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Arylamine N-acetyltransferases catalyze the transfer of acetyl groups from the endogenous
cofactor acetyl coenzyme A (AcCoA) to arylamine (N-acetylation) andN-hydroxy-arylamine
(O-acetylation) acceptors. Humans express two arylamine N-acetyltransferase isozymes
(NAT1 and NAT2) which catalyze bothN- andO-acetylation but differ in genetic regulation,
substrate selectivity, and expression in human tissues. We investigated recombinant
human NAT1 and NAT2 expressed in an Escherichia coli JM105 and
Schizosaccharomyces pombe expression systems as well as in Chinese hamster ovary
(CHO) cells to assess the relative affinity of AcCoA for human NAT1 and NAT2. NAT1 and
NAT2 affinity for AcCoA was higher for recombinant human NAT1 than NAT2 when
catalyzing N-acetylation of aromatic amine carcinogens 2-aminofluroene (AF), 4-
aminobiphenyl (ABP), and β-naphthylamine (BNA) and the metabolic activation of
N-hydroxy-2-aminofluorene (N-OH-AF) and N-hydroxy-4-aminobiphenyl (N-OH-ABP)
via O-acetylation. These results suggest that AcCoA level may influence differential
rates of arylamine carcinogen metabolism catalyzed by NAT1 and NAT2 in human
tissues. Affinity was higher for NAT2 than for NAT1 using N-OH-AF and N-OH-ABP as
substrate consistent with a larger active site for NAT2. In conclusion, following
recombinant expression in bacteria, yeast, and CHO cells, we report significant
differences in affinity between human NAT1 and NAT2 for its required co-factor
AcCoA, as well as for N-hydroxy-arylamines activated via O-acetylation. The findings
provide important information to understand the relative contribution of human NAT1 vs
NAT2 towards N-acetylation and O-acetylation reactions in human hepatic and
extrahepatic tissues.
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INTRODUCTION

N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the N-acetylation of carcinogenic arylamines.
Following N-hydroxylation by cytochrome P450s, NAT1 and NAT2 catalyze the O-acetylation of
their N-hydroxylated metabolites to unstable N-acetoxy metabolites which bind to DNA leading to
mutagenesis and carcinogenesis (Windmill et al., 1997; Wang et al., 2019). Genetic polymorphisms
in NAT1 or NAT2 are associated with increased cancer risk at numerous sites (reviewed in Hein
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et al., 2000; Agundez, 2008) including urinary bladder (Garcia-
Closas et al., 2005) and head and neck (Mohammadi et al., 2021)
cancers.

NAT1 and NAT2 open reading frames are 87% identical and
their proteins differ only in 55 amino acids (Hein et al., 2000). The
crystal structures, three-dimensional modeling, and docking
simulations show that the substrate binding pocket in NAT1 is
smaller than that of NAT2 as a consequence of amino acid residue
substitutions at positions 127 and 129, namely R127 and Y129 in
NAT1 as opposed to S127 and S129 in NAT2 (Wu et al., 2007;
Zhou et al., 2013). The two bulkier amino acids reduce the volume
of the NAT1 pocket by ~40% compared to NAT2. In addition, a
change from V93 in NAT1 to F93 in NAT2 introduces a bump in
the van der Waals surface of the pocket in NAT2, thereby
significantly altering the shape of the binding pocket likely
contributing to substrate specificity (Wu et al., 2007; Zhou
et al., 2013). For example, NAT1 shows substrate specificity
for p-aminobenzoic acid while NAT2 shows substrate
specificity for sulfamethazine (Doll et al., 2010). Whereas
previous studies have investigated the substrate specificity of
human NAT1 and NAT2 for N-acetylation (Hein et al., 1993;
Leggett et al., 2021), no study to our knowledge has investigated
NAT1 and NAT2 affinity for the O-acetylation of N-hydroxy-
arylamines.

