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Objectives: The accurate assessment of lymph node metastases (LNMs) and the
preoperative nodal (N) stage are critical for the precise treatment of patients with gastric
cancer (GC). The diagnostic performance, however, of current imaging procedures used
for this assessment is sub-optimal. Our aim was to investigate the value of preoperative
18F-FDG PET/CT radiomic features to predict LNMs and the N stage.

Methods:We retrospectively collected clinical and 18F-FDG PET/CT imaging data of 185
patients with GC who underwent total or partial radical gastrectomy. Patients were
allocated to training and validation sets using the stratified method at a fixed ratio (8:2).
There were 2,100 radiomic features extracted from the 18F-FDG PET/CT scans. After
selecting radiomic features by the random forest, relevancy-based, and sequential
forward selection methods, the BalancedBagging ensemble classifier was established
for the preoperative prediction of LNMs, and the OneVsRest classifier for the N stage. The
performance of the models was primarily evaluated by the AUC and accuracy, and
validated by the independent validation methods. Analysis of the feature importance and
the correlation were also conducted. We also compared the predictive performance of our
radiomic models to that with the contrast-enhanced CT (CECT) and 18F-FDG PET/CT.

Results: There were 185 patients—127 men, 58 women, with the median age of 62, and
an age range of 22–86 years. One CT feature and one PET feature were selected to
predict LNMs and achieved the best performance (AUC: 82.2%, accuracy: 85.2%). This
radiomic model also detected some LNMs that were missed in CECT (19.6%) and 18F-
FDG PET/CT (35.7%). For predicting the N stage, four CT features and one PET feature
were selected (AUC: 73.7%, accuracy: 62.3%). Of note, a proportion of patients in the
validation set whose LNMs were incorrectly staged by CECT (57.4%) and 18F-FDG PET/
CT (55%) were diagnosed correctly by our radiomic model.

Conclusion: We developed and validated two machine learning models based on the
preoperative 18F-FDG PET/CT images that have a predictive value for LNMs and the
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N stage in GC. These predictive models show a promise to offer a potentially useful
adjunct to current staging approaches for patients with GC.
Keywords: lymph nodes metastases, PET/CT, radiomics, N stage, gastric cancer
1 INTRODUCTION

Gastric cancer (GC) is the fifth most common malignancy and
the third leading cause of cancer death worldwide (1, 2). Clinical
staging, based mainly on imaging, is critical in determining the
best treatment. Involvement of regional lymph nodes with
metastases (LNMs) is classified as N0 (no LNM), N1 (1–2
LNMs), N2 (3–6 LNMs), N3a (7–15 LNMs), and N3b (≥ 16
LNMs). The different nodal (N) stage then determines the
treatment strategy. Various investigators showed that patients
with LNMs have a poor prognosis and a high recurrence rate (3–
5). According to the Japanese Gastric Cancer Treatment
Guidelines (6), radical gastrectomy with level-2 extended
lymphadenectomy (D2 resections) is the standard treatment
for GC without LNMs. For patients with advanced stages who
cannot undertake surgery, preoperative evaluation of LNMs
could provide useful information for determining the
appropriate adjuvant therapy, while for patients who are
suitable for surgery, accurate detection of LNMs prior to
surgery could help in determining the surgical approach and
lymph node dissection range. Therefore, the accurate detection
of LNMs prior to surgery is required for an appropriate decision-
making in GC.

Currently, contrast-enhanced CT (CECT) is used for N
staging. Kim et al. (7) reported that the accuracy of CT was
50%–70% for LNMs. Unl ike CECT imaging , 18F-
fluorodeoxyglucose positron emission tomography-CT (18F-
FDG PET/CT) reflects the glucose metabolism in tumors and
can detect disease in lymph nodes that are not enlarged, and may
have a higher specificity (8). The PET/CT parameters, however,
that include the maximum standardized uptake (SUVmax),
metabolic volume (MTV), and total lesion glycolysis (TLG),
are affected by the different uptake times (time from isotope
injection to PET data acquisition), instrumentation differences
(different scanners), and attenuation correction methods.
Furthermore, the predictive performance of SUVmax has
varied across different researchers (9, 10). Yun et al, albeit with
a PET-only scanner, stated that the accuracy of 18F-FDG PET/
CT in identifying LNMs was unsatisfactory (for N1 metastases:
PET: 56%, CT: 69%; for N2 metastases: PET: 72%, CT: 69%; for
N3 metastases: both PET and CT: 95%) (11). Now, with the
; CECT, contrast-enhanced computed
FDG, fluorodeoxyglucose; FN, false
cer; GLCM, gray-level co-occurrence
ix; LIME, Local Interpretable Model-
h node metastases; LoG, Laplacian of
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advent of new radiomics methods, we suggest that nodal staging
in GC should be re-considered.

