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Many biological traits covary with body size, resulting in an allometric relationship. Identifying the evolutionary drivers of these

traits is complicated by possible relationships between a candidate selective agent and body size itself, motivating the widespread

use of multiple regression analysis. However, the possibility that multiple regression may generate misleading estimates when

predictor variables are correlated has recently received much attention. Here, we argue that a primary source of such bias is the

failure to account for the complex causal structures underlying brains, bodies, and agents. When brains and bodies are expected

to evolve in a correlated manner over and above the effects of specific agents of selection, neither simple nor multiple regression

will identify the true causal effect of an agent on brain size. This problem results from the inclusion of a predictor variable in

a regression analysis that is (in part) a consequence of the response variable. We demonstrate these biases with examples and

derive estimators to identify causal relationships when traits evolve as a function of an existing allometry. Model mis-specification

relative to plausible causal structures, not collinearity, requires further consideration as an important source of bias in comparative

analyses.

KEY WORDS: Allometry, brain size, causal inference, coevolution, comparative methods, correlated response to selection,

reciprocal evolution.

Impact Summary
Basic evolutionary theory suggests that some combinations of

traits will evolve in response to one another. The most obvious ex-

ample of this comes from allometric traits like brain size, which

covary with body size. Given the tight correlation between brains

and bodies, researchers interested in the evolution of brain size

will use a body size-corrected measure, or alternatively control
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for body size in a multiple regression framework. It has been sug-

gested that controlling for body size in such models leads to infer-

ential bias, stemming from underlying correlations or “collinear-

ities” among traits (a widespread view in biostatistics). First,

we clarify that collinearity does not result in spurious estimates

and provides a roadmap for interpreting coefficients from mod-

els with and without body size. Second, we identify a separate

source of bias complicating models of the diversification of cor-

related traits. Specifically, there are important causal implications

rooted in the fact that, just as the selection on body size may cause

a correlated response in brain size, selection on brain size may

simultaneously cause a correlated response in body size. Stan-

dard methods (simple and multiple regression) for identifying

selective agents driving the diversification of brain size cannot
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account for these causal processes, and fail to uncover unbiased

estimates of the desired relationships in this setting. As a prelim-

inary solution, we present a system of equations for estimating

the direct effects of a given selective agent, accounting for recip-

rocal, correlated responses to selection. Biases stemming from

mis-specification of underlying causal pathways are underappre-

ciated in evolutionary biology, and have significant implications

for the development of comparative methods.

Introduction
A principal aim of comparative biology is to identify selective

agents that have driven the evolution of biological traits. One trait

that has received considerable attention is brain size. Currently,

myriad explanations for the evolution of brain size are supported

by statistical models, creating a diversity of findings support-

ing different and often nonmutually exclusive hypotheses (Wartel

et al. 2019). Like many other traits, brain size scales with body

size. This is not surprising: larger bodies require a greater surface

area of somatic nerve networks necessary for sensation, for exam-

ple (Striedter 2005). As such, it has been common to use relative

brain size (deviations from a fitted allometry) as a response vari-

able when considering the “brainy-ness” of a given individual or

species. Preferably,1 body size is conditioned on or “controlled

for” in a multivariate analysis such as multiple regression. How-

ever, whether absolute or body-corrected brain size is the best

predictor of cognitive ability remains unresolved, with statisti-

cal support for each view (Deaner et al. 2007), leading some re-

searchers to test both measures in their analyses (Kverková et al.

2018).

However, the literature contains contradictory advice on the

application of multiple regression in comparative analysis. A

common argument is that collinearity (correlations among pre-

dictor variables) can lead to spurious findings in multiple regres-

sion analysis (Rogell et al. 2019). In the first part of this article,

we provide an alternate view. Collinearity itself does not cause

bias, despite the fact that the notion that it does is perpetuated

by many biostatistics sources (see discussion in Morrissey and

Ruxton 2018). In fact, the purpose of multiple regression is to

separate direct effects from overall associations between predic-

tor and response variables in the presence of associations among

predictor variables. We discuss how, in the case of understanding

drivers of the evolution of brain size, multiple regression is nec-

essary and is exactly suited to control for correlated evolution of

brain size resulting from the evolution of body size. However, in

1Partial regression coefficients match the estimates generated from a simple

regression with relative brain size, but the multiple regression analysis should

be preferred for more efficiently using the data and correctly representing

uncertainty (Freckleton 2002; McElreath 2020).

