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Changes in brain reward systems are thought to contribute significantly to the cognitive and
behavioral impairments of schizophrenia, as well as the propensity to develop co-occurring
substance abuse disorders. Presently, there are few treatments for persons with a dual
diagnosis and little is known about the neural substrates that underlie co-occurring schizo-
phrenia and substance abuse. One goal of the present study was to determine if a change
in the concentration of kynurenic acid (KYNA), a tryptophan metabolite that is increased
in the brains of people with schizophrenia, affects reward-related behavior. KYNA is an
endogenous antagonist of NMDA glutamate receptors and α7 nicotinic acetylcholine recep-
tors, both of which are critically involved in neurodevelopment, plasticity, and behavior. In
Experiment 1, rats were treated throughout adolescence with L-kynurenine (L-KYN), the
precursor of KYNA. As adults, the rats were tested drug-free in an autoshaping procedure
in which a lever was paired with food. Rats treated with L-KYN during adolescence exhib-
ited increased sign-tracking behavior (lever pressing) when they were tested as adults.
Sign-tracking is thought to reflect the lever acquiring incentive salience (motivational value)
as a result of its pairing with reward. Thus, KYNA exposure may increase the incentive
salience of cues associated with reward, perhaps contributing to an increase in sensitivity
to drug-related cues in persons with schizophrenia. In Experiment 2, we tested the effects
of exposure to KYNA during adolescence on hippocampal long-term potentiation (LTP).
Rats treated with L-KYN exhibited no LTP after a burst of high-frequency stimulation that
was sufficient to produce robust LTP in vehicle-treated rats.This finding represents the first
demonstrated consequence of elevated KYNA concentration during development and pro-
vides insight into the basis for cognitive and behavioral deficits that result from exposure
to KYNA during adolescence.

Keywords: autoshaping, schizophrenia, NMDA, nicotinic, kynurenine, addiction, incentive salience, motivation

INTRODUCTION
Kynurenic acid (KYNA) is a final product of tryptophan metabo-
lism that is synthesized and released in the central nervous system
by astroglia (Schwarcz and Pellicciari, 2002). The concentrations
of KYNA and its precursor, kynurenine, are significantly increased
in the brains of persons with schizophrenia (Erhardt et al., 2001;
Schwarcz et al., 2001; Linderholm et al., 2012) and growing evi-
dence indicates that KYNA may contribute to the cognitive deficits
that are associated with the disorder. Indeed, KYNA is an endoge-
nous antagonist of NMDA glutamate receptors (NMDA-Rs) and
α7 nicotinic acetylcholine receptors (α7-nAChRs; Hilmas et al.,
2001; Parsons et al., 1997; Pereira et al., 2002; Stone, 1993), thus
an increase in KYNA concentration is likely to impair functions
that depend on these receptors, such as attention, learning, and
memory (Bast et al., 2003; Gould and Higgins, 2003; Bloem et al.,
2014). Consistent with this, a growing number of studies pro-
vide evidence of a causal role for KYNA in cognitive dysfunction

by showing that an acute increase in KYNA in adult rats impairs
cognitive domains that are affected in schizophrenia, including
attention (Chess and Bucci, 2006; Alexander et al., 2012), sensory
gating (Shepard et al., 2003; Erhardt et al., 2004), context memory
(Chess et al., 2009), and spatial memory (Chess et al., 2007).

More recent studies have focused on the effects of KYNA expo-
sure earlier in life, since KYNA levels are likely increased for much
longer periods of time in persons with schizophrenia and become
elevated earlier than adulthood (Miller et al., 2004, 2006, 2008;
Holtze et al., 2008; Asp et al., 2010). This has important ramifi-
cations because NMDA-Rs and α7-nAChRs are also essential for
neural plasticity and brain development (Komuro and Rakic, 1993;
Broide and Leslie, 1999), thus exposure to high levels of KYNA
early in life may lead to lasting cognitive and behavioral impair-
ments later in adulthood. In line with this, it has been shown that
an increase in KYNA throughout adolescence impaired contextual
memory (Akagbosu et al., 2012) and social behavior (Trecartin
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and Bucci, 2011) when rats were subsequently tested drug free in
adulthood. Similarly, treating rat dams with food enriched with
l-kynurenine (L-KYN) from gestational day 15 to postnatal day
(PND) 21 increased KYNA concentration in the offspring and
impaired cognition (Pocivavsek et al., 2012; Alexander et al., 2013).