Radiomics is an imaging analysis method that maximizes the
information obtaining from routine diagnostic images and may
detect data that is not readily apparent from the images alone
(12). Recent advances in radiomics have provided insights into
the accurate prediction of the pre-operative clinical stage. Several
studies have shown that a CT radiomics nomogram can predict
the N staging in a variety of cancers (13–15). Feng et al.
developed a computational clinical decision support system
based on CT radiomics to predict the involved LNs in gastric
cancer, yielding an accuracy of 71.3% (16). Jiang et al. (17)
concluded that the radiomic signature was a powerful predictor
of LNMs based on the significant association between the CT
radiomic signature and the pathological LN stage in GC. When
compared to CT, 18F-FDG PET/CT offers an additional
advantage of providing metabolic information. Recently,
PET/CT radiomics studies have been published on predicting
the treatment response, prognosis, and the pathology sub-types
(18–20). The predictive value of 18F-FDG PET/CT radiomics
in the N staging of GC, to our knowledge, has not been widely
investigated. In this study, our aim was to develop and validate
predictive machine learning models based on 18F-FDG PET/CT
radiomics to predict the LNMs and specific N stage in GC.
2 MATERIALS AND METHODS

2.1 Patients Inclusion Criteria
This study was approved by the Ethics Committee of the Fudan
University Shanghai Cancer Center (No. 1909207-14-1910), and
the need for the written informed consent was waived. There
were 185 patients diagnosed with GC who underwent a total or
partial radical gastrectomy at Fudan University Shanghai Cancer
Hospital, including 156 GC patients obtained from January 2019
to May 2020 and 29 GC patients recruited from May 2020 to
June 2021. These patients were reviewed retrospectively. The
TNM staging was conducted according to the American Joint
Committee on Cancer TNM Staging Manual, Eighth Edition
(21). The inclusion criteria were as follows: (1) patients
diagnosed as GC on surgically resected specimens; (2) patients
with available clinical features such as sex, age, and tumor size;
(3) patients with available 18F-FDG PET/CT scan data before
surgery; and (4) patients who did not receive neoadjuvant
therapy before surgery.

2.2 Imaging Protocols and Image Analysis
A total of 161 out of 185 GC patients received dynamic contrast
scans with a multidetector spiral CT (Sensation 64; Siemens
Medical Systems, Germany). Contrast images were acquired in
September 2021 | Volume 11 | Article 723345
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the arterial (delay time: 30–35 seconds) and portal phases (delay
time: 65–70 seconds) after an intravenous injection of 90 ml of
iohexol (Omnipaque 300; Amersham, Shanghai, China) at a rate
of 3 ml/second. Images were obtained at 120 kV and 200 mA
with a 1-mm slice thickness. CT findings of the tumor location,
size, perigastric lymph nodes, degree and pattern of
enhancement, and distant metastases were analyzed. The size
of the tumor was determined according to the maximum
diameter of the tumor on the axial/coronal/sagittal images in
the contrast phase. Contrast enhancement was graded as mild
(< 10 HU), moderate (10–40 HU), and marked (> 40 HU). A
perigastric lymph node was considered positive if the shortest
diameter was greater than 10 mm or if there was a marked
enhancement. The TNM stage of each patient was recorded by
two experienced radiologists, and the results were verified by a
third radiologist.