the second part of this article, we show that there are, nonetheless,

scenarios where the particular form of statistical control for body

size that multiple regression provides may lead to erroneous in-

ference, insofar as associations between ecological drivers, brain

size, and body size could arise from correlated responses of body

size to adaptive evolution of brain size in response to ecological

variables. These situations may be important, but are conceptu-

ally distinct to any supposed negative effects of collinearity on

statistical inference. An understanding of biases that occur due

to inclusion of consequences in multiple regression analyses, as

though they were causes, while well understood in the causal in-

ference literature, seems to be absent from the biostatistics litera-

ture, and could be very relevant beyond understanding brain and

body size evolution. We discuss options for inference of direct ef-

fects of hypothesized selective agents on traits like brain size, that

properly control for correlated effects arising due to the evolution

of body size.

Part 1: Addressing collinearity and
multiple regression models in
allometric studies
THE NONPROBLEM OF SIGN REVERSALS

The argument that methods meant to control for body size can

lead to inferential bias and spurious findings is widespread in the

literature on brain size evolution (e.g., Mundry 2014; Gutierrez-

Ibanez et al. 2016), reflecting a broader concern about collinear-

ity in the biostatistics literature (e.g., Zuur et al. 2009). It was

recently suggested that one source of such bias is sign reversals

for the effect of selective agents on brain size (Rogell et al. 2019).

We argue that such sign reversals are, however, unproblem-

atic. Because simple and multiple regression are tools designed

to answer different biological questions, their numerical outputs

need not coincide.

Continuing with the example of the diversification of brain

size, simple regression answers the question, “is there an overall

relationship between the selective agent and brain size?” In con-

trast, multiple regression estimates “direct” effects of each pre-

dictor on the response variable when all other predictors are held

constant. Thus for our example, multiple regression of brain size

on a putative selective agent and body size answers the question:

“is brain size associated with the selective agent beyond the de-

gree expected if it were evolving in response to the evolutionary

allometry, given that the agent and body size may be correlated?”

In this section, we proceed with the brain–body example of an

allometric trait, but the reasoning applies to any allometric trait,

and to how simple and multiple regression analyses should be un-

derstood in general. Morrissey and Ruxton (2018) provide more

detailed and general elaboration on the points that we describe

EVOLUTION LETTERS JUNE 2022 235



S. F. WALMSLEY AND M. B. MORRISSEY

here in the context of the more specific case of brain size and

body size.

We now present biological interpretations of two scenarios

where results of simple and multiple regression may superficially

appear to conflict. First, imagine that a selective agent causes an

increase in body size, and body size, in turn, causes an increase

in brain size. Here, simple regression should recover a positive

agent-brain size relationship while multiple regression should es-

timate an effect of the agent on brain size near 0 when the body

size is included. That simple and multiple regression both cor-

rectly recover these properties of such a system is demonstrated

in the supplement in numerical example 1. These different nu-

merical results are expected and are biologically correct, if the

questions to which they provide answers are clearly kept in mind.

The simple regression confirms that an overall association exists

between the agent and brain size. The multiple regression con-

firms that there is no association of the agent with brain size,

over and above, the expected allometry.

Second, imagine that (large values of) a selective agent cause

decreases in brain size, but large increases in body size, and that

evolution of large body size, in and of itself, causes increases in

brain size. Depending on the magnitudes of each effect, it is pos-

sible that the positive contribution of the indirect effect of the

selective agent on brain size, via body size, could overwhelm

the negative direct effect, leading to a positive overall associa-

tion (supplemental materials numerical example 2 uses values

that generate this pattern). This positive overall association would

manifest as a positive slope in a simple regression of brain size

on the selective agent. However, in this scenario, a multiple re-

gression analysis would be able to discern that, independently of

body size and the resulting overall positive association, the selec-

tive agent had a negative direct effect on brain size. This would

be an example of a sign reversal, though the different signs of

the simple and multiple regression coefficients would not indicate

any erroneous inference. Rather, they would be correct represen-

tations of two complementary parts of the biological system.

More generally, collinearity is not a source of bias, though

it is a prerequisite for sign reversals, or indeed for a difference

between simple and partial regression coefficients to occur. With

noncollinear variables, the numerical values of simple and par-

tial regression coefficients coincide. Granted, teasing apart the

direct effects of increasingly collinear predictors is statistically

challenging, and ultimately impossible if predictors are identi-

cal (or perfectly correlated). Thus, direct effects of increasingly

collinear predictors will be less precise, or alternatively, require

a larger dataset to achieve a precise estimate. Nevertheless, the

fact that collinearity brings the distinction between simple and

multiple regression into focus does not imply that the distinction

was not already present, nor that the results are inconclusive. Op-

positely, these differences are proof of the usefulness of multiple

regression as the appropriate tool to answer specific questions

about relationships among biological variables.

