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Abstract: A systemic inflammatory response induces multiple organ dysfunction and results in poor
long-term neurological outcomes in neonatal sepsis. However, there is no effective therapy for treating
or preventing neonatal sepsis besides antibiotics and supportive care. Therefore, a novel strategy
to improve neonatal sepsis-related morbidity and mortality is desirable. Recently, we reported that
prophylactic therapy with human amniotic stem cells (hAFSCs) improved survival in a rat model of
lipopolysaccharide (LPS)-induced neonatal sepsis through immunomodulation. Besides improving
the mortality, increasing survival without major morbidities is an important goal of neonatal intensive
care for neonatal sepsis. This study investigated long-term neurological outcomes in neonatal sepsis
survivors treated with hAFSCs using the LPS-induced neonatal sepsis model in rats. We found
that prophylactic therapy with hAFSCs improved spatial awareness and memory-based behavior
in neonatal sepsis survivors at adolescence in rats. The treatment suppressed acute reactive gliosis
and subsequently reduced astrogliosis in the hippocampal region over a long period of assessment.
To the best of our knowledge, this is the first report that proves the concept that hAFSC treatment
improves cognitive impairment in neonatal sepsis survivors. We demonstrate the efficacy of hAFSC
therapy in improving the mortality and morbidity associated with neonatal sepsis.
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1. Introduction

Recent advances in neonatal care have significantly improved the survival rate of preterm infants,
with low birth weight or with medical conditions. However, the mortality rate of neonatal sepsis is
very high, being 10–30% [1–3]. Moreover, neonatal sepsis survivors often suffer from severe functional
disabilities for a long time. The incidence of neonatal sepsis is inversely correlated with birth weight,
and it has been reported that 4–14% of the neurological sequelae among low-birth-weight infants are
caused by neonatal sepsis [4]. Sepsis is evoked by an imbalance in host immune response against
invasive microorganisms. A systemic inflammatory response induces multiple organ dysfunction
and can often cause hypoperfusion, hypoxia, and free radical damage to the brain, resulting in poor
long-term neurological outcomes [5–8]. To date, a number of treatments for neonatal sepsis have been
evaluated. However, there is presently no effective therapy for the treatment or prevention of neonatal
sepsis besides antibiotics and supportive care. Therefore, it is important to develop innovative and
efficacious strategies to reduce neonatal sepsis-related morbidity and mortality.
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Mesenchymal stem cells (MSCs) provide a promising platform for cell-based therapy. Owing to
their immunomodulatory properties, MSCs are being investigated for prevention and treatment of
immune-related diseases, including sepsis. Human amniotic fluid stem cells (hAFSCs) are MSCs
derived from the fetus, which can be established before birth [9,10]. They have high proliferative
potential and anti-inflammatory and immunomodulatory properties [11–13]. Recently, we reported
that prophylactic therapy with hAFSCs improved survival in a rat model of lipopolysaccharide
(LPS)-induced neonatal sepsis through immunomodulation. The treatment was effective in reducing
systemic inflammation and in improving mortality in neonatal rats 48 h after LPS exposure [14].
Besides improving mortality, increasing survival without major morbidities in neonatal sepsis is
another important goal of neonatal intensive care. There are concerns that improved survival of
infants treated with hAFSCs might be accompanied by an increase in disabling morbidity in survivors.
However, the long-term outcomes in neonatal sepsis survivors treated with hAFSCs remain to
be elucidated.

The aim of this study was to determine the long-term neurological outcomes, especially spatial
awareness and memory-related behavioral outcomes, in neonatal sepsis survivors after hAFSC
treatment using a rat model of LPS-induced neonatal sepsis.

2. Results

2.1. Phenotypic Characterization of hAFSCs

The hAFSCs used in this study were evaluated for differentiation potential and surface markers to
ensure that they met the definition of MSCs. As described in our previous report [14], hAFSCs did not
express hematopoietic surface markers (CD34, CD14, and CD45) but expressed mesenchymal markers
(CD90, CD73, and CD105). They also exhibited the ability to differentiate into osteocytes, chondrocytes,
and adipocytes.

