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Abstract
Encouraging cooperation among selfish individuals is crucial in many real-world systems,

where individuals’ collective behaviors can be analyzed using evolutionary public goods

game. Along this line, extensive studies have shown that reputation is an effective mecha-

nism to investigate the evolution of cooperation. In most existing studies, participating indi-

viduals in a public goods game are assumed to contribute unconditionally into the public

pool, or they can choose partnersbased on a common reputation standard (e.g., prefer-

ences or characters). However, to assign one reputation standard for all individuals is

impractical in many real-world deployment. In this paper, we introduce a reputation toler-

ancemechanism that allows an individual to select its potential partnersand decide whether

or not to contribute an investment to the public pool based on its tolerance to other individu-

als’ reputation. Specifically, an individual takes part in a public goods game only if the num-

ber of participantswith higher reputation exceeds the value of its tolerance. Moreover, in

this paper, an individual’s reputation can increase or decrease in a bounded interval based

on its historical behaviors. We explore the principle that how the reputation tolerance and

conditional investment mechanisms can affect the evolution of cooperation in spatial lattice

networks. Our simulation results demonstrate that a larger tolerance value can achieve an

environment that promote the cooperation of participants.

Introduction
In collaborative and distributed systems, such as Internet of Things (IoT) and Peer to Peer
(P2P) networks, autonomous individuals cooperate with each other to accomplish relatively
complicated tasks for their reciprocity targets. However, most individuals in such networks are
rational, and pursue their selfish interest or gains. In other words, individuals in such systems
may only prefer to obtaining services from, rather than providing services to, others [1, 2]. For

PLOSONE | DOI:10.1371/journal.pone.0162781 September 9, 2016 1 / 17

a11111

OPENACCESS

Citation:Ding H, Cao L, Ren Y, Choo K-KR, Shi B
(2016) Reputation-Based InvestmentHelps to
Optimize Group Behaviors in Spatial Lattice
Networks. PLoS ONE 11(9): e0162781. doi:10.1371/
journal.pone.0162781

Editor: Chris T. Bauch, University of Waterloo,
CANADA

Received:May 18, 2016

Accepted:August 29, 2016

Published:September 9, 2016

Copyright:© 2016 Ding et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricteduse, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement:Data and soucrce code
are available at the open online digital repository
Figshare https://dx.doi.org/10.6084/m9.figshare.
3753390.v1.

Funding: This work was supported by the National
Natural Science Foundation of China (Grant Nos.
61100194 and 61272173):YRZ http://www.nsfc.gov.
cn/ and National Natural Foundation of China (No.:
81402760):BYS. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparationof the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0162781&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.6084/m9.figshare.3753390.v1
https://dx.doi.org/10.6084/m9.figshare.3753390.v1
http://www.nsfc.gov.cn/
http://www.nsfc.gov.cn/


example, in a P2P network, there exist individuals who are only interested in downloading
(shared) resources but are reluctant to contribute any resources in return. Such individuals are
known as free-riders,whose behaviors may result in degradation for the system performance,
and have negative effect on the quality of experience of other individuals (especially, those indi-
viduals who have contributed resources but are unable to reap the associated benefits). If no
mitigation mechanisms are taken, more individuals will stop contributing/sharing resources,
and the system will suffer from the problem of commons dilemma, also known as the tragedy
of the commons. In this case, incentive mechanisms for promoting cooperation among selfish
individuals are one useful solution to enhance the smooth operation of such systems.

Evolutionary public goods game (PGG) has been widely used in the literature to model
group decision and cooperation dynamics in many fields, such as biology, sociology, physics
and computer science [3–5]. A typicalN-player PGG involves N individuals, each of which
decides whether to cooperate (C) or defect (D) as its strategy. A cooperator will contribute an
investment into the public pool which represents for a cost to establish a service,while a defec-
tor will not contribute anything. The total investment in the public pool will be multiplied by a
multiplication factor r (i.e., 1< r< N), which represents the eventual benefits upon the com-
pletion of the service. Finally, the benefits will be equally distributed among allN players.
Defectors in a public goods game play as free riders by sharing the same public goods as coop-
erators without any contribution. Such behaviors may ultimately lead to the tragedy of the
commons.