18F-FDG PET/CT scans were performed using two whole-
body PET/CT scanners (Siemens Medical Systems, Biograph 16
mCT Flow, and Biograph 16 mCT) in the Department of Nuclear
Medicine. Patients fasted for at least 6 h, and the blood glucose
levels were <140 mg/dl. With the Biograph 16 mCT Flow
Scanner, scans were acquired 1 h after an intravenous injection
of 18F-FDG (3.7 MBq/kg). Images were acquired from the skull
base to the upper thighs. A low-dose CT scan (120 kV, 140 mA,
5-mm slice thickness) was performed first to provide attenuation
correction and anatomical information. Then, PET scan data
were obtained and reconstructed with a time-of-flight ordered
Frontiers in Oncology | www.frontiersin.org 3
subset expectation maximization algorithm (iterations 4; subsets
8; image size 168) (22). With the Biograph 16 mCT Scanner, the
scan was acquired approximately 1 h after the intravenous
administration of 5.18 MBq/kg of 18F-FDG. The CT scans
were conducted first (120 kVp, 150 mAs, 0.33 s per rotation,
thickness of 3.0 mm) and reconstructed to a 512 × 512 matrix
“(voxel size: 0.98 × 0.98 × 3.0 mm3). Then, PET scans were
performed with the parameters (2 min per bed, 2 iterations, 24
subsets, and 2 mm full width at half maximum) without filtering
and smoothing to reconstruct the PET images. Two experienced
nuclear medicine physicians evaluated the PET/CT images and
measured the maximum standardized uptake value (SUVmax) of
the primary tumor and any metastases.

2.3 PET/CT Radiomics Analysis With
Machine Learning
The radiomics analysis workflow is shown in Figure 1. There
were five principal modules: input image segmentation, radiomic
feature extraction, representative feature selection, predictive
model construction, and statistical analysis. Firstly, we applied
the same input image segmentation and radiomic feature
extraction procedure for two different classification tasks,
including Task A, predicting the LNMs, and Task B, predicting
the N stage. Due to the different nature of the problems, we
derived two branches for these two different classification tasks
for the remaining principal modules, including feature selection,
predictive model construction, and statistical analysis.
FIGURE 1 | Radiomic flowchart for the prediction of LNMs (task A) and the N stage (task B).
September 2021 | Volume 11 | Article 723345
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2.4 Medical Image Segmentation
The volume of interests (VOIs) in the tumor were delineated
slice-by-slice with the ITK-SNAP software (version 3.6.0) (23) by
the two senior nuclear medicine physicians. If a disagreement
occurred, it was resolved by another experienced nuclear
medicine physician. As the PET images and CT images were
co-registered, only the VOIs of the PET images were
individually segmented.

2.5 Radiomic Feature Extraction
There were 1,050 PET and 1,050 CT high-quantitative imaging
features extracted from the corresponding VOIs. The 1,050
radiomic features included: (1) 18 first-order statistical features
that were used to describe the distribution of individual voxel
values within the image region defined by the mask through the
commonly used and basic metrics without considering the
spatial relationships (24); (2) 14 shape features used to describe
the geometry properties and the shape of the region of interest
(ROI) (25); (3) 56 texture features were extracted to measure the
spatial arrangement of the voxel intensities and the intra-lesion
heterogeneity, which could be derived from the grey-level co-
occurrence matrix (GLCM) and grey-level size zone matrix
(GLSZM) (25); and (4) 370 Laplacian of gaussian (LoG)
filtered features and 592 wavelets filtered features; both were
part of the higher-order statistical features obtained by applying
the Laplacian of Gaussian (LoG) transformation and wavelets
transformation, individually. Since the higher-order statistics
features can suppress the noise and highlight the details in the
Frontiers in Oncology | www.frontiersin.org 4
original images, they are able to extract areas with increasingly
coarse texture patterns in a more flexible way. The radiomic
feature extraction process was implemented through the
PyRadiomics package (24), an open-source package compliant
with the Imaging biomarker standardization initiative (26).

2.6 Representative Feature Selection
We fused the 2,100 extracted radiomic features with 13 clinical
features to form a feature pool before implementing the feature
selection module. The feature selection strategy varied for
different classification tasks, but both were mainly designed
based on the output-driven model, with the aim of capturing
the embedded patterns that were beneficial for each classification task.

