were initially used as the ‘de
facto’ quality measure, these tags were found to be unreli-
able [24]. We use the Affymetrix tags to evaluate histor-
ical probeset selection choices against more recent
models, since an overwhelming number of studies have
utilized these Affymetrix identifiers. We include it to pro-
vide a validation that the quality assessment paradigm
can detect the expected deficiency of performance in a
superseded method.
“Masker” [25] removes probesets omitted from the NCI

“masked” chip description file. “PdbA30” removes
probesets if more than 30% of probes are “bad” according
to PLANdbAffy [26]. (The 30% figure is the result of an
optimization step, not shown.) “Jetset” [27] calculates the
product of a specificity score, a coverage score, and a ro-
bustness score, and removes probesets for which a higher-
scoring probeset for the same Gene Symbol exists. The
Table 1 Comparison of ID mapping resources

ID pair
group

nPairs Pr
(+)

Pr
(−)

Utrue Lfalse EU
mean

EU
total

EnVision 887 0.431 0.569 0.862 0.569 0.293 260

NetAffx 1147 0.380 0.620 0.761 0.620 0.141 162

DAVID 1401 0.335 0.665 0.671 0.665 0.006 8

Use All 1522 0.323 0.677 0.647 0.677 −0.030 −45

Use All = the union. Columns: nPairs = the number of UniProt-ProbeSet pairs
reported by the indicated service; Utrue = the average utility from “+” and “0”
pairs; Lfalse = the average loss from “−” pairs; EU mean is the average net
utility per pair; EU total = nPairs × EU mean.



Table 2 Boolean-defined ID mapping strategies

ID pair
group

nPairs Pr
(+)

Pr
(−)

Utrue Lfalse EU
mean

EU
total

N, E and D 853 0.434 0.566 0.867 0.566 0.301 257

N and E 1114 0.389 0.611 0.778 0.611 0.167 186

E and D 862 0.431 0.569 0.862 0.569 0.293 253

N and D 865 0.435 0.565 0.871 0.565 0.306 265

N or E 1434 0.330 0.670 0.660 0.670 −0.010 −14

E or D 1172 0.382 0.618 0.764 0.618 0.145 170

N or D 1423 0.335 0.665 0.671 0.665 0.006 9

N, E or D 1447 0.331 0.669 0.662 0.669 −0.007 −10

Columns: as in previous table. Rows: Boolean combinations of NetAffx-affirmed
(N), EnVision-affirmed (E) and DAVID-affirmed (D) ID pairs.
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probeset acceptance rates among the 54613 probesets of
the U133plus2.0 array are seen in Table 3:
The most recent method, Jetset, has odds ratios (OR) in

excess of 2.5 with both Masker (2.90) and PdbA30 (3.54),
but much less with Affytag (1.24). Masker is roughly inde-
pendent of PdbA30 and Affytag (OR = 0.92, 1.08). Finally,
PdbA30 is inversely related to Affytag (OR = 0.59). These
results suggest that the filtering are not just repackaging
the same insights, so strategies combining multiple
methods deserve consideration.
Next, we introduce the integrated data to evaluate the

methods and their Boolean combinations. Note that
Jetset, PLANdbAffy, and other methods only use other
bioinformatics resources to draw their recommenda-
tions. In contrast, our paradigm utilizes biological mea-
surements on samples and requires the integration of
biological data across platforms, in this case with a
proteomic dataset. Therefore, it provides an independ-
ent validation using biological material. For illustration,
Figure 5 shows scatterplots for spectral counts identified
as annexin 2 (P07355) versus two probesets mapped to
P07355. The leftmost shows a correlation of 0.176, low
enough to question the mapping, while the rightmost cor-
relation is 0.557, high enough to yield some confidence in
the mapping, despite the fact that “Affytag” ID filtering
would accept the left probeset and not the right. A single
ID pair proves nothing; the aggregate across many tags is
Table 3 Probesets and ID pairs affirmed by selected ID
filtering strategies
Probeset Probesets accepted ID pairs accepted Estimate

accepted by… (of 54613) (of 887)1 (P value2)

Affytag 68.4% 39.2% −0.04 ( NS)

Masker 92.5% 95.9% 0.24 (3.5e-07)

PdbA30 66.4% 74.2% 0.21 (1.1e-07)