CONDITIONING ON BODY SIZE CAN BE NECESSARY

TO CONTROL FOR SOME FORMS OF NONCAUSAL

ASSOCIATION

The key issue, then, is whether the questions one wants to ask

correspond to the answers provided by simple regression, multi-

ple regression, or both. In other words, does the biology suggest

that one should control for some correlated variable (e.g., body

size), using multiple regression, and thus, generate an estimate

which is apt to be different from the overall association between

some focal predictor (e.g., a selective agent) and the response

(e.g., brain size)? The standard reason to control for a correlated

trait (or measuring body-corrected brain size, for example) is the

desire to estimate the independent effects of each predictor on the

response, agnostic to a variety of (possibly unobserved) possible

causes driving the association. However, we argue that recasting

the decision to control for a correlated trait (e.g., body size) in

terms of specific causal processes would be useful for determin-

ing what analysis is necessary for any given biological question.

First, we briefly introduce the process of making causal in-

ferences. While scientists are often interested in causal relation-

ships, statistical models alone can only provide evidence of as-

sociation. However, judicious application of assumptions about

possible causal relationships can yield substantial opportunities

to make causal inferences from associations, even for complex

observational data (Wright 1920; Pearl 2000). In brief, the aim of

causal inference is to (1) establish a plausible network of causa-

tion among a set of variables, and (2) block paths of association

separate from the key causal relationship of interest (see Pearl

et al. 2016). These “backdoor” paths are noncausal links between

two variables that traverse against the direction of causal arrows

and which can be blocked by statistical control. Once these paths

are blocked, and assuming that the causal network has been cor-

rectly specified, the remaining statistical associations can be in-

terpreted as causal effects. Thus, whether a variable should be

conditioned on (i.e., included as a covariate in a multiple regres-

sion model) depends on the underlying causal structure, a feature

related to, but not identical with, the associations or collinearities

between them.

The scenarios illustrated in Figure 1 all depict causal models

under which the multiple regression of brain size on body size

and a selective agent will return correct estimates of the direct

effects of both predictor variables on brain size. Whatever the

nature of the association of the agent and body size, be it some

unmeasured common cause, an effect of the agent on body size,

or an effect of body size on the agent, multiple regression will

serve to estimate the effects of both variables on brain size.
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Figure 1. Directed acyclic diagrams showing possible causal relationships where controlling for body size is necessary to identify the

direct effect of the agent on brain size. (A) The selective agent and body size are both influenced by unmeasured variables u. (B) Body

size is a common cause of a selective agent and brain size, confounding the simple regression of brain size on the agent. (C) The selective

agent causes diversification in body size which results in a correlated response in brain size. Here, controlling for body size via multiple

regression, blind to the possible causal pathway(s) at play, will reveal the direct causal effect of the agent on brain size.

An important caution is that the effects estimated by multi-

ple regression are direct effects, and these need not necessarily

represent the total causal effects of a variable on a response, if

mediating variables are present. In Figure 1C, the agent causes

brain size to evolve via two paths, a direct path, and a path that

is mediated by body size. If total effects are of interest, then ad-

ditional assumptions about the causal structure of associations

among predictor variables are necessary. Insofar as it may be rea-

sonable to hypothesize the specific causal structure in Figure 1C,

the simple regression of brain size on the selective agent reveals

the total effect via both pathways, while multiple regression re-

veals the direct effect. In more general path models, simple re-

gression will not typically estimate total effects (i.e., including

direct and mediated paths), and recourse to formal path analysis

(Wright 1934; Shipley 2000) will be necessary.

PART 1: KEY POINTS

When one wants to distinguish the contributions of direct effects

of a selective agent on brain size from on the one hand, and asso-

ciations arising because, on the other hand, brain size may evolve

as a consequence of body size, when it is body size that has di-

versified in response to the selective agent, we can use multi-

ple regression to make unbiased estimates of the relevant quan-

tities. In fact, in such a scenario it is necessary to use multiple

regression to make estimates of such direct effects. That the sim-

ple and partial regression coefficients may differ from the over-

all association of selective agents with brain size need not be

seen as any indication that control for body size has generated

any inferential bias. A slightly more formal recourse to statis-

tical theory of regression may bring a perspective that sums up

the issue nicely: Partial regression coefficients, obtained in the

standard way using Ordinary Least Squares, are Minimum Vari-

ance Unbiased estimators (MVUB) of (linear) effects (Rao 1973).