2.2. hAFSC Administration Reduced the Glial Fibrillary Acidic Protein (GFAP)-Positive Area after LPS
Administration

LPS administration induced neuroinflammation in the rat brain, as indicated by GFAP- and ionized
calcium-binding adapter molecule 1 (Iba-1)-positive cells. As reported previously [14], LPS injection elicited
neuroinflammation 48 h after LPS exposure, whereas the inflammatory changes were significantly
attenuated by hAFSC treatment. Although we previously reported a reduction in neuroinflammation
in the entire hippocampus after hAFSC treatment, in this study, we analyzed neuroinflammation in
three hippocampal regions, viz., CA1, CA3, and dentate gyrus (DG).

In the CA3 region, the LPS group had significantly larger GFAP-positive area than the control
group, and the hAFSC treatment significantly attenuated the LPS-induced overexpression of GFAP.
A similar trend was observed in the CA1 and DG regions, but there was no significant difference
between the groups (Figure 1a,c). The same experiment was conducted in individuals that survived
for more than 48 h after LPS administration and were maintained for 4 weeks. The GFAP-positive
area was significantly greater in the CA1 region in the LPS group than in the control group; however,
this effect was significantly inhibited by hAFSC treatment (Figure 1b,d).
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Figure 1. Representative images of immunofluorescence staining for glial fibrillary acidic protein 
(GFAP) in the hippocampus (CA1, CA3, dentate gyrus (DG) regions) and cerebral cortex of rats at 48 
h (a) and 4 weeks (b) after lipopolysaccharide (LPS) administration. A graph showing the mean 
GFAP-positive area (c) and (d), with a significant difference in the CA3 region at 48 h (c). This 
difference was still observed after 4 weeks (d). Data are means ± SEM (n = 5). * p < 0.05. Scale bar = 100 
μm. 

2.3. hAFSC Administration Reduced Iba-1-Positive Area after LPS Administration 

We previously reported that LPS treatment increased the number of Iba-1-positive cells in the 
rat brain, 48 h after LPS treatment [14]. In the present study, as described above, we also determined 
the Iba-1-positive area in the hippocampal CA1, CA3, and DG regions. At 48 h after LPS challenge, 
sepsis increased the Iba-1-positive area in the CA1, CA3, and DG regions, compared with that in the 
control group. However, hAFSC administration prevented microglial activation in these 
hippocampal regions (Figure 2a,c). 
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Figure 1. Representative images of immunofluorescence staining for glial fibrillary acidic protein
(GFAP) in the hippocampus (CA1, CA3, dentate gyrus (DG) regions) and cerebral cortex of rats at
48 h (a) and 4 weeks (b) after lipopolysaccharide (LPS) administration. A graph showing the mean
GFAP-positive area (c) and (d), with a significant difference in the CA3 region at 48 h (c). This difference
was still observed after 4 weeks (d). Data are means ± SEM (n = 5). * p < 0.05. Scale bar = 100 µm.

2.3. hAFSC Administration Reduced Iba-1-Positive Area after LPS Administration

We previously reported that LPS treatment increased the number of Iba-1-positive cells in the
rat brain, 48 h after LPS treatment [14]. In the present study, as described above, we also determined
the Iba-1-positive area in the hippocampal CA1, CA3, and DG regions. At 48 h after LPS challenge,
sepsis increased the Iba-1-positive area in the CA1, CA3, and DG regions, compared with that in the
control group. However, hAFSC administration prevented microglial activation in these hippocampal
regions (Figure 2a,c).
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Figure 2. Representative images of immunofluorescence staining for ionized calcium-binding adapter 
molecule 1 (Iba-1) in the hippocampus (CA1, CA3, dentate gyrus (DG) regions) and cerebral cortex of 
rats at 48 h (a) and 4 weeks (b) after lipopolysaccharide (LPS) administration. A graph showing the 
mean Iba-1-positive area (c) and (d), with a significant difference in the CA1, CA3, and DG regions at 
48 h (c). However, after 4 weeks, there was no difference between any of the groups (d). Data are 
means ± SEM (n = 5). * p < 0.05. Scale bar = 100 μm. 