The present study extended this work in two important direc-
tions. Schizophrenia is associated with dysfunctional brain reward
circuitry, particularly the midbrain dopamine system. Patients
have higher levels of dopamine synthesis and release compared to
age-matched controls (Carlsson et al., 2001) and elevated levels of
KYNA may contribute to this abnormal pattern of dopamine activ-
ity. In rodents, pharmacologically elevated levels of endogenous
KYNA increase the firing rate and bursting activity of dopamine
neurons in the ventral tegmental area (VTA), an effect mediated by
NMDA-Rs (Erhardt and Engberg, 2002). In addition, manipulat-
ing KYNA levels with cyclooxygenase inhibitors similarly alters the
activity of VTA dopamine neurons (Schwieler et al., 2006). Fur-
thermore, elevation of KYNA levels increases dopamine release
in the nucleus accumbens (NAc; Nilsson-Todd et al., 2007), a
structure that is involved in reward learning and addiction (e.g.,
Robinson and Berridge, 1993; Di Chiara, 2002; Kelley, 2004). Thus,
Experiment 1 tested whether an increase in KYNA concentration
during adolescence impacts reward-related behavior and moti-
vation. Rats were treated with 100 mg/kg of L-KYN throughout
adolescence, which results in a three- to fourfold increase in KYNA
levels (Erhardt et al., 2004; Akagbosu et al., 2012) and is consis-
tent with the increases observed in persons with schizophrenia
(Erhardt et al., 2001; Schwarcz et al., 2001). As adults, the rats
were tested drug-free in an autoshaping procedure in which one
lever conditioned stimulus (CS) was presented for a short period
of time and followed immediately by delivery of a food uncondi-
tioned stimulus (US) upon lever retraction, while a second lever
was not paired with food (Chang et al., 2012). Although food
delivery is not contingent on the rat’s behavior, rats will typically
approach, contact, and bite the lever CS that is paired with the
US (Davey and Cleland, 1982). These CS-directed behaviors (also
known as sign-tracking, e.g., Flagel et al., 2011) are thought to
reflect the lever acquiring incentive salience (motivational value)
as a result of its pairing with the US (e.g., Berridge, 2004). Impor-
tantly, sign-tracking has been shown to be mediated by the NAc
and its dopaminergic inputs from the VTA (Flagel et al., 2011;
Chang et al., 2012; Saunders and Robinson, 2012). Substance
abuse and addiction are associated with increased sensitivity to
drug-related cues, perhaps resulting from sensitization of mid-
brain dopamine neurons in response to drugs that imbues the
drug-related stimuli with excessive incentive salience (Robinson
and Berridge, 1993, 2001). Since KYNA enhances dopaminer-
gic neurotransmission in midbrain reward circuits (Erhardt and
Engberg, 2002), we predicted that rats exposed to KYNA during
adolescence would exhibit excessive sign-tracking (lever pressing)
as adults. Importantly, behavioral testing took place beginning
on PND 100, which is well into adulthood and when KYNA
levels are no longer elevated following this treatment regimen
(Akagbosu et al., 2012). Thus, any behavioral differences observed
between L-KYN-treated rats and vehicle-treated rats could not be
attributed to differences in KYNA concentration at the time of
testing.

The second goal of the current study was to determine how
exposure to KYNA during adolescence alters neural function
in adulthood. Indeed, despite the demonstration that cognitive
deficits result from increasing KYNA levels during adolescence
(Trecartin and Bucci, 2011; Akagbosu et al., 2012), no study has
investigated the neural substrates underlying those deficits. Thus,
we examined the effects of L-KYN treatment during adolescence
on the ability of adult hippocampal neurons to undergo long-term
potentiation (LTP). We chose to study hippocampal LTP because
of the recent interest in hippocampal involvement in autoshap-
ing and because it has been shown previously that exposure
to KYNA during adolescence impairs hippocampal-dependent
behavior (Akagbosu et al., 2012). We predicted that LTP would be
reduced in rats treated with L-KYN during adolescence compared
to control rats.

MATERIALS AND METHODS
EXPERIMENT 1
Subjects
Sixteen male Long–Evans rats were obtained from Harlan Lab-
oratories (Indianapolis, IN, USA) at 21 days of age. Rats were
housed in groups of 4 upon arrival with food and tap water
available ad libitum (Purina standard rat chow; Nestle Purina).
Rats were allowed 6 days to acclimate to the vivarium before drug
treatment began. When they reached 63 days old, the rats were sep-
arated into individual cages and gradually food restricted to 85%
of their baseline free-feeding body weights over the next 7 days.
Weights were measured daily and maintained by supplementing
with rat chow. Rats were maintained on a 14:10 light-dark schedule
(lights on at 7:00 a.m., off at 9:00 p.m.) throughout the study and
monitored and cared for in compliance with the Association for
Assessment and Accreditation of Laboratory Animal Care guide-
lines and the Dartmouth College Institutional Animal Care and
Use Committee.