In order to overcome the commons dilemma, extensive studies has focused on investigating
the evolution of cooperation in complex networks, where individuals are forced to participate
in all PGGs that centered on itself and its neighbors [3, 6], or optionally decide whether or not
to participate a PGG [7], or unidirectionally select their group members [8]. Accordingly, a
number of mechanisms have been proposed to promote cooperation behaviors, such as reputa-
tion [9], mobility [10, 11], punishment [12], rewards [13] and social diversity [14, 15]. Among
them, reputation as a social engine of indirect reciprocity [16, 17], has been widely used to
explain the high cooperation levels in human society. Existing research generally assumes that
there is a common reputation standard accepted by all individuals, where an individual will be
regarded as good (respectively, bad) if its reputation is larger (respectively, smaller) than a stan-
dard/threshold value. However, reputation is more or less a subjective value. Different individ-
uals may have different evalation criteria (i.e., tolerance in this paper). Moreover, in a more
realistic scenario, the reputation value should be bounded, and can be dynamically updated
according to individuals’ historical behaviors in an evolutionary game.

In this paper, we propose a reputation-based investment model that takes into account both
bounded reputation and reputation tolerance among individuals during the evolutionary pro-
cess of a public goods game. By allowing for differences in reputation tolerance, a cooperative
individual will contribute investment into the public pool only when the number of individuals
with higher reputation is not less its tolerance value. In this case, the situation where all individ-
uals possess the same tolerance value is regarded as a special case in our model, and generally
exists in a collaborative environment. We simulate our model in a homogeneous spatial lattice
network to demonstrate how the reputation-based model can significantly promote coopera-
tion among selfish individuals. It is interesting to observe that a larger tolerance value can
make for a better environment that favors the prevalence of cooperative behaviors. We also
explore how the initial conditions (including the reputation distribution and the upper bound
of reputation value) can influence the evolutionary rate of cooperation in the spatial public
goods game.

The rest of this paper is organized as follows. In the next section, we introduce related stud-
ies about the evolution of cooperation. Then, we present our reputation-based model and
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evaluate the performance in a spatial lattice network setting. Finally, we summarize our find-
ings and discuss potential implications of our proposed model.

Related Literature
In the literature, there are a number of incentive mechanisms designed to promote cooperation
behaviors in both collaborative and distributed applications, such as Ad Hoc networks [18],
cellular networks [19] and wireless networks [20]. Efficient incentive mechanisms include kin
selection [21, 22], direct reciprocity [23], indirect reciprocity [16, 24], group selection [25],
punishment [12, 26], and rewards [13, 27]. Reputation has also been identified as one of the
typical mechanisms of indirect reciprocity, where the evolution of cooperation relies on indi-
viduals’ mutual monitoring and assessments [28]. Specifically, indirect reciprocity describes a
kind of phenomenon where two individuals behavior toward each other is based on their past
behaviors. Suppose that individualA acted positively to individual B, then individual B would
assign a high reputation score for individualA. Meanwhile individualC, who witnessed the
positive behavior of individualA towards individual B, would remember individualA’s good
performance (i.e., high reputation) and cooperate with individualA with a high possibility. In
reality, one’s reputation cannot infinitely increase or decrease due to bounded rationality [29],
therefore, the reputation values should be in a reasonable interval (i.e., bounded reputation in
this paper).

Reputation-basedmodels have been extensively studied under the condition of public infor-
mation, where all individuals share the same reputation information. For example, Nowak
et al. introduced an image scoring to quantify individuals’ reputation, where an individual’s
image scoring increases when the individual donates to others by comparing their image scor-
ing [24]. However, in more general and realistic situations, one should take into consideration
private information, where individuals have different perception about other individuals’ repu-
tation. Uchida showed that private information can lead to mismatches between the opinions
of individuals even when they share the same moral compass [30]. In another work, Uchida
and Sigmund investigated the competition of the assessment rules for indirect reciprocity,
where individuals assess each other according to their past cooperative behaviors [31]. Both
public and private information determine how individuals dynamically perceive reputation of
each other over time, while private information can better simulate the model of reputation in
structured populations. Taking into consideration errors of information dissemination, Wang
et al. investigated how different information about others individuals’ contributions affects
conditional cooperators’ willingness to cooperate in a one-shot linear PGG [32]. In this paper,
we introduce a reputation-based model, where individuals contribute investment based only
on the private knowledge about the number of cooperators in the game.