As shown in Figure 2A, we applied a sequential combination
of multivariant and univariant feature selection for predicting
LNMs. In the multivariant feature selection, random forest
feature selection (with tree importance > 0.008) was used due
to its competitive predictive performance, low over-fitting, and
easy interpretability. This interpretability was derived by
computing the importance of each feature that contributed to
the final decision. Then, univariant feature selection was deployed
to select the final discriminative features through conducting the
relevancy-based analysis using the Pearson correlation method
among the selected features and the predicted class.

In predicting the N stage, we applied the sequential forward
feature selection method in the multivariant feature selection.
Since this algorithm comprehensively covered the combinations
of the subsets and automatically selected a subset of the features
A

B

FIGURE 2 | Methodology and the results of feature selection: (A) feature selection pipeline, and (B) number of selected features during the selection procedure.
September 2021 | Volume 11 | Article 723345
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that offered the best performance on the training dataset, the
univariant feature selection was not further required. The
performance for each feature subset was evaluated by a 5-fold
cross-validation to reduce the risk of overfitting, and the feature
set that achieved the peak model performance was considered
the final feature set.

2.7 Modeling and Validation
Patients, recruited from the 2019–2020 period (n = 156), were
allocated into training and validation datasets using stratified
methods at a fixed ratio to preserve the proportion of the targets
in the original dataset; 80% of the 2019–2020 period patients
were assigned to the training set, and the remaining 20% were
assigned to the validation set. The 29 additional patients from
2020–2021 were further used to enlarge the independent
validation cohorts.

For the prediction of LNMs, a BalancedBagging ensemble
classifier (27) incorporated with Adaboost as the base classifier
was constructed since it could improve the variance by voting the
outcome from multiple base classifiers on variants of the training
set and prevent overfitting. For the N stage, the OneVsRest
classifier (27) was applied due to its high interpretability and the
possibility of gaining knowledge about each class by inspecting
its corresponding classes. Furthermore, we used 5-fold cross-
validation methods on the training dataset and independent
validation methods on the validation set to evaluate the
performance and the robustness of each machine learning
model. The performance of each model was primarily
evaluated by the accuracy and the area under the curve (AUC);
the confusion matrix also generated the sensitivity, specificity,
positive predicted value (PPV), and negative predicted value
(NPV) to detect the existence of bias within the model.

2.8 Statistical Analysis
Statistical analysis included a result interpretation of the machine
learning model and correlation analysis of the selected radiomic
features with pathological features. The Local Interpretable
Model-Agnostic Explanations model (LIME) (28) was applied
to explain the contribution of each selected feature through its
derived weight coefficients to gain insights into the selected
features and the predictive model. The LIME model estimated
the weight coefficients by observing the changes in the results
after eliminating several interpretable components. The changes
were measured by the distance from the range center of the
resulting changes in the prediction. The closer to the range
center, the higher the weight coefficients would be assigned,
indicating a better contribution to the final prediction.

We applied the Pearson correlation method that measured
the strength and the direction of association between two
continuous variables, to evaluate the correlation between the
selected radiomic features and the pathological features. The
Point-Biserial correlation method was used for the measurement
between one continuous variable and one categorical variable.
All statistical analyses were performed using the scikit-learn
(sklearn) package (27) in Python version 3.6.4, and a two-sided
P-value < 0.05 was considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 5
3 RESULTS

3.1 Demographics of Patients
The demographic information of 185 patients is summarized in
Table 1. The included patients underwent open total
gastrectomy (n = 103), distal gastrectomy (n = 79), and
proximal gastrectomy (n = 3), with D2 lymphadenectomy in
accordance with the Japanese guidelines [6], which included
lymph node dissection (n > 15) of the perigastric and part of the
suprapancreatic area. According to the pathological N stage (pN)
of the TNM staging, LNM was divided into five categories: N0:
no lymph node metastasis; N1: 1–2 lymph node metastases; N2:
3–6 lymph node metastases; N3a: 7-15 lymph node metastases;
N3b: ≥ 16 lymph node metastases. The pathology in 77.8% of the
patients was adenocarcinoma and mixed adenocarcinoma in the
remainder. There were 136 patients with LNMs, and 49 patients
without LNMs. There were 49 patients (26.4%) with N0 stage,
31 patients with N1 (16.8%), 31 patients (16.8%) with N2,
52 patients (28.1%) with N3a, and 22 patients (11.9%) with
N3b stage. For 18F-FDG PET/CT, the sensitivity was 68.7% and
the specificity was 70%, while for CECT the sensitivity was 57.7%
and the specificity was 66.7% (see Table 2). We maintained the
same ratio between different predicted classes for the training set
and the validation set as that in the original dataset, and there
was no significant difference between the training set and
validation set based on a two-sample t-test (p > 0.05).

