
Article https://doi.org/10.1038/s41467-022-34027-9

Epidemic spreading under mutually
independent intra- and inter-host
pathogen evolution

Xiyun Zhang 1 , Zhongyuan Ruan2, Muhua Zheng 3, Jie Zhou4,
Stefano Boccaletti 5,6,7,11 & Baruch Barzel 8,9,10,11

The dynamics of epidemic spreading is often reduced to the single control
parameter R0 (reproduction-rate), whose value, above or below unity, deter-
mines the state of the contagion. If, however, the pathogen evolves as it
spreads, R0 may change over time, potentially leading to a mutation-driven
spread, in which an initially sub-pandemic pathogen undergoes a break-
through mutation. To predict the boundaries of this pandemic phase, we
introduce here a modeling framework to couple the inter-host network
spreading patterns with the intra-host evolutionary dynamics. We find that
even in the extreme case when these two process are driven by mutually
independent selection forces, mutations can still fundamentally alter the
pandemic phase-diagram. The pandemic transitions, we show, are now
shaped, not just by R0, but also by the balance between the epidemic and the
evolutionary timescales. If mutations are too slow, the pathogen prevalence
decays prior to the appearance of a critical mutation. On the other hand, if
mutations are too rapid, the pathogen evolution becomes volatile and, once
again, it fails to spread. Between these two extremes, however, we identify a
broad range of conditions in which an initially sub-pandemic pathogen can
breakthrough to gain widespread prevalence.

Epidemic dynamics are driven by the interplay of two processes,
occurring at fundamentally different scales. First, at the individual
level, once infected, the contracted pathogen undergoes replication,
and potential mutation, within a host’s body. Then, once reaching a
sufficient load, transmission between hosts helps the pathogen pene-
trate the social network. These two processes, each characterized by
its own intrinsic timescales and relevant parameters, are often mod-
eled independently: the in-host dynamics is captured by a random
process of mutation and selection1–4; the inter-host propagation is

tracked using compartmental dynamics, such as the susceptible-
infected-recovered (SIR) model5,6, or its more elaborate variants7.
While the former is inherently stochastic, most analytical advances on
the latter5 are achieved via deterministic methods, i.e. ordinary dif-
ferential equations (ODE). This combination often prohibits systematic
analytical advances8, aswe lacka unified toolboxbywhich to treat both
the inter-host ODEs and the stochastic intra-host dynamics.

Here, we show that we can reduce the intra-host evolutionary
dynamics into an effective random walk, biased or unbiased, in the
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transmissibility fitness space. This allows us to construct a tractable
analytical framework by which to predict the mutation/selection
dynamics of a spreading pathogen. In this framework,mutations occur
during the intra-host replication process1–4. Selection for transmissi-
bility, on the other hand, is driven by the inter-host contagion
dynamics, as fitter strains proliferate more rapidly and take over the
available susceptible population. Together, these two processes may
lead to a mutation-driven phase, whose boundaries and transition
dynamics we pursue below. In this phase an initially non-pandemic
pathogen breaks through to reach an evolved pandemic state.

We find that besides the classic epidemiological parameters, i.e.
infection/recovery rates, two additional components factor in the
observed mutation rate σ, quantifying the intra-host evolutionary
timescales, and the fraction of infected individuals η(t), which deter-
mines the likelihood of a critical mutation to occur within the relevant
time-frame. Therefore, as opposed to classic pandemic transitions,
which depend solely on the epidemiological parameters9–13, here the
time-dependent prevalence of the pathogen η(t) and its replication
stability, both have direct impact on its anticipated spread.

Evolving pathogens and network contagion
Consider a pathogen spreading across a social network Aij. Once
contracted by a specific host i, it begins to replicate within i’s body,
until, after an average of ρ replication cycles, one (or more) of its
offspring is transferred via infection to one of i’s network neighbors j.
Throughout this in-host replication, the pathogen may undergo
mutations, and hence jmay potentially be infected by a different strain
than the one originally contracted by i. To track this process14–20 we

consider the different strains μ and the probabilities Mμν that upon
replication a strain μ will mutate into an offspring ν (Fig. 1a–c).

Each strain μ is characterized by two distinct fitness parameters.
The intra-host fitnessφμ(i) quantifies its replication rate within the host
i. This parameter is affected by i’s internal biological environment, e.g.,
i’s immune response, body temperature and so on. Strains with higher
φμ(i) multiply more efficiently within the host’s body, and hence gain
higher prevalence with each replication cycle. Complementing φμ(i) is
the inter-host fitness ψμ, which characterizes the pathogen’s capacity
to spread between hosts. This parameter, independent of i, increases
if μ has phenotypical traits that enhance its tranmissibility, for exam-
ple, an extended survival time outside the host’s body21, or a longer
pre-symptomatic stage22,23, both of which offer more opportunities for
an i→ j transmission.

Within the host, this results in a mutation and selection process
that favors high φμ(i), as, indeed, fitter strains benefit from an
increased intra-host growth rate. Consequently, after an average of ρ
in-host replication cycles, i’s pathogen population reaches a unique
multistrainZi

20, capturing apathogen compositionwith a fractionZμ(i)
of the strain μ (Fig. 1b). This composition is determined by the inter-
play between the pathogen’s intrinsic mutation rates (Mμν), and its
intra-host fitness landscape (φμ(i)). The multistrain Zi is characterized
by the fitness distribution

f iðφ,ψÞ=
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Fig. 1 | The interplay between evolutionary and epidemiological dynamics.
a Host i contracts a pathogen (orange) with initial fitness φ(i, 0),ψ(i, 0). b Within i
the pathogen replicates, undergoing mutation and selection. The potential transi-
tions between strains μ→ ν is governed byMμν. Strains with higher intra-host fitness
(φμ(i)) replicate at a higher rate. After ρ replication cycles the pathogen population
within i takes the form of a multistrain Zi, in which there is a fraction Zμ(i) of the
strain μ. c Upon transmission i→ j, a single (or few) individual pathogens are sam-
pled fromZi, instigating again, j's intra-host dynamics, this time staring from initial
fitness φ(j, 0),ψ(j, 0). d The transition matrixMμν. Mutations enable transition with
probability 0 ≤ p ≤ 1 between adjacent strains. The larger is p, the less stable is the
pathogen. e The fitness distribution fi(φ,ψ) in (1) following ρ = 25, 000 replication/
mutation cycles initiated at an arbitrary φ(i, 0),ψ(i, 0) (grey dot). Each lineage
captures a random walk in fitness space (black path), resulting in the density