Jetset 35.2% 48.9% 0.16 (2.6e-10)
1Pairs initially filtered as described above.
2Regression estimates are from a linear model predicting “+” group status with
main effects only.
needed to learn anything about the quality of an ID filter-
ing method.
Before we consider the decision-theoretic aspect, a look

at a linear regression model to predict posterior probabil-
ity of the “+” correlation group is revealing (Table 3). We
assess the ID mapping and ID filtering choices together
using the R function glm( ), with regression weights equal-
ing the reciprocal of the variance estimates, 1/ v*+p, de-
rived above via bootstrap and delta method. In this model,
the terms for the NetAffx and DAVID ID mapping re-
trieval were nonsignificant, as was the term for the Affytag
filtering method. The estimates were 0.15 for EnVision_Q
(P = 1.1e-06), 0.16 for Jetset (P = 2.6e-10), 0.21 for PdbA30
(P = 1.1e-17) and 0.24 for Masker (P = 3.5e-07). This rein-
forces our decision to utilize the EnVision-mapped pairs
only for evaluating filtering methods. Setting aside
Affytag, then, we can look at second-order effects.
Among the ID pairs approved by EnVision, the model was
carried by the interaction term between PdbA30 and
Jetset: estimate = 0.247, P < 0.0006) despite the large OR
noted above. Even in the complementary dataset,
containing only ID pairs disapproved by EnVision, the es-
timates are very similar, including the interaction term
(0.284; P < 0.0006).
This result reinforces the suggestion that the best prac-

tice is to utilize EnVision for ID mapping, and for ID fil-
tering to utilize probesets which both Jetset and PdbA
accept. It confirms the common view that the Affy tag,
which dates to the origin of the array and represents
knowledge from that time, is of little use for this purpose.
Masker eliminates few probesets, but does provide signifi-
cant extra value if Jetset is not used (data not shown).
Turning to the decision paradigm, we use the same sub-

jective parameters as before, and generate the results in
Table 4.
These tables illustrate results with the same data and

the same decision parameter settings as in the ID map-
ping example above. The results strongly suggest that
the best strategy is to apply the PdbA filter alone if the
criterion is EU total, but if the criterion is EU mean then
by sacrificing quantity of pairs one can increase the aver-
age quality substantially by applying both the PdbA and
the Jetset filters.
It is an important point that, while this conclusion

depended on data integration, it is useful for any analyst
dealing with data from the U133plus2.0 microarray, re-
gardless of whether data integration with a proteomic or
other platform is contemplated.

Assessing threshold selection
We demonstrate the use of our paradigm for selecting
thresholds in the context of filtering individual spectral
events in tandem mass spectrometry. The purpose of
presenting a threshold-related example is to demonstrate



Figure 5 Scatterplots of spectral counts versus microarray probeset signals. Two probesets selected out of five mapped to the annexin 2
UniProt accession P07355. Symbols: N = non-cancer, S = serous carcinoma, E = endometrioid carcinoma. Figures are adapted from Day et al. [6].

Day and McDade BMC Bioinformatics 2013, 14:223 Page 9 of 12
http://www.biomedcentral.com/1471-2105/14/223
handling of a complication not seen in our previous ex-
amples: as the threshold changes, the actual data change,
therefore the correlations and the bootstrap estimates of
variance need recalculation. A common quality measure
for spectral events is the cross-correlation, XCorr; an-
other is the relative improvement of the best identifica-
tion over the second-best, DeltaCn. For both measures,
larger values should generally correspond to events with
more reliable protein identifications. A reasonable ques-
tion is whether the initial thresholds were stringent
enough, or alternatively permitted too many erroneously
identified spectral events.
In this example, we chose eight proportions (powers

of ½ from 1 to 8) to use as potential thresholds. For each
proportion, we then calculated the quantiles for XCorr
and DeltaCn, then kept only the spectral events where
both values exceeded the corresponding quantile. Next,
we recalculated the correlations and variances, but kept
the mixture model from the original data, using it to
transform from correlation to posterior probabilityas we
did in the previous examples.
Figure 6 and Table 5 show the results. As the threshold

proportion changes, the thresholds for XCorr and DeltaCn
change. Removing the lowest-quality spectral events did
Table 4 Comparison of individual and Boolean
combination filtering criteria for accepting probesets into
an analysis dataset

Accepted by… nPairs Pr(+) Utrue Lfalse EU mean EU total

Affytag 348 0.493 0.986 0.507 0.479 167

PdbA30 658 0.518 1.04 0.482 0.553 364

Jetset 434 0.539 1.08 0.461 0.617 268

PdbA30 and Jetset 357 0.63 1.26 0.37 0.891 318

PdbA30 or Jetset 735 0.478 0.955 0.522 0.433 318

(No filtering) 887 0.431 0.862 0.569 0.293 260
not improve the mean expected utility. (As the proportion
of events removed exceeded 15%, the expected utility de-
creased, because as the sample counts decreased too much
data was lost; some proteins lost all their events and exited
the data set.) From these results, we conclude that the ori-
ginal thresholds for XCorr and DeltaCn were sufficiently
stringent.