3.2 Results of Feature Selection
As shown in Figure 2B, feature selection was applied to the 2,100
radiomic features extracted from PET and CT, and the 13 clinical
features. Only two radiomic features—CT the Maximum3Ddiameter
and PET the Maximum2DdiameterSlice—were selected during the
multivariant feature selection for the prediction of LNMs. These two
features remained through the relevancy-based feature selection and
formed the final discriminative feature set used for the model
construction. There were five radiomic features selected through
the sequential forward feature selection method for the prediction
of the N stage; these included four CT features (one shape; one LoG;
two wavelet) and one for PET (wavelet).

3.3 Performance of Radiomic Features
Figures 3A, C show that during the validation process, the model
had a good performance in predicting LNMs with an overall
accuracy of 85.2% and AUC of 82.2%. More detailed information
about the model performance, including sensitivity (73.3%) and
specificity (89.1%), are shown in Table 2. Furthermore, the
predictive model detected an additional 19.6% LNMs missed with
CECT in the validation group, and 35.7% with 18F-FDG PET/CT.
The same evaluation procedure was applied for the model used to
predict the N stage. The overall model accuracy was 62.3%, and the
AUC was 73.7% (see Figure 3B). The model showed a competitive
discrimination of the N stage (N0:72%, N1:96%, N2:77%, N3a:62%,
and N3b:50%), and the detailed accuracy for each stage is outlined
in Figure 3D. The overall accuracy for N stage prediction with
CECT was 18.2%, and it was 35% for 18F-FDG PET/CT in the
validation set. In the validation group of N stage prediction, there
were 57.4% that were incorrectly staged with CECT and 55% that
September 2021 | Volume 11 | Article 723345
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were incorrect with 18F-FDG PET/CT, but which had the correct N
stage with the radiomic model.

3.4 Feature Analysis and Interpretation
There were two features, one CT feature (ct_shape_Maximum3DDiameter)
and one PET feature (pet_shape_Maximum2DDiameterSlice),
which were identified by the sequentially combined multivariant
and univariant feature selection process for predicting LNMs.
The Maximum3DDiameter feature was used to define the largest
pairwise Euclidean distance between the tumor surface mesh
vertices. The Maximum2DDiameterSlice feature was a similar
Frontiers in Oncology | www.frontiersin.org 6
feature; however, it only defined the distance in the row-column
(generally axis) plane. The statistics of these two selected
quantitative features are summarized in Supplementary Table S1.
The contribution of each selected feature in the prediction of LNMs
is shown in Figures 4A, B, and C through the normalized
importance calculated by the LIME model (28) in three different
situations, including for: (1) all the patients in the validation set, (2)
patients without metastases, and (3) patients with metastases. The
CT feature had a higher contribution, when compared to the PET
feature, in predicting LNMs in these three situations with the
normalized importance of 86%, 90%, and 84%, sequentially.
TABLE 2 | Results for predicting lymph node metastases in independent validation cohorts.

Evaluation Accuracy AUC Sensitivity Specificity PPV NPV

CECT 0.602 – 0.577 0.667 0.817 0.380
18F-FDG PET/
CT

0.692 – 0.687 0.70 0.790 0.576

PET feature 0.770 0.724 0.563 0.844 0.563 0.844
CT feature 0.852 0.803 0.769 0.875 0.625 0.933
CT + PET 0.852 0.822 0.733 0.891 0.688 0.911
September 2021 |
 Volume 11 | Article 7
The bold feature value represented the combined radiomic features that achieved high prediction accuracy for both target classes, while the bold numerical value represented the highest
value of each column.
TABLE 1 | Demographic and clinical characteristics of the enrolled patients.