function fi(φ,ψ), describing i's multistrain Zi. The intra-host fitness distribution
fi(φ) (top, blue) is skewed in favor of fitter strains, which replicate more efficiently
within i. The inter-host distribution, fi(ψ) (right, green), on the other hand follows a
zero-mean normal distribution, as, indeed, there is no intra-host selection for high
ψμ. During infection the fitness of the transmitted pathogen ψ(j, 0) (green) is
extracted from fi(ψ). The varianceσ2 determines the size of the evolutionary gapΔψ

of Eq. (10) between infection and transmission. f The inter-host dynamics is cap-
tured by network epidemic spreading, starting from an infection at node o by the
wild-type μ =0. As the pathogen propagates along the network Aij it undergoes
random shifts in its observed inter-host fitness ψμ. g The network spreading
dynamics give rise to selection for higherψμ. Here, strain 1 (green), the fittest of the
three, is more transmissible, and therefore, exhibits an exponentially growing
dominance over the observed pathogen population.
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capturing the probability that a randomly selected pathogen from
Zi has intra and inter-host fitness φ and ψ, respectively. Upon trans-
mission i→ j, a single pathogen is sampled from (1), initiating j’s intra-
host evolutionary dynamics with (Fig. 1c)

φðj, 0Þ ~ f iðφÞ ψðj, 0Þ ~ f iðψÞ: ð2Þ

Here φ(j, 0) and ψ(j, 0) denote the fitness parameters of j’s ori-
ginally contracted pathogen, and fi(φ) =∑ψ = fi(φ,ψ), fi(ψ) =∑φ = fi(φ,
ψ) represent themarginal probabilities of (1). Hence, Eq. (2) describes a
randomly selected pathogen from Zi that is transmitted from i to j,
with initial fitness values φ(j, 0) and ψ(j, 0). From this starting point j’s
own intra-host dynamics commences, resulting in a potential sec-
ondary transmission, this time extracted from Zj .

Taken together, as the process unfolds - from i’s exposure,
through its intra-host replication, mutation, selection, and eventually,
transmission to j - we observe potential shifts in both the intra and the
inter-host fitness of the pathogen population, such that

φðj, 0Þ=φði, 0Þ+Δφ ð3Þ

ψðj, 0Þ=ψði, 0Þ+Δψ: ð4Þ

The evolutionary steps Δφ,Δψ are governed by the intra-host
mutation/selection processes, yet they impact the inter-host spreading
dynamics through ψμ. On the other had, as fitter strains (higher ψμ)
spread more efficiently, the inter-host contagion governs the ψ-selec-
tion process. Below we analyze the resulting interplay between these
intra and inter-host patterns of pathogen spread (Fig. 1d).

Results
To observe the spreading patterns under pathogen evolution we
consider the susceptible-infected-recovered5 (SIR) dynamics on a
random network Aij. In the classic SIR formulation the spreading
dynamics are governed by three parameters: the recovery rate α, the
infection rate β, and Aij’s average degree k. Together, they provide
R0 = kβ=α, the reproduction number, which determines the state of the
system24–28 - pandemic (R0 ≥ 1) or infection-free (R0 < 1).

In the presence of mutations, however, these parameter may
change over the course of the spread, with each strain μ characterized
by its own specific αμ, βμ, and hence its unique reproduction number

Rμ =ψμR0: ð5Þ

Here ψμ, the inter-host fitness of the μ-strain, is defined as

ψμ =
βμ=β0

αμ=α0
ð6Þ

where α0, β0 are the recovery/infection rates of the wild-type. There-
fore, the wild-type μ =0 has ψ0 = 1, and consequently a reproduction
number of preciselyR0. As the spreadprogresses, mutationsmay push
ψμ belowor above this value, by introducing strainswith varying αμ, βμ.
The higher is ψμ the greater is Rμ, and hence the fitter is the strain for
inter-host transmission (Fig. 1g).

We can now model the SIR dynamics by tracking the infection,
recovery andmutationprocesses. For the process of infectionwewrite
(Fig. 1a–c)

Ii + Sj �!
βð j,0Þ

Ii + Ij ð7Þ

ψðj, 0Þ= max ψði, 0Þ+Δψ, 0ð Þ, ð8Þ

in which a susceptible (S) individual j contracts the pathogen from
their infected (I) neighbor i, leading to both i and j becoming
infected. The rate of the process in (7), β(j, 0), represents the
infection rate of the transmitted strain, i.e. the selected pathogen
from Zi, which will now begin to replicate and potentially mutate
within j. The spreading fitness of j’s contracted strain, ψ(j, 0) in (8), is
extracted from Eq. (4), with the max function conditioning that
ψ(j, 0) ≥ 0, i.e. avoiding negative fitness. Next we consider the pro-
cess of recovery

Ij !
αj

Rj, ð9Þ

where an infected host transitions to the recovered (R) state. Here
αj represents the effective recovery rate of j’s multistrain Zj ,
whose composition results from j’s intra-host mutation/selection
dynamics. The initial outbreak occurs at a randomly selected
node o, with ψ(o, 0) = 1, the wild-type spreading fitness (Fig. 1d),
from which point fitness is gained/lost via (8) upon each instance of
infection.

Evolutionary dynamics
To complete the processes (7–9) we now evaluate the magnitude of
the evolutionary jumps Δψ at each infection cycle. We therefore, in
Fig. 1e, f, model a single instance of intra-host evolutionary dynamics,
from initial exposure to transmission. Assigning μ = 0 to represent
the wild-type, we index all pathogen strains based on genetic simi-
larity, such that μ = 1 is closest to the wild-type, and as μ is increased
we reach more highly mutated variants. Prohibiting direct mutation
between highly distant strains, the transitionmatrixMμν→0 in case μ
and ν are far apart. Here we only allow transitions between directly
neighboring strains, takingMμν = p in case ν = μ ± 1,Mμν = 1 − 2p if μ = ν
and Mμν = 0 otherwise (Fig. 1e). The parameter p, therefore, char-
acterizes the stability of the pathogen, quantifying the expected
frequency of mutations, where p→0 indicates the limit of no evolu-
tion at all.