Drug preparation
L-KYN (SAI Chemicals, India) was prepared fresh daily by dissolv-
ing in 2N sodium hydroxide and adding 0.1M 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) buffer to bring it to a
final concentration of 30 mg/ml. The solution was then brought
to a neutral pH by adding drops of 1N hydrochloric acid.

Treatment regimen
On PND 27, rats were quasi-randomly assigned to either
the L-KYN-treated group or the vehicle-treated control group
(n= 8/group) with two of each set of four group-housed rats
assigned to each condition. On PND 27-29,each rat received a daily
intraperitoneal injection of either the L-KYN solution (100 mg/kg)
or a comparable volume of 0.1M HEPES buffer (vehicle). Injec-
tions were administered on alternate sides of the abdomen to
reduce discomfort at the injection site. On PND 30–32, no injec-
tions were administered and the rats were not handled. This
3-day-on/3-day-off drug treatment regimen was repeated another
4 times resulting in a total of 15 injections of L-KYN (or vehicle),
the last of which occurred on PND 53. As shown previously, this
procedure increases KYNA concentration fourfold on days when
rats are treated with L-KYN (Akagbosu et al., 2012). Compared
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to injecting rats every day from PND 27–53, the 3-day injec-
tion cycle reduces distress and sensitivity at the injection site and
also minimizes the potential for metabolic adaptations following
chronic systemic L-KYN treatment for more than 3 consecutive
days (Vecsei et al., 1992).

Behavioral apparatus
The behavioral procedures were carried out in eight standard con-
ditioning chambers (Med Associates, Georgia, VT, USA) enclosed
in sound-attenuating cubicles (62× 56× 56 cm) outfitted with
exhaust fans to provide airflow and background noise (~68 dB).
The chambers consisted of aluminum front and back walls, clear
acrylic sides and top, and grid floors composed of stainless steel
rods (5 mm diameter) spaced 1.5 cm apart (center to center). Each
chamber was outfitted with a food cup that was recessed in the cen-
ter of the front wall. Retractable levers were positioned to the left
and right of the food cup. The levers were 4.8 cm long, positioned
6.2 cm above the grid floor, and protruded 1.9 cm when extended.
A 2.8-W house light was mounted 15 cm above the grid floor on
the back wall of the chamber and provided background illumi-
nation. Four panel lights were also present in the chamber but
were not used in this experiment. Three of the lights were located
10.8 cm above the floor, two of them were positioned 6.4 cm to the
left or right of the food cup, and one was located directly above
the food cup. A fourth panel light was located 15 cm above the
floor. The reinforcer was a 45-mg grain-based rodent food pellet
(Bioserv, Flemington, NJ, USA). A pair of photobeam sensors was
located across the front of the food cup. The levers and food deliv-
ery were controlled by a PC computer that also monitored breaks
in the photobeam.

Behavioral procedure
During PND 70–100, the rats participated in a prior experiment
with different visual, tactile, and olfactory stimuli in the test cham-
ber. In that experiment, rats were trained to press the right lever
and received several presentations of an auditory cue as well as six
mild footshocks (0.5 mA). Because of this previous lever-pressing
experience, the following procedure was used to extinguish lever
pressing prior to the start of the present experiment. Rats were
exposed to the conditioning chambers for 1 h on each of 4 consecu-
tive days. During these 1-h sessions, both levers were continuously
extended but responses had no consequence. By the fourth session,
the mean rate of responding on the left lever was 0.46 presses/min
for rats in the L-KYN group and 0.39 presses/min for rats in the
saline group. The mean rate of responding on the right lever was
0.98 presses/min for the L-KYN group and 1.27 presses/min for
the saline group.

On the first day of the present experiment, all rats received
one 30-min magazine training session in which food pellets were
delivered freely on a random time (RT) 30-s schedule, resulting
in approximately 60 pellets being delivered. On each of the next
7 days, all rats received a single 60-min session of training. Each
session consisted of 25 CS+ and 25 CS− trials with an average
intertrial interval (ITI) of 1 min. The CS+ trials consisted of a
10-s extension of one lever and delivery of two food pellets upon
retraction of the lever. The CS− trials consisted of a 10-s exten-
sion of the other lever with no delivery of food pellets. Trial order

was random with the exception that no more than two trials of
the same type were allowed to occur consecutively. Levers were
counterbalanced so that for half of the rats within each group the
CS+ lever was the right lever, and for the other half of the rats the
CS+ lever was the left lever.