Characteristics Total Population N0 N1 N2 N3a N3b

(n = 185) (n = 49) (n = 31) (n = 31) (n = 52) (n = 22)
Age, median (range) 62 (22–86) 61 (28–81) 63 (36–80) 62 (24–73) 62 (26–86) 66 (22–79)
Gender, n(%) 185 49 31 31 52 22

Male 127 (68.6) 40 (81.6) 22 (71.0) 20 (64.5) 32 (61.5) 13 (59.1)
Female 58 (31.4) 9 (18.4) 9 (29.0) 11 (35.5) 20 (38.5) 9 (40.9)

Histopathological Type, n (%)
adenocarcinoma 144 (77.8) 42 (85.7) 26 (83.9) 25 (80.6) 41 (78.8) 10 (45.5)
mixed adenocarcinoma 41 (22.2) 7 (14.3) 5 (16.1) 6 (19.4) 11 (21.2) 12 (54.5)

Lauren Type, n (%)
intestinal type 64 (34.6) 23 (46.9) 14 (45.2) 12 (38.7) 14 (26.9) 1 (4.5)
diffuse type 51 (27.6) 14 (28.6) 5 (16.1) 9 (29.0) 13 (25) 10 (45.5)
mixed type 70 (37.8) 12 (24.5) 12 (38.7) 10 (32.3) 25 (48.1) 11 (50.0)

Differentiation, n (%)
low 85 (45.9) 18 (36.7) 10 (32.3) 12 (38.7) 28 (53.8) 17 (77.3)
middle-low 58 (31.4) 11 (22.4) 10 (32.3) 13 (41.9) 19 (36.5) 5 (22.7)
middle 36 (19.5) 16 (32.7) 11 (35.4) 5 (16.1) 4 (7.7) 0 (0.0)
high 6 (3.2) 4 (8.2) 0 (0.0) 1 (3.3) 1 (2.0) 0 (0.0)

Vascular Tumor Thrombus, n (%)
not contain 34 (18.4) 25 (51) 8 (25.8) 1 (3.3) 0 (0.0) 0 (0.0)
contain 126 (68.1) 12 (24.5) 18 (58.1) 25 (80.6) 51 (98.1) 20 (91.0)
uncertain 22 (11.9) 12 (24.5) 4 (12.9) 5 (16.1) 0 (0.0) 1 (4.5)
multiple tumors 3 (1.6) 0 (0.0) 1 (3.2) 0 (0.0) 1 (1.9) 1 (4.5)

Infiltration depth, n (%)
lamina propria or submucosa 31 (16.8) 20 (40.8) 5 (16.1) 3 (9.7) 2 (3.8) 1 (4.5)
muscularis propria 23 (12.4) 9 (18.4) 6 (19.4) 3 (9.7) 4 (7.7) 1 (4.5)
subserosa 54 (29.2) 10 (20.4) 9 (29.0) 13 (41.9) 17 (32.7) 5 (22.8)
serosal layer 46 (24.8) 7 (14.3) 4 (12.9) 8 (25.8) 21 (40.4) 6 (27.3)
fat tissue outside the serosal layer etc. 31 (16.8) 3 (6.1) 7 (22.6) 4 (12.9) 8 (15.4) 9 (40.9)

Nerve invasion, n (%)
+ 104 (56.2) 16 (32.7) 17 (54.8) 19 (61.3) 37 (71.1) 15 (68.2)
– 61 (33.0) 30 (61.2) 14 (45.2) 7 (22.6) 7 (13.5) 3 (13.6)
uncertain 20 (10.8) 3 (6.1) 0 (0.0) 5 (16.1) 8 (15.4) 4 (18.2)

SUVmax_tumor, mean (std) 7.76 (5.93) 5.55 (4.41) 8.66 (5.61) 8.34 (5.02) 9.51 (7.57) 6.48 (3.87)
SUVmax_LN, mean (std) 2.92 (3.72) 1.56 (2.28) 3.32 (3.73) 3.07 (3.17) 3.58 (4.96) 3.60 (2.62)
maximum diameter, mean (std) 4.81 (2.97) 3.76 (2.48) 4.14 (2.43) 4.82 (2.10) 4.95 (2.85) 7.77 (3.89)
23345
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We identified five features in the prediction of the N stage.
These included four CT features and one PET wavelet feature.
The detailed explanation of these features, including the
definition and the calculated formula, are summarized in
Supplementary Table S2. According to Figure 4D, the CT
shape feature dominated the contribution to predicting the N
stage in the validation set. The contribution of the CT shape
feature was very similar to the only PET feature (see Figures 4E–I).
Both features contributed more to predicting the N1 stage, N2 stage,
and N3b stage with a lesser contribution to N0 and N3a.