There have also been extensive studies on the role of diversity (e.g., social diversity [3, 6],
structural diversity [33–35], and behavioral diversity [36, 37]) in the evolution of cooperation.
Spatial reciprocity is identified as one of the most effectivemeans to enhance the cooperation
levels, where social behaviors of individuals are modeled by the classical and evolutionary
game theory in spatially structured populations [38–41]. For example, in a setting where indi-
viduals are coupled in a spatial network with interactions restricted to only their neighbors,
cooperators can sustain by forming compact clusters in order to resist the exploitation of defec-
tors [42]. Hartig et al. studied PGGs on square lattice and scale-free networks, and determined
that not only the diversity of the number/size of PGGs, but also the diversity of individuals’
donation to every group member help to promote cooperation behaviors [43]. Accordingly, in
this paper, the performance of a reputation-based investment model will be simulated in spatial
lattice networks.
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With respect to individuals’ behavioral diversity, investment heterogeneity is also a critical
factor in reputation studies [7, 44]. Different levels of reputation heterogeneity may signifi-
cantly influence the evolution of cooperation. For example, Helbing et al. investigated the
impact of reputation-based investment heterogeneity on the evolution of cooperation in collab-
orative networks [45]. Tian et al. proposed an age-related preferential selectionmechanism to
study the impact of aging on the evolution of cooperation in the Prison’s dilemma game [35].
Specifically in this paper, an individual will determine whether or not to contribute investment
into the public pool based on the individual’s private and heterogeneous tolerances about their
neighbors’ reputation in a spatial lattice network.

Reputation-basedInvestmentModel
In this section, we present a reputation-based investment model in a public goods game, and
investigate the evolutionary dynamics of cooperation in a spatial lattice network.

Basic model
In a typicalN-player PGG, individuals who cooperate are required to contribute some invest-
ment (i.e., cost of cooperation) into a public pool. Each individual knows that the total amount
of investment in the public pool will be multiplied by a factor r (1< r<N), and divided equally
among them irrespective of their contributions. If all individuals cooperate, each of them will
increase its initial capital by (r − 1)c, where c denotes the cost of cooperation.However, individ-
uals are more likely to defect by exploiting other individuals’ investment without any cost.
Obviously, such selfish behavior yields a higher payoff, irrespective of other individuals’
actions, because the investment of each cooperator returns only a fraction r/N< 1 of its invest-
ment. Therefore, although the group’s total payoff is maximizedwhen all individuals cooper-
ate, the Nash equilibrium in this game is simply zero contributions by all individuals.

In this paper, we focus on studying an evolutionary PGG in a spatially structured popula-
tion, where individuals interact only with their immediate neighbors (known as Von Neumann
neighbors). Specifically, each individual are confined in a square lattice, and restricted to play
PGGs with its four neighbors. Formally, we denoteG(V, E) as the square lattice with M nodes,
where vi 2 V denotes the player i and Eij 2 E denotes the interaction between player i and j.
Each player has exactly four neighbors in G(V, E). During the evolutionary process, each player
i can dynamically change its strategy si (si 2 {C,D}). Here, C strategy means a player will coop-
erate with others, while a D strategy means a player will defect.

The proposed reputation-based investment model is built upon the evolutionary PGG in
G(V, E), where each round consists of two main phases, namely, an investment phase and a
learning phase. In the investment phase, each player interacts with his four nearest neighbors,
and totally participates in five PGGs (one is centered at itself and the other four PGGs are cen-
tered at its four neighbors). Different from typical PGGs, here a cooperative player will condi-
tionally contribute investment to the public pool based on other players’ reputation. During
each round, all players will receive their accumulated payoffs when all PGGs are finished. In
the learning phase, each player has chance to change strategy by imitating one of his/her neigh-
bors. More details will be presented in subsequent sections.

Reputation updating rule
A reputation mechanism is introduced to model such situation in this section.We assume that
players do not operate in a full anonymity environment. In other words, players may collect
information about their potential interaction partners from their neighboring environment.
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Further, we assume that the reputations of players are publicly known to individuals who play
the same PGG, which is reasonable due to the limitation of individual player’s capability.