Data analysis
The rate of lever pressing and the percentage of trials in which at
least one lever press occurred were recorded, as well as the number
of head entries into the food cup and percent of time spent in the
food cup. Data were analyzed using a 2 (Group: Vehicle vs. L-KYN)
× 2 (Cue: CS+ vs. CS−)× 7 (Session) analyses of variance.

EXPERIMENT 2
Subjects and drug treatment
Six male Long–Evans rats were obtained from Harlan Laborato-
ries on PND 21 and maintained as described in Experiment 1.
L-KYN or vehicle was prepared and administered as described in
Experiment 1 (n= 3 rats/group).

Preparation of hippocampal slices
On ~PND 70, rats were decapitated and the brains were quickly
removed and immersed in ice-cold artificial cerebral spinal fluid
(aCSF) saturated with 95% O2 and 5% CO2. The aCSF contained
(in mM): 125 NaCl, 2.5 KCl, 2.5 CaCl, 2.2 H2O, 1.3 MgCl2, 1.25
NaH2PO4, 25 Glucose, and 25 NaHCO3. Sagittal slices of hip-
pocampus (350 µm) were cut from each brain (3–5 sections/brain)
using a vibroslicer (Electron Microscopy Sciences, Hatfield, PA,
USA) and incubated for at least 1 h in a recovery chamber prior
to recording. Individual slices were then transferred to a recording
chamber, perfused continuously with oxygenated aCSF at a flow
rate of 3–4 ml/min, and maintained at a temperature of 32± 1°C.

Electrophysiological recordings
Excitatory postsynaptic field potentials (fEPSP) were recorded in
CA1 stratum radiatum (dendritic region) with a glass microelec-
trode pulled from 1.5-mm fiber-filled capillary tubing using a
Brown-Flaming electrode puller (P97, Sutter Instruments, Novato,
CA, USA) and filled with 150 mM NaCl. A platinum/iridium con-
centric bipolar electrode (FHC Inc., Bowdoinham, ME, USa) was
placed at the path of the Schaffer collaterals to evoke fEPSPs. Elec-
trical signals were amplified by an Axopatch-1D amplifier (Axon
Instruments, Foster, CA, USA). An Intel Pentium-based computer
with pCLAMP version 9.2 (Molecular Devices, Sunnyvale, CA,
USA) was used for on-line acquisition and off-line analysis of
data. LTP was induced at 25 or 50% of maximal amplitude by
high-frequency stimulation (HFS; 2 trains at 10-s intervals with
each train consisting of pulses delivered at 100 Hz).

Statistical analysis
Baseline fEPSPs were collected each min for the 10-min period
prior to the induction of LTP. Normalized values were calculated
from the average response from all rats. After induction, the peak
fEPSP amplitude was measured with respect to the baseline every
minute for a total of 42 min. Mean baseline data and mean post-
induction data were analyzed using a repeated measures ANOVA
with Group (vehicle, L-KYN) as the between-subjects variable and
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Time (pre, post) as the within-subjects variable. Interactions were
decomposed using pairwise t -tests. An alpha level of 0.05 was used
for all analyses.

RESULTS
EXPERIMENT 1
One L-KYN-treated rat was excluded from the data analysis
because responding was 3 standard deviations lower than the
group mean (a response was made on only 6.9% of the CS+
presentations; the next lowest in the L-KYN group was 83.4%).

Lever pressing
Response rate. As shown in Figure 1, the L-KYN-treated rats
exhibited higher rates of sign-tracking to the CS+ (as measured
by lever presses per minute) than control rats, while no differ-
ences were observed in responding to the CS−. A three-way
ANOVA revealed a main effect of Group [F(1,13)= 10.4,p < 0.01]
and a significant main effect of Cue [F(1, 13)= 63.5, p < 0.001].
The ANOVA also revealed significant interactions between Group
and Cue [F(1, 13)= 8.5, p < 0.02] and Cue and Session [F(6,
78)= 4.5, p < 0.001]. The main effect of Session was not statisti-
cally significant (p > 0.9), nor were the Group× Session (p > 0.9)
or Group×Cue× Session (p > 0.9) interactions.