Metabolic activation of N-OH-AF and N-OH-ABP via
O-acetylation is catalyzed by recombinant human NAT1 and
NAT2 expressed in bacteria (Hein et al., 1993, Hein et al., 1995;
Doll and Hein, 2017), yeast (Fretland et al., 2002), and both COS-
1 (Zang et al., 2007; Zhu et al., 2011) and Chinese hamster ovary
(CHO) (Millner et al., 2012; Baldauf et al., 2020) cells. N-OH-
ABP metabolic activation via O-acetylation also has been
reported in cryopreserved human hepatocytes (Doll et al.,
2010). CHO cells expressing CYP1A2 and rapid acetylator
NAT2*4 exhibit greater DNA adducts and mutations than
CHO cells expressing CYP1A2 and slow acetylator NAT2*5B
following incubations with low concentrations of 2-
aminofluorene (AF) and 4-aminobiphenyl (ABP) (Baldauf
et al., 2020) suggesting an important role of NAT2-catalyzed
O-acetylation in the metabolic activation of arylamine
carcinogens in tissues expressing NAT2.

AcCoA binds to cysteine 68 (Rodrigues-Lima et al., 2001;
Rodrigues-Lima and Dupret, 2002) in a catalytic triad of Cys-68,
His-107, Asp-122 in both NAT1 and NAT2 (Sinclair et al., 2000).
Previous determinations of human NAT1 and NAT2 affinity for
AcCoA were conducted for recombinant NAT2 expressed in
bacteria (Hein et al., 1993) and recombinant NAT1 expressed in
yeast (Zhu and Hein, 2008) with substrates specific for NAT1-
and NAT2-catalyzed N-acetylation. Arylamine carcinogens such
as 2-aminofluorene (AF), 4-aminobiphenyl (ABP) and β
-naphthylamine (BNA) undergo N-acetylation catalyzed by
human NAT1 and NAT2 following recombinant expression in
bacteria (Hein et al., 1993) or yeast (Leggett et al., 2021) and thus
are more appropriate to use for comparing human NAT1 and
NAT2 affinity for AcCoA.

Previous investigations (Minchin et al., 1992; Probst et al.,
1992; Hein et al., 1993) reported that the
O-acetylation of N-hydroxy-2-aminofluorene (N-OH-AF) and

N-hydroxy-4-aminobiphenyl (N-OH-ABP) was catalyzed by
both human NAT1 and NAT2. Although NAT1 “appeared” to
be more selective for the N-hydroxy derivatives of carboxylic
arylamine carcinogens (Minchin et al., 1992; Hein et al., 1993),
this has not to our knowledge been the focus of a more robust
investigation comparing their substrate affinities for human
NAT1 and NAT2.

MATERIALS AND METHODS

Expression of Recombinant Human
N-Acetyltransferase 1 and 2 in Bacteria
Recombinant expression of human NAT1*4 and NAT2*4 (the
reference or “wild-type” human NAT1 and NAT2 alleles) in
bacteria was performed as previously described (Hein et al.,
1993). Briefly, JM105 bacteria harboring human NAT1*4 or
NAT2*4 plasmids were prepared and grown up overnight in
Luria-Bertani (LB) medium containing 100 μg/ml ampicillin (LB-
Amp) at 37°C. Fresh LB-Amp broth was re-inoculated and
NAT1- and NAT2-expression bacteria and grown to
approximately 0.5 OD600nm. Isopropyl β -D-
thiogalactopyranoside (1 mM) was added to the broth for
induction, and the cultures were grown for an additional 3 h.
The cells were harvested by centrifugation, then resuspended in
20 mM sodium phosphate buffer, pH 7.4, containing 1 mM
EDTA and DTT, 10 µM leupeptin and 100 µM
phenylmethylsulfonyl fluoride to 5% of original culture
volume. The cells were sonicated for 6 × 30 s on ice. Lysates
were centrifuged to pellet bacterial debris. Protein concentrations
of bacterial lysates were determined by a Bio-Rad dye-binding
method (Bradford, 1976). Enzyme velocities were then
normalized relative to the quantity [arbitrary units (U)] of
immunoreactive NAT1 or NAT2 protein detected by Western
immunoblot analysis. Bacterial lysates (50 µg) containing NAT1
or NAT2 were mixed with SDS-polyacrylamide gel sample buffer
containing 5% (final) β -mercaptoethanol and boiled for 5 min.
The protein samples were separated on 12% SDS-polyacrylamide
gels, electrophoretically transferred to Immuno-Lite membranes
(Bio-Rad, Richmond, CA) and reacted to polyclonal rabbit
antiserum raised against purified human NAT2 (kindly
provided by Dr. Denis Grant, University of Toronto).
Chemiluminescent detection was achieved with an Immuno-
Lite kit (Bio-Rad, Richmond, CA) following manufacturer’s
instructions as previously described (Zenser et al., 1996).