However, the overexpression of Iba-1 elicited by the LPS challenge was not observed 4 weeks 
after the exposure. There was no significant difference between the three groups in the Iba-1-positive 
area in all the regions, 4 weeks after sepsis. These results suggest that microglial activation was 
suppressed at an earlier time during the process of healing of sepsis, whereas the activation of 
astrocytes, which is represented by GFAP-positive cells, lasted for a long time (Figure 2b,d). 
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Figure 2. Representative images of immunofluorescence staining for ionized calcium-binding adapter
molecule 1 (Iba-1) in the hippocampus (CA1, CA3, dentate gyrus (DG) regions) and cerebral cortex of
rats at 48 h (a) and 4 weeks (b) after lipopolysaccharide (LPS) administration. A graph showing the
mean Iba-1-positive area (c) and (d), with a significant difference in the CA1, CA3, and DG regions
at 48 h (c). However, after 4 weeks, there was no difference between any of the groups (d). Data are
means ± SEM (n = 5). * p < 0.05. Scale bar = 100 µm.

However, the overexpression of Iba-1 elicited by the LPS challenge was not observed 4 weeks after
the exposure. There was no significant difference between the three groups in the Iba-1-positive area in
all the regions, 4 weeks after sepsis. These results suggest that microglial activation was suppressed at
an earlier time during the process of healing of sepsis, whereas the activation of astrocytes, which is
represented by GFAP-positive cells, lasted for a long time (Figure 2b,d).
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2.4. hAFSC Administration Did Not Affect Dysmyelination

In previous reports, degradation of white matter and reduced positive staining regions for
MBP were observed in brain sections of an LPS-induced rat model of periventricular leukomalacia
(PVL) [15]. Contrary to our expectations, we observed that the expression of MBP in the hippocampus
was comparable between the three groups at adolescence (Figure 3a,b). This phenomenon was also
confirmed at the mRNA level (Figure 3c).
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Figure 3. Representative images of immunofluorescence staining for MBP in the white matter at 42 days
of age (a). There were no significant differences between any of the groups in the MBP-positive area
(b) and in the expression of MBP (c). Data are means ± SEM (n = 5). Scale bar = 1 mm.

2.5. hAFSC Administration Improved Spatial Awareness and Memory-Based Behavior

We analyzed the ability of rats to find a target box to assess their learning, following the method
described previously [16,17]. In all the three groups, the time to find the target box and the number
of errors were significantly decreased as the number of trials increased for each animal (Figure 4a,c).
The animals appeared to explore the platform randomly in the first trial on the first day, and by
the fourth day, they were able to gradually refine their search patterns and went directly to escape.
These results suggest that the animals showed spatial learning ability. We then compared the mean
time taken for exploration for a total of eight trials. The results of this experiment showed that the time
required for the search was significantly prolonged in the LPS group compared with that in the control
group, and the prolongation was significantly attenuated by hAFSC treatment (Figure 4b, p < 0.05 in
all the cases). The analysis of the number of errors showed a trend similar to that seen for the time
required for ambulating to escape (Figure 4d). The number of errors significantly increased in the
LPS group compared to that in the control group, and the increase was significantly attenuated by
hAFSC treatment.
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Figure 4. Results of Barnes maze for rats. Rats of all groups were subjected to Barnes maze, 2 weeks after
lipopolysaccharide (LPS) administration. Performance of rats in the control group (n = 5), LPS group
(n = 5), and human amniotic stem cells (hAFSC+LPS) group (n = 5) in the Barnes maze Trials 1–8.
Results are means ± SD (n = 5). * p < 0.05 compared with the corresponding data in the first trial on day 1
(a) and (c). Over the course of Trials 1–8, rats in the LPS group took longer to escape (b) and made more
errors (d) than did rats in the control group; the performance was improved in the hAFSC+LPS group.
ANOVA with repeated measures showed these differences to be significant in all the cases (* p < 0.05).