3.5 Case Studies
Two typical cases were chosen by the domain experts—one patient
with and one without metastases—to illustrate the performance of
our model in predicting LNMs. The detailed medical information,
including theCTandPETimagesand3Dmodels for eachpatient, are
shown in Figures 5A, B. The value of the selected features for each
patient is indicated in the table at the bottom of panels A and B. The
contribution of each feature is explicitly revealed by the LIMEmodel
through the weight coefficients listed in the bar chart of each panel.
The model quantitatively combined the selected features with their
diverse weight coefficients for the final prediction and correctly
predicted both cases. We also chose five cases to showcase the
model performance for the prediction of the N stage. The PET/CT
images and the segmentation section are shown in Figure 5C. In all
five patients, our machine learning model predicted the N stage
accurately. In comparison, 18F-FDGPET/CTdidnot detect LNMs in
all five patients, and CECT also did not stage the N stages correctly.
Frontiers in Oncology | www.frontiersin.org 7
3.6 Correlation With Pathological Features
We computed the Pearson correlation between the selected
radiomic features and the pathological features that were
commonly used for the diagnosis of the LNMs to underline
the reliability and the significance of two selected features in the
prediction of the LNMs. The CT feature was significantly
correlated to the vascular tumor thrombus, nerve invasion,
histopathological type, differentiation, and infiltration depth
(p < 0.05), which explained its high contribution to the final
prediction, as shown in Figure 6A. The Pearson correlation
between the five selected radiomic and pathological features used
to predict the N stage is shown in Figure 6B. It showed that the
PET/CT radiomic features were also significantly correlated (p <
0.05) to the pathological features such as infiltration depth. The
detailed P-value for the correlation analysis were summarized in
Supplementary Figure S1.
4 DISCUSSION

Our main findings are as follows: (1) We developed and validated
(AUC 82.2%) a binary predictive model using two 18F-FDG PET/
CT radiomic features to predict LNMs preoperatively. This
model might allow clinicians to identify patients with a high
risk of LNMs and thus assist diagnosis and decision-making. (2)
We developed and validated (AUC 73.7%) a radiomics multiclass
predictive model using 18F-FDG PET/CT to identify the N stage
prior to surgery.
A B

DC

FIGURE 3 | The performance of predicting LNMs and the N stage. (A) The AUC curve for predicting LNMs. (B) The AUC curve for predicting the N stage.
(C) Accuracy of the prediction of LNMs. (D) Accuracy of the prediction of the N stage.
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The reported sensitivity (57.7%) and specificity (66.7%) of CECT
in our study were similar to a previous work (7). On CECT, enlarged
lymphs were not always metastatic, and small lymph nodes could be
metastatic, hence, the predictive performance of CECT in detecting
LNMs is sub-optimal. Since 18F-FDG PET/CT can detect disease in
lymph nodes that are not enlarged, more recent clinical guidelines
suggest that it might improve GC staging (29). Previous studies
showed that a high 18F-FDG uptake could be associated with LNMs
(30–32). The thresholds of SUVmax, however, varied significantly
across different studies. In our study, the performance of 18F-FDG
PET/CT in predicting LNMs was relatively inferior, especially with a
low negative predicted value (NPV) of 57.6%. Our results were
consistent with the previous study (33). The reasons might be that:
(1) the resolution of 18F-FDG PET was limited, which might miss
some positive uptake of small LNs; (2) some LNMs presented no
18F-FDG uptake because of the tumor heterogeneity and some
histopathology type (such as signet-ring cell carcinoma and mixed
adenocarcinoma); and (3) some perigastric LNs were masked by the
high 18F-FDG uptake of the primary tumor.