In order to efficiently record the strategy each individual adopts, we introduce a reputation
tolerance mechanism to help players choose potential partners with high reputation. Initially,
players in the network randomly adopt a strategy, either cooperate (C) or defect (D). During
the interaction phase, players decide whether or not to contribute to the public pool based on
their strategies. Cooperative players contribute conditionally to the public pool, while defective
players will never contribute. As for a cooperative player i in a PGG, he/she will first count the
number of group members whose reputation are equal or greater than his own in the game. If
the number exceeds or equals to his/her pre-determined reputation tolerance Ti, the cooperator
will contributes one unit to the public pool. We denote si as the strategy of player i, where si = 0
represents the cooperative strategy and si = 1 represents the defective strategy. Then, player i’s
action ai can be denoted as:

ai ¼
0 if si ¼ 0 and nri

� Ti

1 if si ¼ 1 or ðnri
< Ti & si ¼ 0Þ ;

ð1Þ

(

where nri is the number of other players in the game whose reputation is not less than i’s repu-
tation Ri. Here, ai = 0 denotes player i will contribute, and ai = 1 denotes a non-contributing
player i.

During the evolutionary process, the reputation of cooperative players who contribute
investment to the public pool will be increased by one unit, whilst the reputation of players
who benefit without contributing will be reduced by one unit. We assume that the players’ rep-
utation is bounded in a region [0, θ]. In other words, if a player’s reputation exceeds θ, his/her
reputation will be capped at θ. Similarly, a player’s reputation will never drop below 0. The
updating rule for player i’s reputation at evolutionary round t can be described as follows:

RiðtÞ ¼

0 if Riðt � 1Þ ¼ y & ai ¼ 0

1 if Riðt � 1Þ ¼ 0 & ai ¼ 1

Riðt � 1Þ þ ð� 1Þ
ai if 0 < Riðt � 1Þ < y;

ð2Þ

8
><

>:

where Ri(t) represents player i’s reputation at round t.

Investment and payoff
In the spatial lattice networkG(V, E), each player will participate in five PGGs. In each PGG,
the total amount of investment in the public pool is multiplied by the multiplication factor r,
and then be distributed equally to all group members irrespective of their strategies. If no coop-
erator contributes, then no payoff will be distributed. Therefore, the payoff of a player i in each
PGG will be given by:

pi ¼

0 if nc ¼ 0

rnc

5
� 1þ ai if nc > 0;

ð3Þ

8
<

:

where nc is the number of cooperators who contributes to the public pool in the PGG.

Learning rule
At each evolutionary round, all players will synchronously update the strategies according to a
learning rule. For each player i, he/she randomly selects a player j from his/her four neighbors,
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and then adopt j’s strategy based on the following Fermi function:

Wi!j ¼
1

1þ exp½� ðPj � PiÞ=K�
; ð4Þ

where Pi represent player i’s accumulated payoffs after participating in five PGGs in his/her
neighboring environment. K indicates the amplitude of noise, which quantifies the force of
selection about strategy adoptions [46, 47]. If K!1 (weak selection), players are less respon-
sive to payoff differences, and a player with high payoff may adopt the strategy of a less success-
ful one. If K! 0, then players reliably switch to the strategy with the higher payoff even if the
difference is very small. For 0< K<1, there exists a relatively certain possibility that strate-
gies with less payoffs will be adopted. In general, egoistic players prefer to adopt the strategy of
more successful neighbors [48–50].

Algorithm 1: The Main Algorithm

1 Generatea spaciallatticenetworkG of size M
2 Initializestrategiessi for each individuali
3 Initializemodel parametersT, K, θ, r and μ
4 foreachiterationt do
5 Settingthe initialpayoffof each node as zero
6 foreachnode i 2 G do
7 Play PGGs with its four neighbors
8 if si = 1 then
9 ai = 1, i.e., i does not contributeto the pool
10 else
11 if nri� T then
12 ai = 0, i.e., i contributeto the pool
13 else
14 ai = 1, i.e., i does not contributeto the pool
15 Calculatethe cumulativepayofffor each node in the PGGs
16 foreachnode i 2 G do
17 Updatesi based on Eq 4
18 Generatea randomvalue x 2 [0, 1]
19 if x� μ then
20 si ¼ �si
21 Reset all nodes’payoffsto zero
22 Recordthe frequencyof cooperationfor each iteration

In order to better simulate real-world situations, we introduce strategic mutations in our
model, where a cooperator is likely to become a defector, and vice versa. For simplicity, muta-
tion only happens at the end of each round with a constant rate μ. That is to say, each player i
has chance to change his/her strategy as follows:

si ¼
�si with probability m

si with probability 1 � m;
ð5Þ

(

where �si denotes an opposite strategy of si. Player i will change to another strategy with proba-
bility μ, or remains unchanged with probability 1 − μ.