The MVUB property means that not only are partial regression

unbiased by collinearity, but it is mathematically provable that,

among unbiased estimators, a more precise estimator cannot be

obtained.

Part 2: Addressing the possibility
that body size could evolve as an
indirect effect of adaptive
diversification of brain size
A SECOND PATHWAY OF CORRELATED RESPONSES

TO SELECTION

The above situation (Part 1) is likely the more familiar pattern,

where including an additional variable helps to distinguish a de-

sired direct effect from an overall association. However, adding

variables to a multiple regression can also interfere with one’s

ability to make causal inferences. In the context of evolutionary

diversification of correlated traits (e.g., brain size and body size),

it may be necessary to consider an additional pathway of corre-

lated responses: just as the selection on a correlated trait may in-

duce a response in the focal trait, selection on the focal trait may

lead to diversification of the correlated trait (Fig. 2A; the behav-

ior of multiple regression analysis under this scenario is demon-

strated by numerical example 3 in the Supporting information).

For example, imagine that a selective agent, for example, habi-

tat complexity, causes diversifying selection in brain size, with a

correlated response in body size. Here, body size would be as-

sociated with habitat complexity solely via a correlated response

to selection. Inasmuch as body size may evolve as a correlated

response to habitat-driven evolution of brain size, including body

size as a predictor will, to some extent, amount to including a

consequence of brain size evolution as though it was a cause. A

more formal discussion of this “case-control” or “selection” bias

problem can be found in the causal inference literature (Barein-

boim and Pearl 2012; Pearl 2013; Cinelli et al. 2020).

As far as the causal structure of direct and correlated selec-

tion is concerned, the possibility of both brain size and body size
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Figure 2. Directed acyclic diagrams showing possible causal relationships where controlling for body size will not recover the direct

effect of the agent on brain size. (A) The selective agent causes diversifying selection in brain size which results in a correlated response

in body size. Here, conditioning on body size will return an underestimate of the desired effect. (B) Reciprocal correlated responses to

selection resulting from direct selection on body size (left; same as Fig. 1B) and brain size (right). Evolutionary theory suggests, as the

most basic model, that both pathways in (B) may be occurring simultaneously, meaning that neither simple nor multiple regression can

identify a direct causal effect of a selective agent on brain size.

evolving via direct and correlated selection amounts to both di-

agrams in Figure 2B occurring simultaneously. Controlling for

body size in this case would have two consequences: (1) to what-

ever extent brain size may be a correlated response to the evolu-

tion of body size, inclusion of body size as a predictor variable is

essential to estimate the direct effect of the agent on brain size,

but (2) to whatever extent body size may be a correlated response

to evolution of brain size, its inclusion in the regression model

will generate bias. In the language of causal inference, where

body size may be a common outcome of brain size and the selec-

tive agent (Fig. 2B right), it is considered a “collider” variable,

on which should generally not condition (Pearl 2013). A toy ex-

ample where both traits may be evolving both due to direct and

indirect pathways is provided in the Supporting information in

numerical example 4.

UNBIASED ESTIMATION OF DIRECT EFFECTS OF

SELECTIVE AGENTS UNDER DIRECT AND

CORRELATIONAL RESPONSES TO SELECTION

In principle, if a single one of the described causal diagrams could

be confidently assumed for a selective agent, body size, and brain

size in a given study, the consequences of conditioning on body

size should be clear. In such cases, it would be relatively simple

to calculate unbiased estimates of the direct effect of the agent on

brain size. However, the null expectation from microevolutionary

theory suggests that brain size and body size may be evolving

as the result of both direct and correlated responses to selection

(Lande 1979; Walsh and Lynch 2018) – at the very least it would

be imprudent to rule out these causal pathways. As such, the basic

statistical model for the diversification of allometric traits needs

to accommodate for reciprocal, simultaneous direct and corre-

lated responses to selection. As conditioning on body size is nec-

essary to identify the causal effect under one pathway (Fig. 2B

left) but will lead to bias in the other (Fig. 2B right), neither sim-

ple nor multiple regression will recover an accurate direct effect

when both pathways may occur simultaneously.