Discussion
In this article, our examples focus on studies of best
practices that can be obtained from integrating prote-
omic and transcriptomic data. We have demonstrated
assessing and comparing methods for choosing an iden-
tifier mapping database, choosing an identifier filtering
method, and setting an identifier filtering threshold.
Note that, while our paradigm requires integrating data
across platforms, identifier filtering applies to just one of
the platforms, so the insights derived about identifier fil-
tering methods can help even the data analyst working
on that single platform. Furthermore, since every ID fil-
tering evaluation depends on an ID mapping, when a
Figure 6 Effect of spectral count filtering by threshold on
average expected utility. Horizontal axis shows the proportion to
be excluded for the two spectral count criteria. Vertical axis show
the mean expected utility (averaging across pairs).



Table 5 Expected utility as quality threshold becomes
more stringent

Threshold nEvents nPairs EU mean EU total

0 230948 887 0.20 181

0.00390625 229183 887 0.17 151

0.0078125 227459 887 0.13 117

0.015625 223922 887 0.16 139

0.03125 217116 887 0.16 145

0.0625 204335 887 0.12 105

0.125 181652 887 0.14 124

0.25 143940 887 −0.06 −51

0.5 84702 805 −0.27 −215
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better ID mapping method is found, it will lead to better
ID filtering comparisons.
In comparing ID mapping methods, the methods do not

need to be one-step mappings like the three we selected
for the proteogenomic ID mapping study. In fact, the set
of ID pairs do not need to consist of the same ID types, as
long as they map features from the same pair of platforms.
For example, a promising alternative is AbsIdConvert
[28], which converts between ID domains by intermedi-
ate passage through mapping to a tree of genomic inter-
vals, providing two-step indirect mappings and flexible,
dynamic redefinition of probe-based features. The non-
rigid mapping to genomic coordinates obviates many
problems and potentiates some great applications. Ap-
plying AbsIdConvert to ID mapping between platforms
requires an extra step that is not uniquely defined. Given
mappings of two identifiers to genomic ranges, one must
decide whether those ranges are “the same” for purposes
of mapping between the the identifiers. Different rules for
this decision generate different ID mapping methods,
which are subject to our paradigm for comparative evalu-
ation without special considerations.
With the decision framework, our evaluation paradigm

can compare ID mappings even when the pairs are to-
tally distinct. For Affymetrix arrays, many groups dem-
onstrate methods to replace the probe sets by
constructing new features, encoded in a chip definition
file (CDF), with concomitant evidence of superiority
[29-32]. In that case, each ID pair will belong to only
one resource or method. The evaluation paradigm pro-
ceeds without change, with the mixture model utilizing
all pairs just as above. The only substantive impact is
that in fitting linear models predicting the posterior
probability, like the one above that demonstrated a posi-
tive interaction between PdbA30 and Jetset, one can no
longer estimate and test interaction terms.
It remains to consider to what extent the +/0/x classi-

fication could reflect reality. An incorrect mapping is an
incorrect mapping, so the identity of the “x” group of ID
pairs is conceptually clear-cut. However, the distinction
between the coupled “+” and decoupled “0” groups can
shift with context. First, an ID pair that is uncoupled in
one data set might be coupled in another, reflecting dif-
ferences in the biology in the two settings. Second, the
dichotomous distinction is artificial. One might suppose
instead that there is never total decoupling, just a vari-
able amount of masking of the association, due to vari-
ation in the levels of known and unknown factors.
However, the assumption in (2) seems plausible enough,
since to our knowledge no mapping resources take into
account results from data on sample.