To assess the source of the critical Group×Cue interac-
tion, a two-way ANOVA for the CS+ data revealed a significant
main effect of Group [F(1, 13)= 9.9, p < 0.01]. There was nei-
ther significant main effect of Session (p > 0.1) nor a significant
Group× Session interaction (p > 0.9). A two-way ANOVA for

FIGURE 1 | Lever-pressing behavior (responses/min) during the
autoshaping procedure in Experiment 1. Compared to vehicle-treated
rats, those that were treated with L-KYN throughout adolescence exhibited
an increase in sign-tracking as evidenced by significantly higher rates of
responding when they were tested as adults. Data are means±SEM.

the CS− cue revealed a significant main effect of Session [F(6,
78)= 7.1, p < 0.001], but no main effect of Group (p > 0.2) nor
a Group× Session interaction (p > 0.6). Thus, L-KYN treated
rats responded more to the CS+ than vehicle-treated rats, but
responding to the CS− was not different between groups.

Percentage of trials with a response. Figure 2 illustrates the
percentage of trials with at least one lever press during the pre-
sentation of the CS+ or the CS−. L-KYN-treated rats initially
responded on a greater percentage of CS+ trials than the vehicle-
treated rats, but the vehicle-treated rats eventually reached a sim-
ilar level of responding by day 7. A three-way ANOVA revealed
a main effect of Group [F(1, 13)= 8.3, p < 0.02]. There was also
a significant effect of Cue [F(6, 78)= 59.9, p < 0.001] and a sig-
nificant interaction between Session and Cue [F(6, 78)= 10.5,
p < 0.001], indicating a change in responding to each cue across
time. The main effect of Session was not significant (p > 0.8)
and neither were any of the interactions (Group×Cue, p > 0.5;
Group× Session, p > 0.1; Group×Cue× Session, p > 0.6).

A two-way ANOVA used to further investigate the effect of
chronic adolescent L-KYN administration on responding to the
CS+ revealed a significant main effect of Group [F(1, 13)= 6.1,
p < 0.03] and a significant main effect of Session [F(6, 78)= 5.8,
p < 0.001]. A significant Group× Session interaction was also
detected [F(6, 78)= 2.3, p < 0.05], indicating that the L-KYN-
treated rats and vehicle-treated rats responded differently to the
CS+ across the seven sessions. One-way ANOVAs for each session
revealed significant differences between the vehicle and L-KYN

FIGURE 2 |The percentage of trials in which a lever press occurred in
Experiment 1. Compared to vehicle-treated rats, those that were treated
with L-KYN throughout adolescence exhibited an increase in sign-tracking
as evidenced by a significantly higher percentage of trials with a lever press
when they were tested as adults. Data are means±SEM.
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groups on day 1 [F(1, 13)= 9.2, p < 0.01], day 2 [F(1, 13)= 5.5,
p < 0.03], and day 6 [F(1, 13)= 5.6, p < 0.03], a marginally sig-
nificant difference on day 3 [F(1, 13)= 4.5, p= 0.05], and no
significant differences between the groups on day 4 (p > 0.1), day
5 (p > 0.1), or day 7 (p > 0.4). For the CS−, only the main effect
of Session was significant [F(6, 78)= 7.1, p < 0.001], indicating
that there were no differences between the groups in responding
to the CS−. Thus, L-KYN-treated and vehicle-treated rats differed
in CS+ responding early but not late in training.

On both measures (response rate and percentage of trials with a
response), there was a significant difference between groups begin-
ning on the first session, as described above. To determine if L-
KYN-treatment simply resulted in higher levels of unconditioned
lever pressing, we analyzed responding during the first 5-trial block
in Session 1. There was no group difference in responding on
either measure during the first block of trials (ps > 0.1), indicating
that levels of unconditioned lever pressing did not differ between
groups. Instead, the group difference emerged over the course of
training.