As a preliminary solution to this problem, we present a

system of equations whose solution yields method of moments

(MoM) estimators that recover the desired, direct effects of a se-

lective agent on a (possibly) diversifying trait, like brain size, al-

lowing for correlated responses to selection. Let βa,br and βa,bo be

the direct effects of a hypothesized selective agent on brain size

and body size, respectively. Let �0 be the variance–covariance

matrix of brain size and body size among taxa that would exist

without the influence of the selective agent,

�0 =
[

σ2
bo,0 σbr,bo,0

σbr,bo,0 σ2
br,0

]
.

The allometric regression of brain size on body size, in the

absence of (or controlling for) the action of the hypothesized di-

versifying agent, is

βbo,br,0 = σbr,bo,0

σ2
bo,0

, (1)

and the corresponding regression of body size on brain size, con-

ditional on the hypothesized agent, is

βbr,bo,0 = σbr,bo,0

σ2
br,0

. (2)

From the rules of path analysis (linear transformations of

random variables), the part of the covariance of the selec-

tive agent and brain size arising from the direct effect of the
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selective agent on brain size is σ2
a · βa,br . The corresponding part

of the covariance of the selective agent and body size, arising

from the direct diversifying effect only, is σ2
a · βa,bo.

If the correlated diversification of brain size in response to

the selective agent acting directly on body size acts according

the evolutionary allometry that would be obtained in the absence

of the selective agent, that is, according the regression in Equa-

tion (1), then correlated diversification in brain size, as a result

of direct diversifying selection on body size, would contribute a

σ2
a · βa,bo · βbo,br,0 to the covariance of the diversifying agent and

brain size (Lande 1979; Walsh and Lynch 2018). This pattern

of diversification is consistent with a simple quantitative genetic

model or responses of correlated traits (Walsh and Lynch 2018),

that would arise if evolutionary allometries resulted from genetic

correlations among traits. However, this model also reflects the

wider array of biological processes that may generate evolution-

ary allometries, for example, as would arise if populations tracked

selective optima for brain size and body size where these optima

were correlated for purely ecological reasons. Similar to the al-

lometric evolution of brain size, the indirect contribution to the

covariance of the agent and body size, resulting from direct di-

versifying selection on brain size, is σ2
a · βa,br · βbr,bo,0.

The variance in brain size caused by direct and correlated di-

versifying selection according to the hypothesized agent is given

by σ2
a · (βa,br + βa,bo · βbo,br,0)2, and the contribution of the agent

to variance of body size is σ2
a · (βa,bo + βa,br · βbr,bo,0)2. The co-

variance of brain and body size induced by the selective agent is

σ2
a · (βa,br + βa,bo · βbo,br,0)(βa,bo + βa,br · βbr,bo,0).

It is now possible to write down the variances and covari-

ances among the selective agent, brain size, and body size, in

terms of βa,br , βa,bo, and �0 (n.b., the variance of the selective

agent, σ2
a is taken to be given),

σ2
br = σ2

br,0 + σ2
a · (

βa,br + βa,bo · βbo,br,0
)2

, (3a)

σ2
bo = σ2

bo,0 + σ2
a · (

βa,bo + βa,br · βbr,bo,0
)2

, (3b)

σbr,bo = σ2
br,bo,0 + σ2

a

(
βa,br + βa,bo · βbo,br,0

)2

× (
βa,bo + βa,br · βbr,bo,0

)2
, (3c)

σa,br = σ2
a

(
βa,br + βa,bo · βbo,br,0

)
, (3d)

σa,bo = σ2
a (βa,bo + βa,br · βbr,bo,0). (3e)

The solution to this system of equations (by substituting the

definitions of βbo,br0 , βbr,bo0 in terms of �0 given in Equations (1)

and (2) with algebraic simplification) gives MoM estimators for

βa,br , βa,bo

βa,br = − (σ2
a,br − σ2

a σ2
br )(σa,boσbr,bo − σa,brσ

2
bo )

σ2
a

(
σ2

a,boσ
2
br − 2σa,boσa,brσbr,bo + σ2

a,brσ
2
bo + σ2

br,boσ
2
a − σ2

aσ
2
boσ

2
br

) ,

(4a)

βa,bo = − (σ2
a,bo − σ2

a σ2
bo )(σa,boσ

2
br − σa,brσbr,bo )

σ2
a

(
2σa,boσa,brσbr,bo − σ2

a,boσ
2
br − σ2

a,brσ
2
bo − σ2

br,boσ
2
a + σ2

aσ
2
boσ

2
br

) .