In summary, the main procedure of the reputation-based investment model is shown in
Algorithm 1.
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Experimentsand Results
Simulations were carried out on a square lattice network of sizeM = 100 × 100 with periodic
boundary conditions. Initially, cooperators and defectors were randomly distributed among
the network with equal probability 50%). The key quantity to characterize the cooperative
behavior is the cooperation frequency, which is defined as the ratio of the number of coopera-
tor Mc to the total number of players M at the steady state (i.e. rc ¼

Mc
M ). We aim to evaluate the

effects of reputation tolerance T, multiplication factor r, selectoin strength K, maximum repu-
tation θ and initial distribution of strategies on the evolution of cooperation in a PGG. All sim-
ulations are carried out over 1,000 Monte Carlo time steps, and we have tested that steady state
can be reached.

Effects of reputation tolerance andmultiplication factor
We first investigated the dependence of multiplication factor r with a stationary T. Fig 1 shows
the average proportion of cooperators as a function of r ranging from 1 to 6, for different values
of T. It can be observed that as cooperation frequency increases, so does r. Here, T is a set of six
integers, namely: 0, 1, 2, 3, 4 and 5. T = 0 indicates that a cooperator will contribute even if all
remaining group members’ reputation are less than himself (i.e., the player will contribute
unconditionally).T = 5 indicates that a cooperator will not contribute to the public pool under
any circumstances because it is impossible to have five players with a reputation higher than
the particular cooperator in a five-member group. In the situation T = 0, where every coopera-
tor contributes unconditionally, defectors who obtain more payoff easily occupy the lattice;
thus, the final probability of cooperators is almost 0 under a moderate multiplication factor r.

Fig 1. Cooperation frequencyρc acts as a functionof r for different reputation tolerance T. Each data point results from the average value of the
proportionof cooperators for the last 100 rounds after reaching steady state. The other parameter settings are θ = 20,K = 0.5 and μ = 10−4.

doi:10.1371/journal.pone.0162781.g001
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In T = 5 since no cooperators contribute, the probability of cooperators is influencedmerely by
mutation. Thus, the probability of cooperators fluctuating is around 0.5, regardless of the size
of r.

With the increase in r, there is a phase transition in terms of cooperation frequency for each
tolerance value of T = 0, 1, 2, 3, 4. It can be observed that for T = 4, the phase transition will
happen when r is small (i.e., around 1.7). As T decreases, the critical value of r increases accord-
ingly. When T = 0, the probability of cooperators frequency does not exceed 0 until r reaches
approximately 3.9 and increases slowly to 1. The most prominent scenario is when T = 4,
where a cooperator would not contribute unless his/her reputation is the smallest among all
players in the PGG; thus, the probability of cooperators undergoing an abrupt increase when r
is between 1.6 and 1.9. It can be observed from Fig 1 that the larger T is, the more promptly it
leads to the cooperation level reaching a plateau for large values of r, except for T = 5.

To further investigate how the growth of T will influence the frequency of cooperators, we
conducted experiments with different values of r. It can be observed from Fig 2 that when
T = 4, the network will reach a high level of cooperation (i.e., almost 1) for different values of r.
Only sufficiently large r can promote cooperation frequencywhen T = 1. When T = 2, 3, there
exists a plateau of high level of cooperation. The results indicate that in order to resist the
exploitation of defectors, it is more important for cooperators to contribute only when others’
reputations are no less than his own.

To understand the process of how cooperation evolves, Fig 3 shows the change of coopera-
tion frequencywith respect to a fixed multiplication factor r = 2.5. Cooperation frequency
decreases at the earlier generations, regardless of the value of T (with the exception of T = 5,

Fig 2. Cooperation frequencyρc, as a functionof T for different values of r. Each data point resulted from average value of the
frequency of the proportionof cooperators for the last 100 rounds after reaching steady state. The other parameter settings are θ = 20,
K = 0.5 and μ = 10−4.

doi:10.1371/journal.pone.0162781.g002
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which is an impossible situation). It is because the cooperators are distributed randomly in the
lattice initially, and they could hardly survive due to the exploitation of defectors who can
achieve high payoffs and whose behaviors will be imitated by others. However, individuals
gradually congregate to compact clusters, among which cooperative clusters will result in a pla-
teau of high cooperation frequencywhen T = 3 and 4. While defectors could exploit all cooper-
ators when T = 2 and 3. The results demonstrate that low tolerance to others’ reputations can
benefit the construction of cooperative environment.