The fitness parameters for each strain are extracted from a pair of
normal distribution φμðiÞ ~N ð1,σ2

φÞ and ψμ ~N ð1,σ2
ψÞ, such that every

strain is independently assigned an intra and inter-host fitness. This
independence captures the fact that the intra-host environment is
fundamentally distinct from that of the inter-host transmission, and
hence the phenotypic traits enhancing φμ(i) and ψμ are, by and large,
uncorrelated. In Supplementary Section 4 we also examine the case
where the two are related.

To observe the evolutionary dynamics, at t =0 we infect i with a
specific strain (φ(i, 0),ψ(i, 0), Fig. 1f, grey dot). As the pathogen mul-
tiplies within i, fitter strains are selected and the composition of the
pathogen population shifts in favor of strains with greaterφμ(i). In this
process of mutation/replication, the composition of ψμ changes as
well. After ρ reproduction cycles, we extract the two fitness distribu-
tions of Eq. (1) as obtained from the resulting multistrain Zi: As
expected, we find that fi(φ), the intra-host fitness, follows a shifted
normal distribution, with an average fitness greater than the initial
φ(i, 0) (Fig. 1f, blue). This is a direct consequence of the intra-host
selection process, which favors the rapidly replicating variants
(large φμ(i)).

The inter-host fitness, on the other hand, lacking selection within
the host, drifts up and down at random (grey path), resulting in
f iðψÞ ~N ðψði,0Þ,σ2Þ, a zero-mean normal distribution with variance σ2.
Upon transmission to j, ψ(j, 0) in (8) is extracted precisely from this
resulting normal distribution (Fig. 1f, green). Mathematically, this
process is mapped to an effective randomwalk beginning at the initial
starting point ψ(i, 0), and taking random steps of size ~ σ.

This captures our first key observation, that the detailed muta-
tion/selection process taking place within the host can be reduced to
an effective random walk in ψ-space. We can now use Eq. (4) to write
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Δψ =ψ(j, 0) −ψ(i, 0), which using the above observation, that
ψðj, 0Þ ~N ðψði, 0Þ, σ2Þ, provides us with

Δψ ~N ð0, σ2Þ ð10Þ

a zero-mean normal distribution, whose variance depends on the
intra-host evolutionary dynamics. Hence, the intra-host mutation/
selection process condenses into the single parameter σ in (10) that
helps characterize the observed inter-host evolutionary dynamics. In
the limit where σ = 0, we have Δψ = 0 in (8) at all times, mutations are
suppressed, and Eqs. (7–9) converge to the classic SIR model, with a
stable R0. In contrast, as σ is increased, significant ψ-mutations
becomemore frequent and the inter-host fitness rapidly evolves. We
therefore, below, vary σ to control themutation rate of the spreading
pathogens.

Taken together, our modeling framework accounts for the
dynamics of infection and recovery (SIR) under the effect of
pathogen mutation. As the spread progresses, pathogens evolve via
Eq. (8), blindly altering their inter-host fitness at random, as, indeed,
the intra-host selection has no bearing on ψμ. The inter-host
dynamics, however, will favor positive ψ-mutations, in which
Δψ > 0. This is because such mutations lead to greater Rμ in (5), and
hence to higher transmissibility. This, in turn, translates to higher
prevalence, allowing fitter strains to eventually dominate the
population (Fig. 1g).

Critical mutation
Consider an outbreak of a wild-typewith R0 < 1, i.e. below the epidemic
threshold. This can be either due to the pathogen’s initial sub-
pandemic parameters, or a result of mitigation, e.g., social distancing
to reduce β0. In the classic SIR formulation, such pathogen will fail to
penetrate the network. However, in the presence ofmutations (σ > 0 in
(10)) the pathogenmay potentially undergo selection, reachRμ > 1, and
from that time onward begin to proliferate. This represents a critical
mutation, which, using (5), translates to

ψc =
1
R0

, ð11Þ

the critical fitness that, once crossed, may lead an initially non-
pandemic pathogen to becomepandemic. The smaller isR0 the higher
is ψc, as, indeed, weakly transmissible pathogens require a longer
evolutionary path to turn pandemic. Next, we analyze the spreading
patterns of our evolving pathogens, seeking the conditions for the
appearance of such a critical mutation.

Phase-diagram of evolving pathogens
To examine the behavior of (7–10) we constructed an Erdős-Rényi (ER)
network AijwithN = 5000 nodes and k = 15, providing a testing ground
uponwhichwe incorporate a series of epidemic scenarios (Fig. 2). Each
scenario is characterized by a different selection of our model’s three
epidemiological parameters: α0, β0, which determine the wild-type’s
reproduction R0, and σ, which controls the effective inter-host muta-
tion rate. We then follow the spread by measuring the prevalence η(t),
which monitors the fraction of infected individuals vs. time
(0 ≤ η(t) ≤ 1).We also track the pathogen’s evolution via the population
averaged inter-host fitness ψðtÞ= ð1=NÞPN

i = 1 ψði,0Þ, i.e. the average fit-
ness over all transmitted pathogens. We observe several potential
spreading patterns:

Pandemic (Fig. 2a, b red). In our first scenario we set α0 = 0.1,
β0 = 8 × 10−3 and σ = 2 × 10−2. This captures a pandemic wild-type,
which, using k = 15, has R0 = 1.2 > 1, namely it can spread even without
mutation. Indeed η(t) rapidly climbs to gain macroscopic coverage,

congruent with the prediction of the classic SIR model, only this time
instead of a single infectionwave, we observe a secondary peak, due to
the introduction of fitter variants, that help increase ψðtÞ. Such suc-
cessive waves of infection, driven by pathogen evolution, have, in fact,
being observed in the spread of SARS-CoV-2 29–34.

Mutation-driven (Fig. 2c, d green). Next we reduce the wild-type
infection rate to β0 = 1.67 × 10−3, an initial reproduction of R0 = 0.25 < 1.
This describes a pathogen whose transmissibility is significantly below
the epidemic threshold, and therefore, following the initial outbreak
we observe a decline in η(t), which by t ~ 30 almost approaches zero, as
the disease seems to be tapering off (inset). In this scenario, however,
we set a faster mutation rate σ = 2. As a result, despite the initial
remission, at around t ~ 5, the pathogen undergoes a critical mutation
as ψðtÞ crosses the critical ψc = 1/R0 = 4 (grey dashed line) and transi-
tions into the pandemic regime. Consequently, η(t) changes course,
the disease reemerges and the mutated pathogens successfully
spreads.