(4b)

While cumbersome, these expressions show that it is possi-

ble, in the presence of reciprocal correlated responses to selec-

tion, to identify the direct effects of the agent on both traits. This

inference is possible using only observable quantities (i.e., vari-

ances and covariances of the selective agent, brain size, and body

size), under the standard model of direct and correlated responses

to selection from evolutionary quantitative genetics. The applica-

tion of these estimators in a scenario where multiple regression

fails is given in numerical example 4 in Supporting Information.

We explored the behavior of these estimators (Eq. 4a/b) by

simulating agent, brain size, and body size data across a range

of sample sizes (20, 50, 100, 200), background allometric corre-

lations (0.5, 0.8, 0.9), nonmediated causal effects of the agent on

brain size (−0.5 to 0.5), and a constant nonmediated causal effect

of the agent on body size (0.2). We find that the approach pro-

vides unbiased estimates of direct effects on diversification when

there are reciprocal correlated responses to selection, whereas

neither simple nor multiple regression recover the correct esti-

mate, in the important general case when both brain and body size

can evolve in response to direct and correlated selection (Fig. 3).

As in multiple regression, statistical uncertainties in estimates are

very large when correlations among predictor variables are high.

For traits with strong allometries (e.g., allometric correlations on

the order of 0.9), much larger sample sizes than are typically used

in comparative studies may be required for unbiased estimation

of effects of hypothesized agents of evolutionary diversification

on focal traits.

In the simulations depicted in Figure 3, values of simple re-

gressions, partial regressions, and effects in systems with recip-

rocal indirect evolutionary effects rarely coincide. We have only

simulated a modest range of parameter values, with the intention

of illustrating the basic principle, and to give an initial indication

of the kinds of sample sizes required (and especially how desir-

able values of n might depend on the degree of collinearity). A

more comprehensive range of simulation parameters would gen-

erate additional outcomes. For example, in Figure 3, all simple

regressions of brain size on the agent exceed the corresponding

direct effects. This is because all allometries are positive, and

we considered only one (positive) example value of the effect

of the agent on body size. If the effect of the agent on brain size

was negative, for example, then simple regressions for brain size

would be less (more negative) than the direct effects. The scenario
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Figure 3. Simulations comparing the results of simple regression, partial regression, and our estimator when both brains and bodies

diversify as a result of direct and correlated responses to selection. For this causal scenario, the true effect cannot be estimated by either

including or excluding the correlated trait (body size) from a regression model.

for negative agent-body size effects is presented as an additional

figure in the Supporting information, and all simulation code is

given so that further ranges of parameter values may easily be

considered.

The solution to the system of equations in Equation (3) also

yields estimators of the variances and covariance of the brain size

and body size that would obtain in the absence of the selective

agent. These (symbols as defined above) are σ2
br,0 = σ2

br − σ2
a,br

σ2
a

,

σ2
bo,0 = σ2

bo − σ2
a,bo

σ2
a

and σbr,bo,0 = σbr,bo − σa,boσa,br

σ2
a

. These quanti-

ties are not currently part of the repertoire of parameters esti-

mated by evolutionary biologists. However, they could become

useful, for example, for disentangling the contributions of devel-

opmental associations versus adaptive evolution in shaping evo-

lutionary allometries. The allometric relation (regression of brain

size on body size) defined by these variances and covariances

is, thus, βbr,bo,0 = σbr,bo,0

σ2
bo,0

= σbr,bo− σa,boσa,br
σ2

a
.

σ2
bo−

σ2
a,bo
σ2

a

in terms of observable
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quantities. This particular allometry is interesting. It might be

thought of as the average static genetic allometry that would be

consistent with the evolutionary allometry and the apparent ef-

fects of the selective agent on brain size and body size. This al-

lometry need not be equal to the actual evolutionary allometry,

and indeed any difference between this static allometry and the

evolutionary allometry might be interpretable as the contribution

of the selective agent to the actual evolutionary allometry, rela-

tive to the evolutionary allometry that would be obtained in the

absence of adaptation in response to the selective agent.

THE TREATMENT OF PREDICTOR AND RESPONSE

VARIABLES IN REGRESSION MODELS

Before applying this method to the datasets used in Rogell et al.