Food cup behavior
A three-way ANOVA of the number of food cup entries during
the CS+ and CS− revealed a significant main effect of Cue [F(1,
13)= 6.6, p < 0.02] and a significant main effect of Session [F(6,

78)= 3.1,p < 0.01]. Neither the main effect of Group (p > 0.2) nor
any interactions (Cue×Group, p > 0.1; Session×Group, p > 0.8;
Session×Cue, p > 0.2; Cue× Session× group, p > 0.2) were sta-
tistically significant. Overall, food cup behavior was lower during
the CS+ than the CS−, likely due to sign-tracking to the CS+ since
lever pressing and food cup behavior are competing responses.
For time spent in the food cup, a three-way ANOVA revealed a
main effect of Session [F(6, 78)= 4.3, p < 0.001] and a significant
Group× Session interaction [F(6, 78)= 2.4, p < 0.03]. Analysis
of the interaction indicated that during Session 1, the L-KYN and
vehicle groups did not discriminate between CS+ and CS− tri-
als. During Session 7, however, L-KYN-treated rats spent more
time in the food cup during CS− trials than CS+ trials, while
vehicle-treated rats spent comparable amounts of time in the food
cup during CS+ and CS− trials (see Table 1). This was likely
due to the increased lever pressing during CS+ trials in L-KYN-
treated rats. There were no other significant main effects (Cue,
p > 0.3; Group, p > 0.2) or interactions (Cue×Group, p > 0.3;
Session×Cue, p > 0.6; Session×Cue× group, p > 0.2) detected.

EXPERIMENT 2
The LTP data are shown in Figure 3 and represent the average
values obtained from 11 sections from vehicle-treated rats and
15 sections from L-KYN-treated rats. A repeated measures

Table 1 | Food cup behavior.

L-KYN Vehicle

CS+ CS− CS+ CS−

Entries/min: Session 1 20.85±4.68 27.63±3.06 30.99±5.04 33.51±4.14

Session 7 7.44±4.59 23.83±6.58 17.52±5.34 25.29±3.72

% Time in food cup: Session 1 20.01±5.40 28.68±5.46 39.64±8.75 38.91±7.17

Session 7 7.33±3.51 24.84±9.39 26.59±11.91 25.61±7.79

FIGURE 3 | fEPSPs recorded in Experiment 2 from hippocampal
slices from adult rats before and after a burst of high-frequency
stimulation (HFS, 100 Hz; arrow). Values after HFS are expressed
relative to the baseline (average of the responses during the 10-min

period prior to LTP induction; dotted line). The burst of HFS induced LTP
in vehicle-treated rats but not in rats treated with L-KYN during
adolescence. Data are means±SEM (11 slices from vehicle-treated rats
and 15 slices from L-KYN-treated rats).

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 451 | 5

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DeAngeli et al. Kynurenic acid, autoshaping, and LTP

ANOVA revealed significant main effects of Group [F(1, 24)= 5.7,
p < 0.03] and Time [F(1, 24)= 14.4, p < 0.001] and a signifi-
cant Group×Time interaction [F(1, 24)= 5.4, p < 0.03]. In the
vehicle-treated group, there was a 305± 58% increase above base-
line in the amplitude of the fEPSP, which was statistically signif-
icant [t (10)= 3.5, p < 0.01]. For L-KYN-treated rats, the post-
induction response was only 150± 37% above baseline and did
not reach statistical significance [t (14)= 1.3, p > 0.2], indicating
that LTP was not induced. In addition, the post-induction response
was significantly greater in the controls compared to the L-KYN-
treated rats [t (24)= 2.6, p < 0.03], while there was no group
difference in the pre-induction baseline responses [t (24)= 1.0,
p > 0.3].

DISCUSSION
The present study examined the effects of increased KYNA con-
centration during adolescence on the brain and behavior in adult-
hood. Experiment 1 tested the hypothesis that rats treated with
L-KYN throughout adolescence, which increases KYNA levels
three- to fourfold (Akagbosu et al., 2012), would exhibit increased
sensitivity to reward-related cues later in adulthood. Consistent
with this hypothesis, we found that L-KYN-treated rats exhib-
ited more sign-tracking behavior compared to vehicle-treated rats
when they were tested drug-free as adults. This was manifest as
higher rates of lever pressing to the CS+ (a lever paired with food
reward) and a greater percentage of trials with a lever press. In
contrast, treatment with L-KYN did not increase responding to
the CS− (the lever that was not reinforced). These findings indi-
cate that exposure to elevated levels of KYNA during adolescence,
a critical time in development, results in an increased sensitivity
to reward-related cues later in life.