Infection-free (Fig. 2e, f blue). We now remain in the sub-pandemic
range, with R0 = 0.25, but with a much slower mutation rate, set again
to σ = 2 × 10−2. As above, η(t) declines, however the pathogen evolution
is now too slow, and cannot reach critical fitness on time. Therefore,
the disease fails to penetrate the network, lacking the opportunity for
the emergence of a critical mutation.

Hence, the dynamics of the spread are driven by three para-
meters: the initial epidemiological characteristics of the wild-type, α0
and β0, which determine R0, and the mutation rate σ, which governs
the timescale for the appearanceof the criticalψc. Therefore, below, to
determine the conditions for a mutation-driven contagion, we inves-
tigate the balance between the decay in η(t) vs. the gradual increase
in ψðtÞ.

The mutation-driven phase
Tounderstand the dynamicsof the evolving pathogenmodel, we show
in Supplementary Section 1.1 that at the initial stages of the spread, the
prevalence η(t) follows

ηðtÞ=ηð0ÞeξðtÞ: ð12Þ

The time-dependent exponential rate ξ(t) is determined by the
epidemiological/mutation rates via

ξðtÞ= � α0ð1� R0Þt +
1
2
σ2α2

0R
2
0t

3, ð13Þ

whose two terms characterize the pre-mutated vs. post-mutated
spread of the pathogen. The first term, linear in t, represents the initial
stages of the spread, which are determined by the wild-type
parameters, α0, R0. For R0 < 1 this describes an exponential decay, a
là the SIR dynamics in the sub-pandemic regime. At later times,
however, as t3 becomes large, the second term begins to dominate,
and the exponential decay is replaced by a rapid proliferation, now
driven by the mutation rate σ. The transition between these two

behaviors–decay vs. proliferation–occurs at τc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� R0Þ=3α0σ2R2

0

q
,

which provides the anticipated timescale for the appearance of the
critical mutation ψc in (11).

This analysis portrays the mutation-driven contagion as a balance
between two competing timescales: on the one hand the exponential
decay of the sub-pandemic pathogen, and on the other hand the
evolutionary timescale τc for the appearance of the critical mutation.
For the evolution towin this race the pathogenmust not vanish before
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t = τc. This imposes the condition that (Fig. 3a–c)

ηðτcÞ>
1
N
, ð14Þ

ensuring that at τc there are still one or more individuals hosting the
pathogen. Indeed, η(τc) ≤ 1/N indicates that on average, at t = τc less
than a single individual is left in the infectedpool. Under this condition,
the critical mutation is too late, the spread has already tapered off, and
the exponential growth driven by the positive term in (13) is averted.

Taking η(τc) from (12), we can now use (14) to express the
boundary of the mutation-driven phase, predicting the critical muta-
tion rate as (Supplementary Section 1.1)

σc /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0ð1� R0Þ3

q
2R0

0
@

1
A 1

lnðI0Þ
, ð15Þ

where I0 =Nηðt =0Þ is the number of individuals infected at t =0.
Equation 15 describes theminimalmutation rate required for the wild-
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type to evolve into a potentially pandemic strain. For R0 = 1 it predicts
σc =0, as such pathogen can indeed spread even without mutation.
However, asR0 is decreased, the pathogenprevalence rapidlydeclines,
and hence it must evolve at an accelerated rate to reach critical fitness
on time. This is expressed in (15) by an increased σc, which approaches
infinity as R0→0.

Note that the condition in (14), that at t = τc there is a single
infected individual, is not necessarily stringent, and hence, should
be taken more loosely as η(τc) is of the order of 1/N. Indeed, even if the
pathogen reaches its critical mutation when there are two or three
infected individuals, due to the stochasticity of the spreading
dynamics under such small numbers, pathogen extinction continues
to be a probable scenario. Therefore σc in (15) is only predicted upto a
multiplicative constant of order unity, as signified by the∝ sign, i.e.
σcscales as, not equals to the expression on the r.h.s. We also note that,
for simplicity the derivation leading to Eq. (15) in Supplementary
Section 1.1 is conducted under β-mutations, namely setting αμ = α0 and
allowing only the infection rate to evolve. In Supplementary Section 1.3
we further generalize the analysis, using a combination of analytical
and numerical tools, to cover also α-mutations.

To test prediction (15) we simulate in Fig. 2i an array of 1050
realizations of Eqs. (7–10), representing different epidemiological
scenarios. We varied R0 from 0 to 1.5, i.e. from non-transmissible to
pandemic, and scanned a spectrum of mutation rates from σ = 10−3 to
σ = 10, spanning four ordersofmagnitude. Simulating each scenario50
times we observe the probability P for the disease to gain coverage.
This is done by tracking the total fraction of recovered individuals
r1 =

R1
0 ηðtÞdt and counting the realizations in which r∞→0 vs. those

where r∞ >0 (Supplementary Section 5.1). As predicted, we find that
the pandemic state, classically observed only at R0 ≥ 1, now extends to
lower R0 in the presence of sufficiently rapidmutations. This gives rise
to the mutation-driven phase (green), in which an initially decaying
contagion suddenly turns pandemic. The boundaries of this phase
(grey zone) are, indeed, well-approximated by our theoretically pre-
dicted (15), as depicted by the black solid line separating the infection-
free from the mutation-driven phases.

Explosive transition
Unlike the classic pandemic threshold, themutation-driven phase shift
is of explosive nature35,36, capturing a first-order phase-transition
(Fig. 2j). This is because once a critical mutation occurs, the pathogen
gains prevalence, providing opportunities for additional mutations
that push ψðtÞ ever higher. This creates a positive feedback, which, in
turn, leads to a discontinuous jump in r∞: below the boundary of (15)
the total fraction of infected individuals is r∞→0, yet oncewe cross this
boundary, it abruptly rises to r∞≲ 1.