3. Discussion

Although concerns have been raised that improved survival of infants treated with hAFSCs
might be accompanied by an increase in disabling morbidity in neonatal sepsis survivors, in this
study, we found that prophylactic therapy with hAFSCs improved cognitive impairment in neonatal
sepsis survivors at adolescence in rats. Together with our findings in a previous study [14], herein,
we prove that hAFSC treatment improves mortality and morbidity in neonatal sepsis. The treatment
suppresses acute reactive gliosis, such as astrocyte and microglial activation, and subsequently reduces
astrogliosis in the hippocampal region for a long time, and could result in a favorable long-term
neurological outcome.
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It is essential to identify whether prophylactic treatment with hAFSCs improves survival without
major morbidities for developing new clinical strategies. This would ensure that the therapy not
only reduces mortality, but is also effective in improving the quality of life in neonatal sepsis
survivors. Because brain damage in neonatal sepsis survivors can be induced by a variety of factors,
including preterm birth, inflammation, infection, hypoxia, and ischemia [4], in the present study,
we investigated the therapeutic potential of hAFSCs in the developing central nervous system with
an emphasis on neuroinflammation. Previous preclinical reports indicate that LPS administered
at P3–4 causes acute inflammation involving reactive astrogliosis associated with microstructural
alterations in the developing white matter [18]. In this study, we used a neonatal rat model of LPS
administration to induce systemic inflammation in the whole body. In particular, the procedure evoked
neuroinflammation, as indicated by reactive gliosis [4,19]. Because the hippocampal region plays
a central role in regulating spatiotemporal and cognitive functions and is susceptible to injury by
ischemia and inflammation [20–22], we investigated this region in the present study. We found that
hAFSC administration significantly attenuated LPS-induced reactive gliosis in the hippocampal region
in the early stages. Thereafter, microgliosis spontaneously resolved in the chronic phase regardless of
the hAFSC treatment. On the contrary, astrogliosis lasted for a longer time without hAFSC treatment
than it did with hAFSC treatment. These results suggest that hAFSCs suppress neuroinflammation
following the suppression of the inflammatory reaction in the whole body in the early phase, resulting in
reduced astrogliosis and improved spatial awareness and memory-based behavior at adolescence.

Because the brains of 3-day old neonatal rats are known to be immature and vulnerable [23,24],
inflammation of brain during this period persists into the adulthood and is associated with cognitive
impairment [25–27]. In line with previous reports, we demonstrate that LPS-induced inflammation in
3-day old neonatal rats leads to the impairment of spatial awareness and memory-based behavior at
adolescence using the Barnes maze, which is one of the most frequently used methods to investigate
cognitive functions [28–31]. These findings can provide a basis for the higher rate of cognitive and
memory impairment in longitudinal studies of human sepsis survivors [32]. In this study, we found
that prophylactic therapy with hAFSCs improved cognitive impairment in neonatal sepsis survivors at
adolescence in rats, followed by the resolution of histological neuroinflammation in the hippocampus.
Together with our previous findings, we confirm that hAFSCs have the therapeutic potential to improve
mortality and morbidity by ameliorating inflammation in neonatal sepsis.

PVL, characterized by impaired myelination, results in the maldevelopment of oligodendrocytes,
leading to cerebral palsy [33]. However, we could not show both impaired myelination after LPS
challenge and the therapeutic effect of hAFSCs on the expression of MBP in the rat brain. Previously,
MSCs or MSC-derived extracellular vesicles were shown to have the potential to ameliorate PVL in
rats at postnatal day 11 (P11) or P12. In these reports, the authors investigated the therapeutic effect of
MSCs or MSC-derived extracellular vesicles on MBP expression using a PVL model created by exposure
of 3- or 4-day-old rats to LPS, similar to our neonatal sepsis model. In contrast to these reports, in our
study, MBP expression in the hippocampus was comparable between hAFSCs+LPS and LPS groups at
adolescence. There are several factors that might have contributed to these differences between the
outcomes of the present and previous studies. First, in our study, the reduction in the expression of MBP
in neonatal sepsis survivors might have already been compensated for by endogenous mechanisms.
Another possibility is the difference in the areas that were observed. We determined the expression of
MBP in the hippocampus, whereas in previous studies, the expression was determined in the corona
radiata and corpus callosum. Finally, the differences could be due to the difference in the number
of doses. We administered a single dose of hAFSCs, whereas Dormmelschmidt et al. reported the
results of administering two doses of MSC-derived extracellular vesicles. Repeated administration
of hAFSCs might further reduce reactive astrogliosis, restore myelination deficits, and improve
neurological outcomes.