The lysates were assayed for AF N-acetyltransferase and
N-hydroxy-AF or N-hydroxy-ABP O-acetyltransferase
activities as described below.

AF N-Acetyltransferase Assays
The N-acetylation of AF was determined by measuring 2-
acetylaminofluorene product after separation by high
performance liquid chromatography (HPLC) as previously
described (Doll and Hein, 2017). The reaction mixture (100 µl)
contained bacterial lysate and 100 µM AF and AcCoA. AF and
AcCoA were purchased from Sigma Chemicals, St. Louis, MO.
Duplicate reactions were performed at AcCoA concentrations
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ranging from 0.031 to 10 mM. Control reactions were conducted
in the absence of AcCoA.

N-OH-AF and N-Hydroxy-ABP
O-Acetyltransferase Assays
AcCoA-dependent metabolic activation of [ring-3H]N-OH-AF
and [ring-3H]N-OH-ABP (Chemsyn Science Laboratories, Inc
(Lenexa, KS) to DNA adducts was conducted as previously
described (Hein et al., 1993; Hein et al., 1995; Doll and Hein,
2017). The reaction mixture contained 20 mM sodium phosphate
buffer (pH 7.4), 1 mM DTT, 1 mM EDTA, 100 µM [ring-3H]
N-OH-AF or [ring-3H]N-OH-ABP, 1 mg/ml calf thymus DNA
(Sigma Chemicals, St. Louis, MO), AcCoA and suitably diluted
bacterial lysate. For determinations ofN-OH-AF andN-OH-ABP
affinity, concentrations of N-hydroxy substrate varied from 5 to
1,000 µM in the presence of 300 µM AcCoA except for N-OH-AF
catalyzed by NAT2 where AcCoA concentration was 1,000 µM.
For determination of AcCoA affinity, concentrations of AcCoA
ranged from 0.006 to 10 mM in the presence of 100 μM N-OH-
AF. Control reactions were conducted in the absence of AcCoA.

Expression of Recombinant Human
N-Acetyltransferase 1 and 2 in Yeast
Recombinant human NAT1 and NAT2 were stably expressed in
yeast (Schizosaccharomyces pombe) as previously described
(Fretland et al., 2001a; 2001b). Quantitation of specific human
NAT1 and NAT2 protein in yeast lysates has been described
(Fretland et al., 2001a; 2001b). O-acetyltransferase assays
containing yeast lysate, AcCoA, 1 mg/ml deoxyguanosine (dG),
and N-OH-AF or N-OH-ABP substrate were incubated at 37°C
for 10 min as previously described (Hein et al., 2006a). N-OH-AF
and N-OH-ABP were purchased from Toronto Research
Chemicals, Toronto, Canada; dG was purchased from Sigma
Chemicals, St. Louis, MO. Control reactions were conducted
in the absence of AcCoA. For determination of apparent Km,
N-hydroxy-arylamine concentrations ranged from 1.95 to
2,000 µM in the presence of 1 mM AcCoA. AcCoA
concentrations ranged from 4.5 to 5,000 µM in the presence of
500 μMN-hydroxy-arylamine. HPLC separation was achieved
using a gradient of 80:20 sodium perchlorate pH 2.5:
acetonitrile to 50:50 sodium perchlorate pH 2.5: acetonitrile
over 3 min and dG-C8-arylamine adduct was detected at 300 nm.