The timing of mapping resource retrieval
The proteogenomic integration supporting the examples
presented here are from identifier mapping retrievals in
2011. In practice, an analyst will expect more recent re-
trievals to have higher quality. Subsequent releases of
each resource do change; for example, from 2012 to
2013, NetAffx has changed the Uniprot match list for
over 10% of probe sets in the HU133plus2.0 array. The
staying power of best practices recommendations may
exceed expectations; we have found no hint of a time
trend in quality as measured by our correlation/posterior
probability paradigm.
Nevertheless, analysts requirea convenient way to up-

date best practices evaluations, especially for the large seg-
ment without R expertise. Our future plans call for a
repository of integratable data set pairs from different plat-
forms, and a web interface to make these method compar-
isons as easy and accessible and replicable as possible.

Wider applications
As long as there is data from two or more platforms on
many samples, the paradigm we present can be applied to
compare competing methods for virtually any data prepar-
ation step for either platform, filtering being just one
example. We could use the same integrated protein
expression/gene expression experiment described above
to compare spectrum-to-protein [33,34] identification
algorithms in “shotgun” mass spectrometry, and with
nontraditional methods. For example, the Proteogenomic
Mapping Tool [35] was proposed to improve genomic an-
notation, but can be repurposed to a new IDM method
that might prove superior to the combination of spectral
protein identification algorithm and ID mapping resource
used in our examples here.
The paradigm also has a broad field of other applica-

tions, which belong to “ID mapping and filtering” only
in an exended sense. Each of these presents special chal-
lenges, but no serious obstacles. One example arises in
the setting of comparing segmentation algorithms for
gene copy number data. Another example is comparing
gene expression measures from expression arrays and
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RNA-seq, to clarify the strengths weaknesses and perhaps
complementary nature [36] of the data from each. Among
the many processing decisions in these studies, one is how
to link the array probes or probe sets to genomic regions
to which RNA-seq reads are aligned. Another application
is comparing mRNA target algorithms for microRNA spe-
cies, using correlation with expression. This can be con-
sidered a more complex form of ID mapping. However, it
is more challenging, since the art of modeling the relation-
ship between the entire complement of microRNA species
and the expression of a target gene expression is in its in-
fancy, and highly complex. Due to the multiple targets of
microRNAs, a proposed microRNA regulator could have
indirect effects with positive or negative correlations to
the putative target transcript. However, the prior argument
goes through if indirect effects cause positive or negative
correlations equally, or less stringently if any asymmetry
in the correlations is independent of whether method A or
B produces the pair.

Bioconductor packages for evaluation of ID mapping and
filtering
The examples described here utilize the IdMapping-
Analysis [37] and IdMappingRetrieval [38] packages. Id-
MappingAnalysis provides a set of functions to compare
the performance of selected ID mapping and filtering
methods, using correlation across the samples between
two measurements of features defined by the primary and
secondary IDs. The new functionality presented in this
article is now incorporated into version 1.5.1 of
IdMappingAnalysis [39], available through bioconductor
2.13 development branch. These include the ECM algo-
rithm used for mixture model fitting, the delta method for
the variances of the posterior probabilities, and the calcu-
lation of the expected utilities.

Conclusions
The paradigm which we present here depends on integrat-
ing two data sets on the same samples, a set of samples
large enough to estimate correlations accurately. It does
not depend on any special nature of the data preparation
steps being assessed, so its range is not limited to just ID
mapping and ID filtering. It behooves one to repeat those
assessments on other data set pairs, to study the
generalizability of the conclusions. The Cancer Genome
Atlas (TCGA) [40] is well-suited to advance both the need
to check generalizability and the opportunity to optimize a
variety of data preparation steps. TCGA provides data on
many thousands of human tumor samples and over a
dozen bioinformatics HT platforms. Therefore it provides
a wealth of opportunity for developing a systematic cata-
log of such assessments of data preparation methods, and
makes the assessments easily and routinely available to an-
alysts. As one example, in TCGA there are multiple pairs
of RNA-seq and expression microarray data sets. Align-
ment algorithms provide a way to link these data sets for
correlation analyses of the kind described here. As another
example, TCGA has reverse-phase proteomic experiments
on 538 ovarian cancer samples with corresponding
Affymetrix array results. In a forthcoming report, we de-
scribe the use of these data in devising and validating best
practices for array ID filtering.

Availability of supporting data
The gene expression data were obtained from Affymetrix
U133 Plus 2.0 microarrays. The raw data .cel and .chp
files are available through GEO in a MIAME compliant
format (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE17025) and were released December 13, 2011.
The proteomic data were summed readings from two
tandem mass spectrometers. Details of the sample prep-
aration, instrumentation, and spectral identifications are
in Maxwell et al. [41]. Details of the identifier mapping
resources utilized are in Day et al. [6].
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