Such discontinuous transition illustrates the risks of soft mitiga-
tion. Indeed, from social distancing to vaccination, our natural
response in the face of a pandemic pathogen is to drive R0 below the
critical threshold, be it R0 ≤ 1 absent mutations (σ =0), or lower in case
of an evolving pathogen (σ > 0), as predicted in (15). To minimize the

ensuing socioeconomic disruption, it is tempting to tune our
response, as much as we can, to push R0 just below this threshold,
reaching a state in which the system fluctuates around criticality37–39.
Under a continuous transition, as classically observed for most epi-
demiological models, such minimal response may suffice. However,
here, the abrupt first-order transition portrays a system that is highly
sensitive around the phase boundary. Hence, minor excursions above
the threshold can potentially lead to a sudden jump in prevalence, as
they unleash a potential sequence of breakthrough mutations. We,
therefore, must remain at a safe distance from criticality when
responding to an evolving pathogen.

Time sensitivity
Equation (15) shows that σc depends not only on the epidemiological
characteristics of the pathogen (α0,R0), but also on the initial condi-
tion, here captured by the number of infected individuals
I0 =ηðt =0ÞN. If I0 is large the critical rate σc becomes lower, in effect
expanding the bounds of the mutation-driven phase. To understand
this consider the evolutionary paths followed by all pathogens as they
spread. These paths represent random trajectories in fitness space,
starting from ψ0 = 1, the wild-type, and with a small probability cross-
ing the criticalfitnessψc. Themore such attempts aremade, the higher
the chances that at least one of these paths will be successful. There-
fore, a higher initial prevalence I0 of the pathogen increases the
probability P for the appearance of a critical mutation, enabling a
mutation-driven phase even under a relatively small σ. In simplewords,
even raremutationsmay occur if the initial pathogen pool (I0) is large
enough40–43. Indeed, in Fig. 3d we find that the phase boundary shifts
towards lower σc as the initial prevalence is increased (grey shaded
lines). Hence, the greater is I0, the broader are the conditions that
enable mutation-driven contagion.

This dependence on I0 indicates that the risk of a critical muta-
tion increases in case the pathogen is already widespread. For exam-
ple, consider a pandemic pathogen (R0 > 1) that begins to spread,
exhibiting an exponentially increasing η(t). At time t = tR we instigate
our response, aiming to suppress R0, e.g., via social distancing. In case
of a late response (tR large), our mitigation encounters an already
prevalent pathogen, with a large I0, and hence an increased prob-
ability to undergo a critical mutation. Therefore, early response is key,
aiming to eliminate the pathogen while its population is still small,
when it is still outside the bounds of the mutation-driven phase.

We emphasize, that also without mutations, the advantages of
responding early are well known44–47, primarily to help us avoid a
prolonged pandemic state. The crucial difference is, that in these
classic formulations pushing R0 below criticality guarantees the
desired transition to the infection-free phase. The only question being
the temporal trajectory of this transition–prolonged or rapid. Here,
however, responding late, may catch the pathogen when it has already
entered adifferent phase, i.e.mutation-driven, andhence it is not just a
matter ofhow long itwill take for the pandemic to decay, but rather if it
will decay at all. Indeed, our dynamics lead to a unique phenomenon

Fig. 2 | The pandemic phase-diagram. a Pandemic. For R0 > 1 we observe the
classic pandemic phase. Prevalence η(t) vs. t (top) exhibits several waves, as more
transmissible mutants emerge, and the average fitness ψðtÞ (bottom) increases.
b We observe two waves, first the wild-type (light-red) and then the fitter mutant
variants (dark-red). c Mutation-driven. Setting R0 < 1, but increasing σ to 2, ψðtÞ
(bottom) reaches critical fitness within a short time (inset), and consequently η(t)
(top) and r∞ (middle) turn pandemic. d Sporadic instances of high fitness strains
(dark-red nodes), take over the majority of the population. e Infection-free. Under
slower mutations (σ =0.02), R0 remains sub-pandemic, η(t) vanishes (top), r∞≪ 1
(middle) and ψðtÞ remains almost constant (bottom). Hence, the pathogen fails to
reach criticalfitnessψc (grey dashed-line). fThe unfit pathogen (light red) tapersoff
without significant fitness gains. g Volatile. At σ = 7, ψðtÞ fluctuates erratically
(bottom), failing to lock-in the fitter strains. Consequently, η(t) and r∞ fail to reach

measurable levels (top, middle). hHigh-fitness strains appear (dark red nodes), but
are lost to the volatile mutations. i σ, R0 phase-diagram. In addition to the classic
pandemic-phase (R0 ≥ 1, red), we observe our three predicted phases: infection-free
(blue) for R0 < 1, small σ; volatile (blue) under large σ; and in between - mutation-
driven (green), inwhich breakthroughmutations are almost guaranteed (P→ 1). The
gaps between phases (grey) feature sharp transitions from P→0 to P→ 1, which are
well-approximated by our theoretical predictions (solid black lines). The examples
in panels (a–h) are shown as red, blue, green and purple dots. j r∞ vs. R0 under
σ =0.1 (yellow dashed-line in panel (i), left). We observe a first-order pandemic
transition, in which r∞ abruptly jumps from ~0 to ~1. The theoretically predicted
transition is also shown (grey dashed-line). k The transition from volatile to
mutation-driven (yellow dashed-line in panel (i), right) is continuous (see Methods
Section for technical details).
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where the phase boundary itself, as expressed in (15), shifts with time,
due to the accumulation of infected individuals, which increases I0.
Therefore, the longer we wait the more likely we are to experience, at
some point later in the pathogen’s spreading trajectory, a game-
changing mutation. In simple terms - the risk is not just a prolonged
decay, but an actual reemergence of the pandemic state.

To observe this, in Fig. 4a we simulated the spread of a pandemic
pathogen with R0 = 1.2 (red). To counter the spread, we first employ
ourmitigation at tR = 20days, reducingR0 by a factor of two toRR = 0.6
(blue). The result is a sharp turning point in the spread, as the patho-
gen begins to exponentially decay, eventually eradicated within sev-
eral weeks. We then examine an alternative scenario of latemitigation,
this time setting tR = 75days (green). Atfirst, themitigation seems tobe
working, as η(t) begins to rapidly decline. However, as we have now
caught the pathogen at a higher prevalence, our mitigation is

insufficient, as RR = 0.6 is now within the bounds of the mutation-
driven phase. Indeed, the phase boundary has shifted with t, and what
was a sufficient response at tR = 20 is no longer enough now that tR =
75. Therefore, after an initial remission, we observe a second wave of
infection, due to breakthrough mutations.