Expression of HumanN-Acetyltransferase 1
and 2 in Chinese Hamster Ovary Cells
To further investigate AcCoA affinity for human NAT1 and
NAT2, we incorporated UV5-CHO cells that express human
CYP1A1 and NAT1 (constructed to reflect extrahepatic
metabolism) and human CYP1A2 and NAT2 (constructed to
reflect hepatic metabolism). The CHO cells expressing CY1A1 or
CYP1A2 and NAT1 or NAT2 were constructed previously to
assess DNA damage and mutagenesis in situ following exposure
to arylamine carcinogens. These CHO cells also were used to
investigate the relative affinity of AcCoA for NAT1 and

NAT2 in vitro as described below. The construction and
characterization of CHO cells expressing human NAT1*4 with
NAT1b promotor (Millner et al., 2012) andNAT2*4 (Metry et al.,
2007) including quantitation of specific human NAT1 and NAT2
protein (Salazar-Gonzalez et al., 2020) has been described
previously. Briefly, UV5/CHO cells were stably transfected
with a single FRT integration site using Flp-In System from
Invitrogen (Metry et al., 2007). The UV5/FRT cells was modified
by stable integration of human CYP1A1 andNAT1 (Millner et al.,
2012) or CYP1A2 and NAT2 (Metry et al., 2007). The NAT1-
transfected cells were characterized for N-acetylation of
p-aminobenzoic acid, a NAT1-selective substrate (Millner
et al., 2012) and the NAT2-transfected cells were characterized
for N-acetylation of sulfamethazine, a NAT2-selective substrate
(Metry et al., 2007). ABP and BNA N-acetyltransferase assays on
NAT1- and NAT2-transfected CHO cells were carried out as
described below.

ABP and BNA N-Acetyltransferase Assays
N-acetyltransferase assays containing CHO cell lysates expressing
human NAT1 or NAT2, ABP (300 µM) or BNA (250 or 62.5 µM
for NAT1 and NAT2 respectively) and AcCoA (31.3–5,000 µM)
were incubated at 37°C for 60 min. ABP and BNAwere purchased
from Sigma Chemicals, St. Louis, MO. Reactions were terminated
by the addition of 1/10 volume of 1 M acetic acid and the reaction
tubes were centrifuged for 10 min to precipitate protein. The
amount of acetyl-ABP produced was determined following
separation and quantitation by high performance liquid
chromatography as described previously (Habil et al., 2020).
Control reactions were conducted in the absence of AcCoA.
The amount of acetyl-BNA produced was determined
following separation and quantitation by HPLC subjected to a
gradient of 85% 20 mM sodium perchlorate pH 2.5/15%
acetonitrile to 35% 20 mM sodium perchlorate pH 2.5/65%
acetonitrile over 10 min, then to 85% 20 mM sodium
perchlorate pH 2.5/15% acetonitrile over 5 min onto a 125 ×
4 mm 100 RP-100 5 µM C18 column. Retention times for BNA
and acetyl-BNAwere 3.97 and 10.1 min, respectively. Absorbance
was detected at 260 nm.

Data Analysis
Protein concentrations were measured using the Bio-Rad assay
kit (Hercules, CA, United States). Apparent Km values were
calculated using the Michaelis-Menten program in Graphpad
Prism software (San Diego, CA, United States) and differences in
apparent Km between human NAT1 and NAT2 were tested for
significance by unpaired t-test (2-tailed). Apparent Vmax values
normalized to immunoreactive NAT protein were calculated
following recombinant expression of human NAT1 and NAT2
in bacteria.

RESULTS AND DISCUSSION

We investigated recombinant human NAT1 and NAT2 expressed
in an Escherichia coli JM105 and Schizosaccharomyces pombe
expression systems as well as in Chinese hamster ovary (CHO)
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cells to assess the relative affinity of AcCoA for human NAT1 and
NAT2. NAT1 and NAT2 affinity for AcCoA was higher for
recombinant human NAT1 than NAT2 when catalyzing
N-acetylation of aromatic amine carcinogens AF, ABP, and
BNA and the metabolic activation of N-hydroxy-AF and
N-hydroxy-ABP via O-acetylation (Figure 1). Following
recombinant expression of human NAT1 and NAT2 in yeast,
the higher affinity of recombinant human NAT1 for AcCoA
compared to human NAT2 when catalyzing the metabolic
activation of N-hydroxy-ABP and N-hydroxy-AF via
O-acetylation was confirmed (Figure 2). These results suggest
that AcCoA level may influence differential rates of carcinogenic
aromatic amine metabolism catalyzed by NAT1 and NAT2 in
human tissues. In tissues where both NAT1 and NAT2 are
expressed, low AcCoA levels may favor greater catalysis by
NAT1 than NAT2.