(2019), we first clarify a point pertaining to the calculation of

partial regression coefficients. A seemingly helpful approach is

to report the partial regression coefficients for effects of selective

agents on brain and body sizes using regressions of the selec-

tive agent (as the response variable) on brain size and body size

as in Rogell et al 2019. This appears convenient in that it pro-

vides coefficients relating the selective agent to both traits, from

a single model. However, it should not be used to address the

question of effects of selective agents on traits (potentially con-

trolling for other traits). While, under certain standardizations,

simple regressions of y on x and x on y take the same numeri-

cal values, the same is not true of multiple regression (numerical

example 5 in Supporting information provides a practical demon-

stration). Furthermore, the regression of a selective agent on two

highly correlated traits (in this case, brain size and body size)

leads to a situation where the variables that are treated as pre-

dictors are highly correlated, and thus, potentially greatly exag-

gerates any perceived problems that arise because of collinearity.

Under separate multiple regressions of each trait on the agent,

while controlling for the other trait, the high collinearity between

traits that tends to occur in studies of brain size and body size

does not emerge, because brain size and body size are not both

the predictor variables. Partial regression coefficient estimates

for effects of selective agents on brain size and body size using

regressions of the selective agent on brain size and body size,

thus, do not necessarily bear on the quantities regularly calcu-

lated and reported by biologists conducting comparative studies

using multiple regression analysis. Though the more important

aspect of the present article is to clarify that divergence between

coefficients from simple and multiple regression does not indi-

cate that one or the other is biased, and so this issue with the spe-

cific partial regression coefficients used is not critical, we do pro-

vide versions of plots found in Rogell et al. (2019), with correctly

calculated partial regression coefficient estimates, in Supporting

information.

DIRECT EFFECTS IN THE BRAIN–BODY ALLOMETRY

EXAMPLES, ALLOWING FOR CORRELATED

EVOLUTION OF BOTH TRAITS

We estimated βa,br and βa,bo using Equation (4a/b) for all datasets

used in Rogell et al. (2019), and compared them to simple and

multiple regressions (Figure 4). There is little correlation between

simple regressions and the direct-effect estimates that fully ac-

count for the possibility of correlated evolution of both traits

(Figure 4A,B). Partial effects from multiple regression analyses

regressing each trait, in turn, on the selective agent and the other

trait tends to agree in sign with the direct-effect estimates that

fully account for correlated evolution of both traits (Figure 4C,D).

The mathematics of partial regression and the estimators of Equa-

tion (4a/b) do not require the two quantities to take the same

signs, so the finding that their signs generally coincide may in-

dicate that previous results from multiple regression may gener-

ally be qualitatively robust despite the risk of bias as illustrated

in Figure 2B.

Some estimates of direct effects using Equation (4a/b) are

very large (note the substantial vertical spread in Fig. 4). We

caution against any conclusion that effects of putative selective

agents on brain size and body size are as large as these. These es-

timates will come with very high uncertainty (Fig. 3). Summary

statistics used in Rogell et al. (2019) consist of sample sizes and

covariance matrices among selective agents and brain and body

size. Therefore, while methods like case bootstrapping for gener-

ating standard errors may be useful to generate standard errors in

applications of Equation (4a/b), such an approach cannot be ap-

plied in the present analysis. We have, however, calculated stan-

dard errors using an approach involving generating random sam-

ples from the estimated covariance matrices, which should give

some idea of uncertainties in our estimates of direct effects that

account for reciprocal correlated evolution. Investigation of these

uncertainties is presented in Supporting information.

Earlier, we discussed how the partial regressions of selec-

tive agents on brain size and body size do not necessarily esti-

mate direct effects of selective agents on the traits. However, the

quantities generated by the “reversed” multiple regression analy-

sis very nearly coincide with the direct-effect estimates that allow

for reciprocal correlated evolution. We show this in the Support-

ing information (page 19). This near-alignment is perhaps unsur-

prising, because both analyses, in essence, tackle the problem of

separating agent-trait associations where the correlation between

the traits is the main confounding factor. We note, however, that

the coincidence of coefficients from the “reversed” multiple re-

gression analysis and the estimators in Equation (4a/b) only holds

when traits are standardized to have a common variance. This

particular form of standardization is a feature of the (Rogell et al.