Our late response, we emphasize, did not simply lead to a pro-
longed pandemic state, but rather to a reemergence of the pandemic.
This second wave, we emphasize, occurs at t≫ tR, however its seeds
were already planted at the time of our initial delayed response. This
delay caused the pathogen to cross the boundary into the mutation-
driven phase, sealing our fate to a potential future second wave. In
Fig. 4b we examine this more systematically, plotting the probability P
to reach critical mutation vs. our response time tR, as obtained for a
range of mutation rates σ. As predicted, we find that the risk for
mutation driven contagion consistently increases as we delay our
response.

Hysteresis
This dependence of the phase boundary on I0 indicates that the
transition point changes if we approach it from the infection-free
state (small I0) or from the pandemic state (large I0). This captures a
hysteresis phenomenon, in which the critical transition depends on
the direction towards which we push R0: starting from low R0 we
observe the transition at Rc,1; however, reversing the path, pushing R0

from high to low we approach the transition from a high prevalence
state, and therefore only reach the infection-free phase at Rc,2 < Rc,1.
This can be observed in case the pathogen spreads via the
susceptible-infected-susceptible (SIS) dynamics, where as opposed
to SIR, the pandemic fixed-point has a constant fraction of infected
individuals, i.e. η(t→∞) > 0 (see Supplementary Section 2).

The volatile phase
The analysis above indicates that rapid intra-host mutations, i.e. large
σ, support a pathogen’s ability to spread. This is thanks to the com-
bination of fast mutation and inter-host selection, that leads to critical
fitnesswithin a sufficiently short timescale. There is, however, anupper
limit to σ, beyond which mutation-driven spread cannot be sustained.
Indeed, when σ is too large the pathogen fitness ψðtÞ becomes
unstable. As a result, while thepathogen rapidly reaches criticalfitness,
the random nature of its frequent mutations, renders it unable to
uphold this fitness–resulting in an irregular ψðtÞ, that fluctuates above
and below the critical ψc (Fig. 2g, h). The result is a second transition
from mutation-driven contagion (Fig. 2i, green) to the volatile phase
(blue), in which, once again, the pathogen fails to spread. The differ-
ence is that while in the infection-free phase (σ small) contagion is
avoided becausemutations are too slow, here the pathogen extinction
occurs because they were too rapid.

To gain deeper insight into the volatile phase, consider the natural
selection process, here driven by the inter-host reproduction benefit
of the fitter strains. This process is not instantaneous, and requires
several reproduction instances, i.e. generations, to gain a sufficient
spreading advantage.With σ too high, natural selection is confounded,
the pathogen shows no consistent gains in fitness and, as Fig. 2g
indicates, η(t) decays exponentially to zero. In Supplementary Sec-
tion 1.2 we use a timescale analysis, similar to the one leading to Eq.
(15), to show that the volatile phase occurs when σ exceeds

σc /
ffiffiffiffiffiffi
α0

3

r
ðψmaxR0 � 1Þ32

R0
: ð16Þ

Here ψmax = max
μ

fψμg represents the maximal inter-host fitness
over all potential strains of the pathogen. This prediction is, indeed,
confirmed by our simulated phase diagram in Fig. 2i (black solid line).

While related, the volatile phase is distinct from the classic error-
catastrophe, that renders a pathogen non-viable due to high error
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Fig. 3 | The transition to the mutation-driven phase. For mutation-driven con-
tagion a critical mutation must arise before the pathogen is eliminated, namely
before η(t) crosses 1/N (horizontal grey dashed lines). This represents the unit-line, a
state in which a single infected individual remains among the N node population.
a η(t) vs. t (grey solid line) as obtained from Eq. (12) in the infection-free phase
(R0 =0.25, σ =0.1). The critical mutation occurs at the minimum point (tc), which is
below the unit line. Therefore the pathogen is eliminated prior to the appearance of
the critical mutation. Indeed, the stochastic simulation (blue solid line) approaches
zero prevalence, never reaching the exponentially growing branch of η(t), which
arises at t > tc. b Setting σ =0.16 the system is at criticality. η(tc) is adjacent to the
unit line, and hence we observe critical behavior: some realizations decay (blue),
whereas others successfully mutate (green). At criticality, as the number of infected
individuals reaches ~1, the dynamics become stochastic, and hence the outcome
differs across realizations. The long term behavior of the mutation-driven branch
(green) diverges from the theoretically predicted grey line, as it reaches saturation.
Indeed, Eq. (12) is only designed to capture the initial stages of the spread, and
disregards the exhaustion of the susceptible population that occurs at large t.
cUnder σ =0.5, the system is in themutation-driven phase, η(tc) is sufficiently above
the unit line and the critical mutation is reached with probability P→ 1. d The phase
boundary in Eq. (15) depends on the initial size of the infected population I0. Here
we show this boundary for I0 = 10

2, . . . ,108 (grey solid lines), finding that the larger
is the infected population (I0), the broader is the coverage of the mutation-
driven phase.
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rates during replication48. Indeed, the error-catastrophe captures a
state in which mutations are frequent enough to disrupt the inter-
generational preservation of genetic information. Such conditions
prohibit the pathogen from producing enough viable offspring,
resulting in failure to sustain its population. Here, however, the
spreading bottleneck is different: the pathogen is able to successfully
replicate, but it fails to lock-in its fitness gains. Indeed, by the time
natural selection, here governed by the inter-host spreading dynamics,
affords the fitter strains a sufficient spreading advantage, mutations
have already driven the pathogen, or better yet–its offspring, into a
different area inψ-space. Hence, the pathogen extinction is not due to
replication failure, indeed–it replicates viablywithin its host, but rather
to the short memory of advantageous mutations, vs. the relatively
longer natural selection timescales49–53. Consequently, absent selec-
tion, mutations drive the pathogen erratically across fitness-space, a
volatile dynamics, in which the critical mutation, despite being
reached, is short-lived, overrun by new mutations, before the fitter
strain can gain sufficient ground.