A similar increase in sensitivity occurs to drug-related cues
and is thought to arise from the sensitization of dopamine neu-
rons in response to drugs that imbue the drug-related stimuli
with excessive incentive salience (Robinson and Berridge, 1993,
2001). Interestingly, schizophrenia often co-occurs with a variety
of substance abuse disorders, particularly alcohol (Green et al.,
2008; Koskinen et al., 2009) and nicotine addiction (Lohr and
Flynn, 1992; Kumari and Postma, 2005; Brown et al., 2012) and
is thought to result from dysfunctional reward circuitry (Green
et al., 1999; Chambers et al., 2001). Rats treated subchroni-
cally with L-KYN show elevated levels of dopamine release in
NAc compared to controls in response to amphetamine injec-
tions (Olsson et al., 2009), suggesting that prior treatment with
L-KYN may sensitize the midbrain dopamine system and thus
enhance the incentive value attributed to rewards and their asso-
ciated cues. The present finding that exposure to KYNA increases
sign-tracking behavior suggests that elevated levels of KYNA in
persons with schizophrenia may contribute to the propensity to
engage in drug use. Indeed, sign-tracking is mediated by the NAc
and its dopaminergic inputs from the VTA (Flagel et al., 2011;
Chang et al., 2012; Saunders and Robinson, 2012) and KYNA
enhances dopaminergic neurotransmission in midbrain reward
circuits (Erhardt and Engberg, 2002). Moreover, dopamine recep-
tor antagonists such as apomorphine, as well as commonly used
antipsychotic drugs like clozapine and haloperidol, reduce sign-
tracking behavior (Dalley et al., 2002; Danna and Elmer, 2010)

while goal-tracking behavior (approaching the reward itself) is
unaffected.

In Experiment 2, we found that hippocampal LTP was defi-
cient in adult rats that had been treated with L-KYN during
adolescence compared to vehicle-treated controls, indicating that
elevated levels of KYNA impair LTP. Conversely, Potter et al.
(2010) demonstrated that LTP was enhanced in mice that lacked
kynurenine aminotransferase II, the major biosynthetic enzyme of
brain KYNA. These mice had significantly lower levels of KYNA
compared to wild-type controls. Together with the present find-
ings, this suggests that changes in the concentration of KYNA
can bi-directionally modulate the ability of hippocampal neu-
rons to undergo LTP, a process that is critical for normal brain
development and cognitive function.

The observed decrease in the ability to undergo LTP is the first
identified consequence of exposure to high levels of KYNA during
adolescence and provides new insight into the basis of previously
reported behavioral deficits. For example, it has been shown that
contextual fear conditioning (Akagbosu et al., 2012) and social
behavior (Trecartin and Bucci, 2011) are impaired in adult rats that
have been exposed to KYNA during adolescence. It is well estab-
lished that contextual fear memory is dependent on the hippocam-
pus (Maren et al., 1997) and likewise, social behavior is altered by
manipulations of hippocampus (Flores et al., 2005). Interestingly,
lesions of the hippocampus also affect sign-tracking. Ito et al.
(2005) found that hippocampal damage increased sign-tracking
behavior, similar to the effects of adolescent L-KYN exposure in
the present study. It is important to note, however, that Ito et al.
(2005) used a different CS+ and CS− modality (a touch screen)
than the one used here, which may involve different brain areas and
systems (Chang and Holland, 2013). In contrast, other studies have
found that hippocampal damage attenuates sign-tracking (Good
and Honey, 1991; Fitzpatrick and Morrow, 2014). In those studies,
the lack of a CS− lever may have contributed to the contrasting
results. Indeed, it has been shown that different results are some-
times obtained depending on whether a CS− lever is included in
the experimental design (Chang et al., 2012). Additionally, only
the ventral hippocampus was damaged in the study by Fitzpatrick
and Morrow (2014), whereas L-KYN treatment, and the resulting
increase in KYNA, likely affected the entire hippocampus. This is
important to consider because of the behavioral and anatomical
differences between dorsal and ventral subregions of hippocam-
pus (Fanselow and Dong, 2010). Regardless, the present findings
suggest that changes in the potential for hippocampal neurons
to undergo synaptic plasticity, induced by exposure to elevated
levels of KYNA during adolescence, may contribute significantly
to the cognitive and behavioral deficits observed later in adult-
hood. Future studies are needed to expand on this by identifying
the changes in hippocampal morphology and/or connectivity that
may result from exposure to high levels of KYNA during devel-
opment. In addition, there are likely to be changes in other brain
structures following KYNA exposure and further studies will be
needed to determine which behavioral impairments are due to
KYNA-induced changes in hippocampus per se.