This study has several limitations. First, the Barnes maze is quite lengthy to perform behavioral
analysis on newborns. As we could not conduct an assessment of behavior and memory functions
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during the neonatal period, we could not investigate the changes in the same individuals from the
neonatal to the adolescent stage. Next, it is impossible to explain the therapeutic effect of hAFSCs
by reduction of reactive gliosis in the hippocampus alone. Further studies are required to clarify the
detailed mechanisms underlying the protective potential of hAFSCs.

To the best of our knowledge, this is the first report to describe the concept that treatment with
hAFSCs improves cognitive impairment in neonatal sepsis survivors. Together with our previous findings
that prophylactic therapy with hAFSCs improves survival in neonatal sepsis through immunomodulation,
the results of the present study show that hAFSCs have the therapeutic potential to reduce the mortality
and morbidity associated with neonatal sepsis.

4. Materials and Methods

4.1. Isolation, Culture, and Immunophenotypic Characterization of CD117+ Amniotic Fluid Cells

hAFSCs were isolated from amniotic fluid using our previously reported method [14]. Briefly,
the collected amniotic fluid was centrifuged and the amniotic fluid cells were isolated. After the cells
were cultured, CD117-positive cells were isolated using a magnetic cell sorting kit (Miltenyi Biotec,
Auburn, CA, USA). According to the criteria defined by the International Society for Cellular Therapy
for MSCs, the obtained cells were confirmed to be positive for mesenchymal markers and negative for
hematopoietic markers by flow cytometry and to have the potential to differentiate into adipocytes,
osteocytes, and chondrocytes. Subsequently, hAFSCs were cultured in the growth medium, which was
composed of α-modified Eagle minimum essential medium (αMEM; Invitrogen, Carlsbad, CA, USA),
15% fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA, USA), 1% L-glutamine (Invitrogen, Carlsbad,
CA, USA), 1% penicillin/ It consisting of streptomycin (Invitrogen, Carlsbad, CA, USA), and 40%
AmnioMax-II (Life Technologies, Carlsbad, CA, USA), and used in the experiments.

4.2. Animals

All experiments were approved by the Animal Committee of Keio University, Japan (no. 18003-(0)
and -(1)). We created a rat model of LPS-induced neonatal sepsis as described previously [14,34]. Briefly,
male Sprague–Dawley (SD) rat pups (Charles River Laboratories Japan Inc., Kanagawa, Japan) at P3 were
administered an intraperitoneal (i.p.) injection of 0.25 mg/kg LPS (Escherichia coli O55: B5, Sigma-Aldrich,
Steinheim, Germany) dissolved in saline. A total of 40 animals were prepared, of which 15 animals that
survived over 48 h after LPS administration were used in subsequent experiments (survival rate at 48h
after LPS administration without hAFSCs pretreatment: 37.5% (15/40)). As a prophylactic treatment,
hAFSCs dissolved in saline were administered i.p. 3 h before LPS administration (survival rate at 48 h after
LPS administration with hAFSCs pretreatment: 53.5% (15/28)). The sham intervention was performed
using the same amount of saline i.p. (survival rate at 48 h after the sham intervention: 100% (15/15)).

At 48 h and 4 weeks after LPS administration, the rats were sacrificed and their brains were
removed. The removed specimens were fixed by immersing in 4% paraformaldehyde (PFA) for
24 h. Subsequently, a cryostat was used to make 7 µm sections of frozen samples that included the
hippocampus. We also conducted a 4-day behavioral study using the methods described in the next
section, starting 4 weeks after LPS treatment. Subsequently, sections of the brain were prepared in the
same manner as described above, 6 weeks after LPS administration.

4.3. Immunohistochemical Analysis

Astrocytes and microglial cells were assessed using anti-GFAP antibodies (Dako Corporation,
Carpinteria, CA, USA) and Iba-1 (Wako, Osaka, Japan, 1:100). Nuclei were counterstained with Hoechst
33342 (Wako, Osaka, Japan, 1:100).