Our phase-diagram illustrates the different forces governing the
spread of pathogens in the presence of mutations. While spread is
prohibited classically for R0 < 1, here we observe a mutation-driven
phase, in which the disease can successfully permeate despite having
an initially low reproduction rate. The conditions for this phase require
a balance between three separate timescales: (i) The time for the initial
outbreak η(0) to reach near-zero prevalence τ1; (ii) The time for the
pathogen to evolve beyond critical fitness τc; (iii) The time for the
natural selection to lock-in the fitter mutations τ2. Pathogens with
small R0, we find, can still spread provided that

τ1 > τc > τ2, ð17Þ

illustrating the window ofmutation-driven pandemic spread. The l.h.s.
of (17) ensures that the pathogen can reach critical fitness before
reaching near-zero prevalence. This gives rise to the first transition of
Eq. (15), between the infection-free and the mutation-driven phases.
The r.h.s. of (17) is responsible for the second transition, from
mutation-driven to volatile. It ensures that fitter pathogens do not
undergo additional mutation before they proliferate via natural
selection. Therefore, we observe a Goldilocks zone, in which the
mutation rate σ is just right: on the one hand, enabling unfit pathogens
to cross the Rubicon towards pandemicity, but on the other hand,
avoiding aimless capricious mutations.

Reinfection
Our discussion up to this point focused onmutations that randomly
increase R0 by impacting α0 or β0, namely the epidemiological
parameters. We now complete our analysis considering a different
breakthrough mechanism of reinfection via immunity evasion.
Here, a mutant variant, distinct enough from the wild-type, can
reinfect an already recovered individual. This mechanism is, of
course, well-studied54–59, however, our analysis framework can help
us advance by observing its outcomes under a range of var-
iants μ = 0, 1, 2,….

To examine this in a realistic setting we consider the spread of
SARS-CoV-2. We therefore collected data on the COVID-19 infection
cycle60–70 (Fig. 5a): upon infection, individuals enter a pre-symptomatic
state, which lasts, on average 5 days. During this period, typically
within 2–4 days they begin to shed the virus and infect their network
contacts (PS, purple). This continues until the onset ofmild (IM), severe
(IS) or critical (IC) symptoms, at which point theymostly enter isolation
and cease to spread the virus. (Of course, individuals may not comply,
and hence in Supplementary Section 5.3 we examine the case where
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Fig. 4 | Timing ourmitigation. a The prevalence η(t) vs. twithoutmitigation (red),
under early mitigation (blue, tR = 20) and under late mitigation (green, tR = 75).
Starting fromR0 = 1.2, σ =0.03, themitigation reducesR0 toRR = 0.6, a factor of one
half. While early mitigation ensures the elimination of the pathogen (blue), under
late mitigation (green), the initial decline is eventually reversed due to the
appearance of a critical mutation. Note that for evolving pathogens the late miti-
gation does not simply prolong the pandemic, but rather, as the green curve clearly
shows, causes it to enter the mutation-driven phase. Consequently, we risk a

secondwave thatmay occurmuch later than tR, but whose seedswere sown during
our initial delayed response.bThe probability P to reach criticalfitness (ψc, Eq. (11))
vs. tR, as obtained for different values of σ. The later we instigate ourmitigation, the
higher the risk for a breakthrough mutation. c Setting tR = 20, we have P→0, and
hence a successful mitigation. d At tR = 75 we predict P ≈0.5, and hence in some
realizations the pathogen is eliminated (light green),while inothers, it reemerges in
the form of a second pandemic wave (dark green). e Further delaying our response
to tR = 100 we enter P≲ 1, predicting an almost inevitable mitigation failure.
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~30% of the mildly symptomatic (IM) continue to interact despite their
symptoms.) In addition, a fraction (~30%) of infected individuals never
goon todevelopnoticeable symptoms (AS, top arrow), andhence they
continue to spread the virus until their full recovery (R), typically
within ~7 days.

To evaluate the (wild-type) infection rate β0 we used empirical
data on theobserved spread in 12 different countries29 (Supplementary
Section 5.3). Focusing on the early stages of the contagion, prior to the
instigation of lock-downs or other mitigation schemes, we find that
β0 = 5 × 10−2 days−1 best fits the observed spreading dynamics. This
corresponds to a reproduction rate of R0 ≈ 2.6, congruent with
existing60,71,72 valuations of R0 under COVID-19.

For the evolutionary dynamics, we consider, again, intra-host
mutations, governed byMμν and selected via each host’s idiosyncratic
fitness landscape φμ(i). The result, as discussed above, is an effective
random walk, starting from the wild-type μ = 0, and accumulating
increasing levels of genetic variation along the μ-axis. Each variant μ is
assigned a reinfection fitnessϕμ, capturing its probability to penetrate
the wild-type induced immunity. The greater is μ, the higher the
genetic distance from the wild-type, and hence also the greater is
ϕμ

16,73–75. In our simulationswe useϕμ = z
h=ðzhr + zhÞ, where z =μ=μmax is

the normalized distance (0 ≤ z ≤ 1) from the wild-type, and zr is a
parameter governing the typical distance required for μ to reinfect a
wild-type recovered individual. For z≪ zr we have ϕμ→0, i.e. no rein-
fection, and if z≫ zrwe haveϕμ→ 1, a variant fully resistant to the wild-
type antibodies.

Similarly to our previous analysis, also here, the emergence of a
breakthrough mutation is driven by the timescales of the inter/intra-
host dynamics. If mutations are slow compared to the spreading
dynamics (σ small) the outbreak decays before the critical mutation
z > zr is reached, and we observe a single wave of infection (Fig. 5b, c).
If, however,mutations are rapid (σ large), z grows fast enough to reach
zr on time, and we risk a second wave with relatively high probability
(Fig. 5c, d). This gives rise to the R0, σ risk-map, capturing the prob-
ability P of a second wave, given the wild-type epidemiological para-
meters (encapsulated within R0) and the pathogen replication stability
(encapsulated within σ); Fig. 5f.

Our sigmoidal ϕμ allows us to account for the gradual accumula-
tion of reinfection fitness, as governed by the saturation parameter h.
Under large h, ϕμ jumps abruptly from 0 to 1 at z = zr, mapping to
existing frameworks in which one considers a discrete set of (typically
two) variants76–80. Tuningh, however, or consideringmore complexϕμ,
we can take advantage of our analytical framework that helps capture
the evolutionary dynamics across a continuum of variants.