Nonetheless, these findings have several potential implications
for understanding the neural substrates of schizophrenia. The
cognitive deficits in schizophrenia include similar impairments
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in hippocampal-dependent processes, including contextual and
spatial memory (Cohen et al., 1999; Waters et al., 2004; McClure
et al., 2008), sensory gating (Tregellas et al., 2007), and social with-
drawal (Sams-Dodd, 1999). Moreover, schizophrenia is thought to
involve alterations in hippocampal structure and function (Harri-
son, 2004), and neonatal ventral hippocampal lesions in rats result
in various symptoms of schizophrenia (Tseng et al., 2009; Peleg-
Raibstein et al., 2012). KYNA-induced changes in hippocampal
function may thus contribute significantly to the cognitive deficits
that are often associated with schizophrenia. In addition, it has
recently been proposed that the alterations in brain reward systems
and dopamine function thought to underlie schizophrenia may be
the result of dysfunctional modulatory control by the hippocam-
pus (Grace, 2012). In this way, changes in hippocampal function
resulting from high levels of KYNA may lead to dys-regulated
reward-related behavior.

The L-KYN injection regimen used here increases KYNA con-
centration during treatment, but levels return to normal at the
time of testing as adults (Akagbosu et al., 2012). Thus, the effects
we observed on sign-tracking and on hippocampal LTP cannot
be attributed to elevations in KYNA concentration at the time
of testing. It is also unlikely that the increase in lever pressing
to the CS+ merely reflects a change in baseline activity, since we
have previously shown that locomotor activity is unchanged by
adolescent exposure to KYNA (Akagbosu et al., 2012). Moreover,
there were no group differences in responding to the CS− in the
present study. It is possible that the effects of L-KYN administra-
tion could be due to changes in the concentration of kynurenine
metabolites other than KYNA. However, previous data indicate
that a higher dose of L-KYN (150 mg/kg compared to 100 mg/kg
in our study) failed to significantly increase levels of quinolinic
acid, for example (Shepard et al., 2003). Although the possibil-
ity of increasing the concentration of other metabolites could
be mitigated by directly injecting synthetic KYNA into the cere-
bral ventricles, there are several important advantages to elevating
KYNA levels by injecting L-KYN. For example, increasing KYNA
concentration by administering its precursor allows KYNA to be
synthesized only in brain regions that have the neural machinery to
produce KYNA. This is important because KYNA acts at receptors
that are distributed ubiquitously in the brain, yet the distribution
of KYNA-synthesizing astroglia is not uniform and the increase
in KYNA concentration in schizophrenia is region-dependent
(Schwarcz et al., 2001). In addition, the increase in KYNA observed
in schizophrenia is due to upregulation of enzymes such as TDO2,
which increases the availability of kynurenine (Miller et al., 2006).
Thus, increasing KYNA levels by administering L-KYN lends a
high degree of physiological relevance.

Schizophrenia is characterized by a constellation of positive
symptoms (e.g., hallucinations), negative symptoms (e.g., social
withdrawal), and cognitive deficits (e.g., attention, memory, inhi-
bition). While standard-of-care dopaminergic compounds are
often effective in alleviating positive symptoms, the cognitive
deficits are notoriously unresponsive to treatment (Blin, 1999) and
their cause has remained unclear. Similarly, although the majority
of persons diagnosed with schizophrenia also suffer from sub-
stance abuse disorders (Green and Brown, 2006; Hartz et al., 2014),
few treatment options exist and little is known about the biological

link between schizophrenia and substance abuse. The present
findings indicate that reward-related behavior and hippocam-
pal synaptic plasticity are compromised in adult rats that had
been exposed to high levels of KYNA during adolescence, a criti-
cal stage in neural development. Consistent with the notion that
KYNA levels may be particularly impactful during development, it
has been shown previously that chronic L-KYN treatment during
adolescence, but not during adulthood, reduces social behavior
(Trecartin and Bucci, 2011). Moreover, the increase in KYNA con-
centration observed in persons with schizophrenia likely begins
early in life (Miller et al., 2004, 2006, 2008; Holtze et al., 2008;
Asp et al., 2010), and the symptoms of schizophrenia typically
emerge during late adolescence (Harrop and Trower, 2001). How-
ever, additional studies are needed to fully differentiate between
the behavioral, physiological, and morphological changes induced
by exposure to KYNA during adolescence compared to adulthood.
Nonetheless, the findings add to a growing literature implicating
an elevation in KYNA concentration as a causal factor leading to
the cognitive and behavioral symptoms of schizophrenia. The data
also support the notion that the development of anti-kynurenergic
compounds may provide a new therapeutic avenue for treating
schizophrenia (Erhardt et al., 2009; Wonodi and Schwarcz, 2010;
Schwarcz et al., 2012; Wu et al., 2014).
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