AcCoA is an essential intermediate in diverse metabolic
pathways, and cellular AcCoA levels fluctuate according to
extracellular nutrient availability and the metabolic state of the
cell (Shi and Tu, 2015). Thus, AcCoA levels are highly variable
dependent upon several factors including fasted versus fed states.
High AcCoA amounts occur in “growth” or “fed” states and
promote its utilization for lipid synthesis and histone acetylation.
In contrast, under “survival” or “fasted” states, AcCoA levels are
lower because it is preferentially directed into the mitochondria to
promote mitochondrial-dependent activities such as the synthesis
of ATP and ketone bodies. Many methods used to measure
AcCoA are inaccurate in part due to its instability (Sidoli
et al., 2019). AcCoA levels have been reported in hepatic and
extrahepatic tissues (Shurubor et al., 2020) and in human breast
cancer cells (Stepp et al., 2019) on a per cell basis or on a per unit
of protein which is not directly applicable to the Km values
reported in our study. Cellular AcCoA concentrations of
approximately 20–200 µM has been reported (Henry et al.,
2015) which is within the range of NAT1 AcCoA Km but is
much lower than the NAT2 AcCoA Km determined in our study.
It also should be emphasized that the AcCoA Km determined

in vitro in our study is an apparent Km dependent upon the
concentration of the co-substrate N-hydroxy-arylamine.
Nevertheless, as may be the case with the acetylation of
histones, the O-acetylation of N-hydroxy-arylamine
carcinogens catalyzed by NAT2 may be restricted by
availability of AcCoA. When AcCoA levels rise or fall, it may
modify the relative contribution of NAT1 versus NAT2 towards
arylamine carcinogen metabolism in tissues in which both NAT1
and NAT2 are expressed.

NAT1 and NAT2 Vmax were not compared following
recombinant expression in bacteria, COS-1 cells or CHO cells
as the results are determined by the expression system which
likely differs between NAT1 and NAT2. Although, outside of
scope of the present study, measurement of NAT1 and NAT2
Vmax in human tissues would be much more relevant and would
surely vary considerably between different human tissues, as has
been shown for catalytic activities. For example, in the liver where
NAT2 is highly expressed and NAT1 is not, acetylation will be
catalyzed primarily by NAT2 despite the lower AcCoA Km for
NAT1. However, in extrahepatic tissues where NAT1 is highly
expressed and NAT2 is not, acetylation will be catalyzed
primarily by NAT1, and this selectively is enhanced further by
the higher affinity of NAT1 than NAT2 for AcCoA.

Previous studies showed that acetylation of the active site
cysteine in NAT1 protects it from proteosomal degradation
(Butcher et al., 2004) and that NAT1 but not NAT2 catalyzes
hydrolysis of acetyl CoA to form acetyl and CoA in a folate-
dependent manner (Laurier et al., 2014; Stepp et al., 2015). The
apparent AcCoA Km for hydrolysis catalyzed by recombinant
human NAT1 was reported as 54.3 µM (Stepp et al., 2015) which
falls within the range of AcCoA apparent Km values determined
with human recombinant NAT1 towards arylamine and
N-hydroxy-arylamine carcinogens following recombinant
expression from bacteria (Figure 1) and yeast (Figure 2). A
previous investigation (Zhu and Hein, 2008) of AcCoA apparent
Km for recombinant NAT1 expressed from COS-1 cells was

FIGURE 1 |Relative affinity of AcCoA for humanNAT1andNAT2 expressed
in bacteria or CHO cells. Each bar illustrates Mean ± SEM for three separate
determinations of apparent AcCoAKmwith substrates AForN-OH-AF (expressed
in bacteria) and ABP or BNA (expressed in CHO cells). AcCoA apparent Km
was significantly lower *p < .05; **p < .01; ***p < .001 towards NAT1.