Prospects and limitations
Throughout our presentation we we have made several simplifying
assumptions, selected primarily for methodical reasons, which can be
relaxed to introduce more realism, where relevant. For example, our
Gaussian fitness distributions N ð1, σ2

φÞ and N ð1, σ2
ψÞ (Fig. 1e) may be

replaced with more complex fitness landscapes. This will impact the
patterns of the observed inter-host fitness jumps, and hence replace
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Fig. 5 | Reemergence due to immunity evasion. a The SARS-CoV-2 disease cycle.
Upon exposure (E, yellow) individuals enter a pre-symptomatic phase (PS, purple),
from which they later develop mild (IM), severe (IS) or critical (IC) symptoms,
determining the durationof their infected phase and their probability to recover (R,
green) or decease (D, grey). The probability of all transitions appears along the
arrows, and the typical time-line is shown at the bottom of the cycle. 30% of
exposed individuals showno detectable symptoms at all (AS).b, cUnder small σwe

observe a single infection wave, which tapers off as the susceptible population is
exhausted. This captures the classic pandemic curve, with a single wave of infec-
tion. d, e Increasing σ we now observe a second infection wave, in which a variant
with sufficiently high ϕμ (orange nodes) is able to reinfect the recovered (blue)
individuals. f The probability P for reemergence (double peaked η(t)) in function of
R0 and σ. For SARS-CoV-2, R0 is estimated at 2.6 (black solid line); Supplementary
Section 5.3.
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the simplistic zero-mean random walk of Eq. (10) by a more specified
exploration of the inter-host fitness space. Another potential general-
ization, relevant in real-world applications, considers the fact that
individuals may experience different disease cycles. For instance, in
COVID-19, most individuals exhibit a limited infection time-window,
while few sustain the virus for extended periods. These latter indivi-
duals, hosting the virus for many replication cycles, are the main
contributors to its genetic variability81–86. This heterogeneity across
hosts translates to a distributed σ, i.e. σi, a potential complication that
was not considered in our implementation. Finally, in our last example
we focus solely on reinfection vs. the wild-type μ =0, and hence we
observed–at most–two infection waves. More generally, one may
consider more complex fitness functions ϕμν, designed to capture the
probability of ν to reinfect an individual recovered from μ. This,
however, may require complex book-keeping of infections, which, if
carried out in all detail, i.e. per each pair ofμ, ν, may limit the feasibility
of our framework.

Discussion
The phase diagram of epidemic spreading is a crucial tool for fore-
casting and mitigating pandemic risks. First, it identifies the relevant
control parameters, such as α0, β0 and k, whose values determine R0.
Then it predicts the phase boundaries that help us assess the state of
the system–infection-free or pandemic. Finally, it provides guidelines
for our response, from social distancing to reduce k, through ther-
apeutic treatment to increase α0 or mask wearing to suppress β0.

Here we have shown that mutations can fundamentally change
this phase diagram. Instead of just one dimension, the relevant phase
space is now driven by two control parameters: R0, the wild-type
reproduction number, which encapsulates the inter-host epidemiolo-
gical characteristics of the pathogen, and σ the observed mutation
rate, which is determined by the intra-host evolutionary dynamics.
This (σ, R0) phase space gives rise to a mutation-driven phase, whose
boundaries we predict here, observing several characteristics that
stand in contrast to most known pandemic transitions. Most notably,
the abrupt first-order transition, that depicts extreme sensitivity in the
vicinity of the phase boundary, and the dependence of the transition
point on the current prevalence η(t), which predicts that similar
responsive actions may lead to different outcomes at different stages
of the spread44. As we are now experiencing, first hand, how novel
mutations are driving the proliferation of SARS-CoV-2, we hope that
these qualitative predictions will guide our response.

While the classic control parameter R0 is well-understood, our
analysis introduces an additional relevant parameter σ, designed to
capture the observed inter-host mutation rate. This parameter emer-
ges from themicroscopicmodel of the intra-host replication/mutation
dynamics. It is, therefore driven by the intra-host fitness landscape
φμ(i),ψμ, its patterns of mutation transitions Mμν, p and its replication
cycle ρ. In Supplementary Section 5.2 we analyze the impact of each of
these microscopic model characteristics on the observed mutation
rate σ.

Our analysis assumed that the intra and inter host fitness para-
meters, φμ(i) and ψμ, are independent of each other. Indeed, the two
environments, that of the in-host replication vs. that governing host-
to-host transmission, are, by and large, unrelated, and hence being fit
for one has no bearing on the pathogen’s fitness for the other75,87. One
exception, is under drug-based mitigation. Drugs are designed to
disrupt the intra-host replication, and by that increase the recovery
rate α0 (reducing R0), thus suppressing the inter-host transmission.
This naturally creates a positive correlation betweenφμ(i) andψμ, since
variants with higher drug resistance will not only be more fit for intra-
host replication, but also have a lower α0, and hence higher trans-
missibility. The observed inter-host evolutionary dynamics will no
longer follow a random walk in fitness space, as in Eq. (4), but rather
show a systematic bias towards higher fitness (Supplementary

Section 4). With an array of new drugs, some at final stages of
approval88, being currently considered for the treatment of COVID-19,
we believe that this analysis may offer key insights on the potential
arms-race between our treatment and SARS-CoV-2’s evolution 89.

Methods
Simulations
All simulationswere doneon a randomnetwork ofN = 5000nodes and
k = 15. The disease parameters were set to α0 = 0.1 and the infection
rate was set variably to β0 =α0R0=k, to obtain the different values of
R0. The mutation rate σ is specified in the relevant figure panels panel.
In the results presented in the main text we employ α-mutations, and
set β = β0 unchanged. This is complemented in Supplementary Sec-
tion 3, where we examine β-mutations under fixed α = α0. In each
scenario we set the initial condition to η(t =0) = 0.02.

Phase-diagram
To construct the phase-diagrams in Figs. 2 and 3 we varied
R0∈ (0, 1.5) and σ∈ (10−3, 10), amounting to a total of 1050 distinct
epidemiological scenarios, as characterized by α0, β0 and σ. For each
of these 1050 scenarios we ran 50 independent stochastic realiza-
tions, and measured the fraction P that resulted in r∞ > ϵ; setting
ϵ = 0.2. If the majority of realizations under a specific R0, σ failed to
spread (r∞ < ϵ) we have P→ 0, and yet ifmost reached pandemic levels
(r∞ > ϵ) then P→ 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data for analyzing and extracting the COVID-19 parameters is available
at https://github.com/heibaihe/EpidemicSpreadingUnderMutation.

Code availability
All code to study, reproduce and improve the results shown here is
freely available at https://github.com/heibaihe/EpidemicSpreading
UnderMutation; https://doi.org/10.5281/zenodo.7092756.
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