In the present study, the 18F-FDG PET/CT-based radiomics
model showed a superior performance in discriminating LNMs
with an AUC of 82.2% in the independent validation. Moreover,
it also detected some LNMs that were missed in CECT (19.6%) and
Frontiers in Oncology | www.frontiersin.org 8
18F-FDG PET/CT (35.7%), indicating that the PET/CT-based
radiomics model could supplement 18F-FDG PET/CT to optimize
the diagnostic performance. The performance might be attributed
to the quantification process of the radiomic model applied for the
final prediction and the parameters that could not be obtained by
routine visual analysis and measurement of lymph node size and
metabolism. Additionally, the correlation analysis indicated that the
selected features (CT feature: Maximum3DDiameter; PET feature:
Maximum2DDiameterSlice) used to establish the predictive model
were significantly correlated to the pathological features, including
vascular tumor thrombus, nerve invasion, and infiltration depth
(p < 0.05). Since these pathological features were strongly associated
with tumor invasion and metastasis, it could further explain the
outstanding performance of the radiomic models.

Feng et al. proposed a clinical decision support system for the
preoperative prediction of LNMs in GC (16) with the support vector
machine (SVM) classifier. However, since the SVM classifier works
by placing data points above and below the classifying hyperplanes,
it would be difficult to generate a probabilistic explanation for the
classification. Furthermore, the SVM would underperform in cases
where the number of features for each data point exceeded the
number of training data samples, which might be the reason for a
large number of applied features (13) in the classifier. in the
A B

D

E

F

G

I

H

C

FIGURE 4 | Normalized feature importance. (A–C) Feature importance in predicting LNMs for all validation patients and patients with/without metastases.
(D–I) Feature importance in predicting the N stage for all validation patients and patients with five N stages (N0, N1, N2, N3a, and N3b).
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classifier. Our study employed an ensemble classifier to predict
LNMs preoperatively. It improved the stability and the accuracy in
the statistical classification and also helped reduce the variance to
prevent overfitting. Thus, we achieved a better performance
(accuracy 85.2% vs. 71.3%) with a smaller feature set (feature
number 2 vs. 13) for the preoperative prediction of LNMs in GC.

Due to the low sensitivity and specificity, CECT and 18F-FDG
PET/CT missed and incorrectly identified some LNMs. As a
Frontiers in Oncology | www.frontiersin.org 9
result, the performance of the two imaging modalities in
predicting the number of LNMs was inferior. In comparison,
the machine learning model showed a better predictive
performance, with an overall AUC of 73.7% and an accuracy
of 62.3% in the validation group. In addition, a proportion of
patients in the validation group, whose LNMs were incorrectly
staged by CECT (57.4%) and 18F-FDG PET/CT (55%), were then
diagnosed correctly by our radiomic model, indicating that the
FIGURE 5 | Case studies for seven patients with GC. Top Panels: (A) patient with no lymph nodes metastases. (B) patient with lymph nodes metastases. The
image at the bottom of (A, B) contains the feature value of the patients and the corresponding LIME interpretation. The top left and top right sections in panel (A, B)
demonstrated the 3D model constructed based on the input CT and PET images from different viewpoints, while the red section represented the tumor of the
patients. Our predictive model correctly identified the status for both patients in panel (A, B). (C) Bottom Panel - Five patients with different stages N0, N1, N2, N3a,
and N3b from left to right. Our machine learning model predicted the N stage of the five patients accurately. 18F-FDG PET/CT, however, did not detect LNMs in all
five patients; and CECT also did not assess the N stages correctly.
September 2021 | Volume 11 | Article 723345
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radiomic model could supplement the current staging scheme.
Dong et al. also reported a deep learning CT-radiomic model to
predict the number of LNMs in GC with an overall C-index of
0.797 (0.771–0.823) (34). The model employed the deep learning
features for delivering a high-quality result with the cost of the
feature interpretability. Although with different methods, similar
results indicated that the radiomic approach promised to
facilitate an individualized prediction of N stages and help
choose the best surgical approach with respect to resecting
lymph nodes. Since the current study was a retrospective
research, prospective research with GC patients recruited
across multiple centers would be conducted in the future.
5 CONCLUSION

In this study in patients with GC, we successfully developed
and validated machine learning models based on preoperative
18F-FDG PET/CT radiomics to identify LNMs and stratify
patients into the different N stages. The machine learning
model might be an important adjunct to conventional imaging
modalities to help select the most appropriate treatment for
patients with GC.
Frontiers in Oncology | www.frontiersin.org 10
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