FIGURE 2 | Relative affinity of AcCoA for human NAT1 and NAT2
recombinantly expressed in yeast. Each bar illustrates Mean ± SEM for three
separate determinations of AcCoA Km in N-OH-ABP or N-OH-AF
O-acetylation. AcCoA apparent Km was significantly lower **p < .01;
***p < .001 towards NAT1.
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determined at a high concentration (750 µM) of the aromatic
amine substrate p-aminobenzoic acid, which likely resulted in
elevated apparent AcCoA Km.

Following publication of high-resolution crystal structures of
human NAT1 and NAT2 (Wu et al., 2007) three amino acid
differences were identified for CoA binding (Zhou et al., 2013)
that may be a factor for our results showing higher AcCoA
affinity for NAT1 than NAT2. The N6 of the coenzyme A
adenine ring forms a single hydrogen bond with serine-287 in
NAT2 which is changed to phenylalanine-287 in NAT1. Leucine-
288 generates van der Waals contacts with the pantothenate moiety
of CoA but this is changed to phenylalanine-288 in NAT1. The
carbonyl group of the pantothenate moiety establishes a hydrogen
bond with serine-216 in NAT1 which is changed to valine-216
in NAT1.

Recombinant human NAT1 and NAT2 affinity for N-OH-AF
and N-OH-ABP was higher for human NAT2 than for NAT1
following recombinant expression from bacteria (Figure 3) or
yeast (Figure 4). This finding is consistent with the 40% larger
size of the active site for NAT2 (Wu et al., 2007). Indeed, the
smaller NAT1 active site precludes the O-acetylation of
N-hydroxy-heterocyclic amines (Minchin et al., 1992; Probst
et al., 1992; Hein et al., 2006b; Lau et al., 2006). Previous
studies showed higher affinity of recombinant human NAT2
than NAT1 for arylamine carcinogens (Hein et al., 1993). Our
findings are consistent with the NAT2-genotype-dependent
O-acetylation of N-OH-ABP observed in cryopreserved human
hepatocytes (Doll et al., 2010) in which both NAT1 and NAT2 are
expressed. The higher affinity of N-OH-AF and N-OH-ABP for
human NAT2 also is consistent with recent findings in which
CHO cells expressing CYP1A2 and rapid acetylator NAT2*4
experienced greater DNA adducts and mutations than CHO

cells expressing CYP1A2 and slow acetylator NAT2*5B
following incubations with low concentrations of AF and ABP
(Baldauf et al., 2020).

In conclusion, following recombinant expression in
bacteria, yeast, and CHO cells, we report significant
differences in affinity between human NAT1 and NAT2 for
its required co-factor AcCoA, as well as for the O-acetylation
of N-hydroxy-arylamines. The findings provide important
information to understand the relative contribution of
human NAT1 vs NAT2 towards N-acetylation and
O-acetylation reactions in human hepatic and extrahepatic
tissues. In addition to xenobiotic metabolism, the present
work may bring novel perspectives for the Phase II drug-
metabolizing enzyme NAT1 and NAT2 in the metabolism of
small molecule drugs.
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FIGURE 3 | Relative affinity of N-OH-AF or N-OH-ABP for human NAT1
and NAT2 recombinantly expressed in bacteria. Each bar illustrates Mean ±
SEM for three separate determinations. *NAT2 apparent Km forN-hydroxy-AF
and N-hydroxy-ABP significantly lower (p < .05) than NAT1.

FIGURE 4 | Relative affinity of human NAT1 and NAT2 for N-OH-AF or
N-OH-ABP following recombinant expression in yeast. Each bar illustrates
Mean ± SEM for three separate determinations. NAT1 apparent Km higher
than NAT2 for N-OH-ABP (p = .0521) and N-OH-AF (p = .0474).
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