2019) summary statistics, and therefore, of our reanalyses, but

is generally undesirable for comparative analyses, as it obscures
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Figure 4. Comparisons among estimators of relationships between brain size, body size, and putative agents of selection. Estimates of

direct effects that account for a basic model of reciprocal correlated evolution are compared to simple regression coefficients (A,B), and

multiple regression coefficients (C,D), for agent-brain size relationships (A,C), and agent-body size relationships (B,D).

the useful property of simple regression to reflect proportional

changes when body size and focal traits, such as brain size, are

expressed on the logarithmic scale.

AVENUES FOR FURTHER DEVELOPMENT

We present the estimators of effects of selective agents on fo-

cal and potentially confounding traits, under a basic model of

correlated responses to selection, as a step toward a more com-

plete method to identify unbiased estimates of the diversification

of allometric traits. By no means should this be interpreted as a

fail-safe solution to the problems we identify, which will require

further study and methodological development. The estimators in

Equation (4a/b) draw upon the simplest general model of corre-

lated responses to selection, and may be seen as the most straight-

forward alternative for comparative analyses that would other-

wise use multiple regression, but wish to avoid the biases that

might arise under the simple model of reciprocal correlated evo-

lution. Further developments could potentially incorporate addi-

tional phenomena, for example, that different taxa within an anal-

ysis might have different static allometries (as developed above,

the analysis draws on an assumption of a single static allometry).

Such an extension might, for example, yield a way of modeling

the evolution of nonmonotonic allometric relationships. It is not

clear if the MoM estimators accounting for reciprocal evolution

could easily be extended to accommodate more complex situa-

tions such as variable static allometries. However, we have also

implemented the basic model in a Bayesian framework, obtain-

ing comparable solutions to the MoM estimators on simulated

data (see Supporting information), and we suggest that this might

serve as an approach that is conducive to further development. It

is worth noting that Ornstein–Uhlenbeck models of trait evolu-

tion of allometric traits implemented in the R package SLOUCH

(see Hansen et al. 2008), will inherently account for this problem

as well.
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Our analysis demonstrates that the causal models accom-

modated by simple and multiple regression, while not biased by

collinearity, can nonetheless be biased for a different reason. Fur-

ther extension of the basic reasoning will be necessary to handle

more general cases, for example, multiple selective agents, and

the fact that many of the selective agents of interest to biologists

might themselves evolve as correlated responses to changes in

body size and focal traits (see also, for example, discussion on

variables such as longevity, which may lead to collider bias given

the possible bidirectional links with brain size; McElreath 2020).

PART 2: KEY POINTS

We suggest that the basic elements of a comparative analysis

seeking to estimate direct effects of selective agents on focal

traits, such as brain size, taking an allometric view into account,

will likely want to consider two paths of possible indirect associa-

tion. First, brain size may be indirectly associated with a selective

agent, if it has evolved as a correlated response to adaptive evolu-

tion of body size in response to the agent. Second, body size may

also evolve in an indirect manner, as a consequence of adaptive

diversification of brain size. If these two indirect contributions to

associations among relevant variables are plausible, then multiple

regression does not necessarily recover direct effects of selective

agents on focal traits. However, this divergence between multiple

regression and the desired biological quantities does not arise be-

cause of collinearity among any variables in the analysis. Rather,

it arises because multiple regression does not accommodate the

causal mechanisms by which associations may arise. Our sugges-

tion of estimators that do account for the main elements of more

general model of potential reasons for associations of selective

agents, body size, and focal traits should be seen as an illustra-

tion of a potential way forward if researchers want to account for

the more general model of indirect associations.

Conclusion
Regression models, including those estimating drivers of the di-

versification of allometric traits, are not immune to bias and de-

serve continued scrutiny. However, opposite-signed estimates of

simple and partial regression coefficients are not a problem in and

of themselves. Rather, comparative studies estimating the evolu-

tion of allometric traits are susceptible to bias when regression

analyses conflict with plausible causal structures. We first show

that the construction of regression models requires that decisions

about the treatment of different variables as predictors and re-

sponses must be biologically motivated. Then, we show that co-

variance between predictor variables, in and of itself, does not

cause bias in multiple regression. Finally, we show that corre-

lated responses to selection make models estimating the evolu-

tion of allometric traits particularly vulnerable to bias for sep-

arate reasons. It seems likely that bias arising from the use of

regression models that are inconsistent with basic evolutionary

processes like correlated responses to selection may be more

common than is currently appreciated. We hope that the exam-

ples presented here, while not a complete review of the possible

scenarios, highlight the importance of considering causal struc-

tures in comparative biology.
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