We now investigated the evolution of individuals’ reputation, payoffs and cooperation fre-
quency during the evolution. As shown in Fig 4, a larger T can significantly promote the evolu-
tion of cooperation. Cooperators are unable to escape the exploitation of defectors at the earlier
stage of evolution. This resulted in a decrease of cooperation frequency and a moderate growth
of the average reputation and payoff (expect for T = 1, where cooperation frequency decreases
and the average reputation and payoff remain at a lower level). If the member’s T is large, then
cooperators assembled faster than a small T, which manifested as their velocities to achieve sta-
bilization are much swifter. The reason is that a larger T requires strict adherence to the group
members that maintains high cooperation level in the entire population. The variation ten-
dency of average reputation and payoff is similar to the frequency of cooperators. The maxi-
mum reputation is 20 and the maximum payoff is 2, which can be calculated by r�nc

5
� ai.

Therefore, the optimal scenario is that all five group members adopt cooperative strategy with
ai = 1 and r = 3 in this experiment. Similar to the results demonstrated in Fig 4, the results pre-
sented in Fig 5 are conditioned on r = 2. We observed that the trend of cooperation frequency
resembled the trend of average reputation and payoff. The average reputation and payoff have
the same tendency as the frequency of cooperators globally. The cooperation frequency
achieves a high cooperation level only when T = 4.

To further illustrate the competition between cooperators and defectors in a spatial lattice,
in Fig 6, we evaluated the spatial distribution of defectors and cooperators under different

Fig 3. Cooperation frequency ρcwith r = 2.5.Every colored solid line describes the evolution of the frequency of cooperators in 1,000 generations. Of
the six reputation tolerance levels, T = 3 and 4 resulted in high cooperation. The other parameter settings are θ = 20,K = 0.5 and μ = 10−4.

doi:10.1371/journal.pone.0162781.g003
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Fig 5. Evolution of cooperation frequencyρc (the left), average reputation (the center) and relevant average payoff (the right) of all population
when r = 2. The other parameter settings are θ = 20, K = 0.5 and μ = 10−4.

doi:10.1371/journal.pone.0162781.g005

Fig 4. Cooperation frequencyρc (the left) corresponding average reputation (the center) and relevant average payoff (the right) of all population
when r = 3. Every colored solid line describes how the parameters evolve for 1,000 generations. The other parameter settings are θ = 20, K = 0.5 and
μ = 10−4.

doi:10.1371/journal.pone.0162781.g004
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parameter settings. The frequency of cooperators may undergo the exploration of defectors
around the 10th generation. As more cooperators survive from the exploitation, the remaining
cooperators gradually formed small clusters. This would allow them to swiftly expand to the
entire lattices.

Effects of maximum reputation and its initial distribution
In this section,we investigated whether the maximum reputation have any effects on the evolu-
tion of cooperation. Recall that in our model, the reputation of a cooperator who contributed
to the public pool will be increased by one unit, while the reputation of players who benefit but
without contributing will be reduced by one unit. The reputation value ranges from 0 to a max-
imum value θ. If one player’s reputation exceeds the maximum value, then his reputation will
be capped. It can be observed from Figs 7 and 8 that the higher the maximum reputation is, the
faster the evolution will converge. However, the values of θ will not affect the final cooperation
frequency at the steady state. Different from the results in Fig 7, it can be found from Fig 8 that
higher maximum reputation may result in better and more stable cooperation frequency.