Images were captured using a BZX-810 camera (Keyence, Osaka, Japan), and morphometric
analysis was performed using the ImageJ software (https://imagej.nih.gov/ij/). To assess the extent of
neuroinflammation, we counted GFAP-and Iba-1-positive areas in the brain sections.

https://imagej.nih.gov/ij/
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4.4. RNA Extraction and Real-Time RT-PCR Analysis for MBP

For total RNA extraction, periventricular white matter tissue was removed from the total coronal
sections, approximately−1 to +1 mm from the bregma. Tissues were immediately immersed in RNAlater
solution (Invitrogen, Carlsbad, CA, USA) and stored at 4 ◦C until they were used for experiments.
The tissues were homogenized using QIAshredder spin columns (Qiagen Inc., Hilden, Germany).
Total RNA was isolated using the RNeasy mini kit (Qiagen Inc., Hilden, Germany) according to the
manufacturer’s instructions. Reverse transcription of total RNA was performed using the Prime Script
RT Master Mix (Takara Bio Inc., Shiga, Japan). Primers used in real-time PCR were as follows: MBP:
5′-CTC TGG CAA GGA CTC ACA CAC-3′ (forward) and 5′-TCT GCT GAG GGA CAG GCC TCT C-3′

(reverse). Quantitative PCR was performed using SYBR Premix Ex Taq II (Tli RNaseH Plus; Takara Bio,
Shiga, Japan) on the Bio-Rad CFX96 Real-Time PCR System (Bio-Rad, Richmond, CA, USA). The assay
was performed in duplicate for each sample. The relative gene expression in each sample was analyzed
using the 2−∆∆CT method. The gene expression values were normalized to those of β-actin, which was
used as an internal control.

4.5. Barnes Maze Testing

We used an apparatus based on the one first described by Barnes [30]. The Barnes maze is
designed to test spatial learning and memory in rodents. The top panel of the maze was made of
circular white acrylic (5 mm thick) with a diameter of 1220 mm, and had 20 evenly spaced holes, 10 cm
in diameter, at the edges (Sugahara Kogei Co., Ltd., Chiba, Japan, Figure S1A). The top panel was
placed on a desk at a height of approximately 150 cm above the ground. This is the height from which
an animal cannot voluntarily jump down to the ground. At the end of the platform, under one of
the holes, there was a dark box where the rat could hide. This box, called the target box, was kept in
a constant position relative to the room throughout the experiment. Two 32-watt fluorescent lights
(National FHF32EX-N-H; Panasonic Co., Osaka, Japan) with reflectors were installed directly above
the maze [31]. Various objects (large metal door, lab bench with microscope, sink, rearing cage rack,
and an in vivo imaging system (IVIS, Caliper Life Sciences, Hopkinton, MA, USA) were set up around
the maze, which provided ample spatial cues for the rats (Figure S1B,C). Based on these spatial cues,
the rats were encouraged to enter the target box as quickly as possible to escape the bright light.

The experimental method was based on that described in previous studies [16,17]. Animals
were made to perform two trials, with a 15-min gap between trials; the trials were performed on four
different days. In each trial, the animal was allowed to stay in the maze for a maximum of 3 min and
find the target box. The errors (indicated by the animal placing its nose or paws on the edge of a hole
that was not connected to the target box) and the time taken to reach the target box were measured for
each trial. Once the animal reached the target box, it was allowed to remain there for 2 min and then
moved to its rearing cage and allowed to rest for 15 min; it was subsequently returned to the maze for
another trial. Animals that failed to find the target box within 3 min were manually guided to the box
by the experimenter and were allowed to stay there for 2 min. After each test, the Barnes maze was
cleaned with paper towels wet with 70% ethanol to eliminate odor cues.

4.6. Statistical Analysis

All values are expressed as means ± standard error. Statistical differences between groups were
assessed using analysis of variance and Tukey’s honest significant difference. All analyses were
performed with the SPSS Statistics software (Version 25, IBM Inc., Armonk, NY, USA). p values less
than 0.05 were considered statistically significant.

5. Conclusions

Severe life-threatening neonatal sepsis worsens neurological prognosis. However, the anti-inflammatory
effects of hAFSCs could reduce neuroinflammation in the brain and improve spatial awareness and
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memory-based behavior. Together with our previous findings, the results of the present study show
that hAFSCs have therapeutic potential to reduce the mortality and morbidity associated with neonatal
sepsis. The novel treatment strategy using hAFSCs could be effective for neonatal sepsis.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/24/
9590/s1.
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