In Fig 9, we investigate the impact of different initial settings of reputation values on the
evolution of cooperation frequency. Two types of settings are investigated. Firstly, all individu-
als’ reputation values are set to be zero, and secondly, the reputation values are randomly
selected from [0, θ]. It can be observed that for the first setting, it is easier for cooperation fre-
quency to reach a stable state. While for the second setting, it takes slightly more generations to
reach a stable state. However, both settings do not affect the final results of cooperation

Fig 6. Snapshots of players’ strategies with parameters r = 2, T = 3 (the first row); r = 3, T = 2 (the second
row) and r = 3, T = 3 (the third row). Blue pixels and red pixels represent the cooperative and defective
strategy, respectively. The four columns show the results of the 1st, 10th, 30th and 10000th generations. The
other parameter settings are θ = 20, K = 0.5 and μ = 10−4.

doi:10.1371/journal.pone.0162781.g006
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Fig 7. Evolutionary dynamics of cooperation frequency for different values ofmaximum reputation θwhen T = 3 and
r = 3. The other parameter settings areK = 0.5 and μ = 10−4. As shown in the Figure, the higher themaximum reputation is, the
faster the evolution will converge.

doi:10.1371/journal.pone.0162781.g007

Fig 8. Evolutionary dynamics of cooperation frequency for different values ofmaximum reputationθwhen T = 3 and r = 2.
The other parameter settings areK = 0.5 and μ = 10−4.

doi:10.1371/journal.pone.0162781.g008
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frequency. The reason may be that if the reputation of all individuals is initially zero, then
cooperative individuals are more likely to have high reputation. In doing so, it would be much
easier to form a cooperative cluster in a spatial lattice network. On the contrary, if reputation
values are randomly distributed among individuals, then it is possible for defectors to have a
high initial reputation. Thus, it will take several generations to correct the reputation of those
undeserving individuals. Therefore, under the second setting, the cooperation frequency is
more unstable at the earlier generations.

Effects of selection force K
We also evaluated the effects of selection force K on the evolution of cooperation. It can be
observed from Fig 10 that in the case of K = 0.01 (i.e., strong selection), the state of all defectors
can only maintain for a very small value of r. In other words, the phase transition from all
defectors to all cooperators will happen when r is small. While for K = 10 (i.e., weak selection),
it can be observed that the phase transition of cooperation frequency happens for larger values
of r. The reason is that the cooperators are more likely to survive by forming spatial clusters by
mutually imitating behaviors of each other under a strong selection.On the other hand, once
the cluster of cooperators is formed, the behaviors of cooperators are more easily imitated by
defectors with a strong selection.

Fig 9. Evolutionary dynamics of cooperation frequencyunder different initial settings.The two blue lines show the results when r = 3 and
T = 3; the two reds lines show the results when r = 3.5 and T = 1; and the two yellow lines shown the results when r = 3 and T = 2. For darker
colored lines, all individuals’ initial reputation values are set to be 0, while for lighter colored lines, individuals’ initial reputation values are
randomly selected from [0, θ]. The other parameter settings are θ = 20,K = 0.5 and μ = 10−4.

doi:10.1371/journal.pone.0162781.g009
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Conclusion
In this paper, we proposed a reputation-based investment mechanism to investigate the evolu-
tion of cooperation in a spatial public goods game. The proposed mechanism has two proper-
ties, namely: each individual’s investment behavior is conditional based on other individuals’
reputation and its own reputation tolerance, and the reputation values are bounded.

We then evaluated the performance of the proposed mechanism in a spatial lattice network.
The findings demonstrated that individuals’ reputation-based conditional investment behav-
iors can promote the evolution of cooperation for higher values of reputation tolerance. Specifi-
cally, if there are more individuals with strict reputation tolerance, then it will be easier to
reach high the proportion of cooperators in the network (even with a small multiplication fac-
tor). This is due primarily to the spontaneous emergence of quarantine of defectors, who are
eventually surrounded by cooperators and forced into isolated convex. This phenomenon can
be observed in the simulation results on spatially structured populations. In addition, we inves-
tigated the effects of reputation tolerance, maximum reputation and selection force on the evo-
lution of cooperation. Cooperation frequency initially decreased, as shown in the snapshots of
several simulations for many reputation tolerance. In the long run, however, the evolution of
cooperation ameliorated due to the formation of extremely robust clusters of cooperators.
Moreover, the initial distribution of reputation appeared to have little influence on the evolu-
tion of cooperation, and only influencing the speed of convergence, where random reputation
distribution converged faster. Our findings in this paper can help understand the role of
reputation-based conditional investment in spatial public goods games.

Fig 10. Cooperation frequencyρc as a functionof r for different selection force K. The other parameter settings are T = 3, θ = 20 and μ = 10−4.

doi:10.1371/journal.pone.0162781.g010
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