## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Creatininium 2-chloroacetate

A. Jahubar Ali, ${ }^{\text {a }}$ S. Athimoolam ${ }^{\text {b }}$ and S. Asath Bahadur ${ }^{\text {c }}$<br>a Department of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, ${ }^{\text {b }}$ Department of Physics, University College of Engineering Nagercoil, Anna University of Technology, Tirunelveli, Nagercoil 629004 , India, and ${ }^{\text {c }}$ Department of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India<br>Correspondence e-mail: athi81s@yahoo.co.in

Received 17 March 2012; accepted 20 March 2012

Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.041 ; w R$ factor $=0.117$; data-to-parameter ratio $=12.1$.

In the title compound (systematic name: 2-amino-1-methyl-4-oxo-4,5-dihydro- 1 H -imidazol-3-ium 2-chloroacetate), $\mathrm{C}_{4} \mathrm{H}_{8^{-}}$ $\mathrm{N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}^{-}$, the molecular aggregations are stabilized through classical $(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})$ and non-classical $(\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ ) hydrogen-bonding interactions. The cations are linked to the anions, forming ion pairs through two N $\mathrm{H} \cdots \mathrm{O}$ bonds that produce characteristic $R_{2}^{2}(8)$ ring motifs. These cation-anion pairs are connected through another N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, leading to an $R_{4}^{2}(8)$ ring motif. Further weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions link the molecules along the $a$ axis, while other $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions generate zigzag chains extending along $b$.

## Related literature

For related structures, see: Ali et al. (2011a,b); Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007); Bahadur, Rajalakshmi et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological importance of creatinine, see: Madaras \& Buck (1996); Sharma et al. (2004); Narayanan \& Appleton (1980).


## Experimental

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}{ }^{-}$
$V=902.8(2) \AA^{3}$
$M_{r}=207.62$
Monoclinic, $P 2_{1} / n$
$Z=4$
Mo $K \alpha$ radiation
$a=5.7993$ (8) А
$b=13.934$ (2) A
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.24 \times 0.22 \times 0.19 \mathrm{~mm}$
$\beta=95.326$ (2) ${ }^{\circ}$
Data collection
Bruker SMART APEX CCD area-
1587 independent reflections 1472 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ( $\mathrm{A}^{\circ}{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 15-\mathrm{H} 1 N \cdots \mathrm{O} 2{ }^{\text {i }}$ | 0.81 (3) | 2.02 (3) | 2.762 (2) | 152 (2) |
| $\mathrm{N} 15-\mathrm{H} 2 N \cdots \mathrm{O} 22$ | 0.94 (3) | 1.82 (3) | 2.758 (2) | 179 (2) |
| $\mathrm{N} 14-\mathrm{H} 14 \mathrm{~N} \cdots \mathrm{O} 21$ | 0.86 (3) | 1.83 (3) | 2.686 (2) | 173 (2) |
| $\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 13{ }^{\text {ii }}$ | 0.96 | 2.46 | 3.305 (3) | 147 |
| $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{O} 13^{\text {iii }}$ | 0.96 | 2.55 | 3.448 (3) | 156 |
| $\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{~N} 15^{\text {iv }}$ | 0.97 | 2.78 | 3.695 (3) | 157 |
| $\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O} 2{ }^{\text {iii }}$ | 0.97 | 2.36 | 3.208 (2) | 146 |

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $\quad x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii)
$x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $x+1, y, z$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC.

AJA and SAB sincerely thank the Vice Chancellor and Management of the Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA thanks the Principal and the Management of the National College of Engineering for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5215).

## References

Ali, A. J., Athimoolam, S. \& Bahadur, S. A. (2011a). Acta Cryst. E67, o2905. Ali, A. J., Athimoolam, S. \& Bahadur, S. A. (2011b). Acta Cryst. E67, o1376. Bahadur, S. A., Kannan, R. S. \& Sridhar, B. (2007). Acta Cryst. E63, o2387o2389.
Bahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. \& Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.
Bahadur, S. A., Sivapragasam, S., Kannan, R. S. \& Sridhar, B. (2007). Acta Cryst. E63, o1714-o1716.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

## organic compounds

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Madaras, M. B. \& Buck, R. P. (1996). Anal. Chem. 68, 3832-3839.
Narayanan, S. \& Appleton, H. D. (1980). Clin. Chem. 26, 1119-1126

Sharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. \& Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971-2977

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

## supplementary materials

Acta Cryst. (2012). E68, o1285-o1286 [doi:10.1107/S1600536812012068]

## Creatininium 2-chloroacetate

A. Jahubar Ali, S. Athimoolam and S. Asath Bahadur

## Comment

Creatinine, a nitrogenous organic acid, is found in the muscle tissue of vertebrates mainly in the form of phosphocreatine and supplies energy for muscle contraction. Also, it is a blood metabolite of considerable importance in clinical chemistry, particularly as an indicator of renal function. It has been proven that determination of creatinine is more valuable for the detection of renal dysfunction than that of urea (Sharma et al., 2004). In renal physiology, creatinine clearance rate, CCr, (Madaras \& Buck, 1996) is the volume of blood plasma that is cleared of creatinine per unit time. Clinically, creatinine clearance is a useful measure for estimating the glomerular filtration rate (GFR) of the kidneys. An abnormal level of creatinine in biological fluids is an indicator of various disease states (Narayanan \& Appleton, 1980). Also, the effective protonation site on the creatinine molecule ( N atoms) can form intermolecular interactions such as hydrogen bonds that play an essential role in the formation of supramolecular systems. As we have stated in our previous papers, we are interested on the the specificity of recognition between inorganic / organic acids and the cretinine molecule. Hence, the title compound is reported here.
The asymmetric unit of the title compound, (I), contains one protonated creatinine molecule as the creatininium cation and one deprotonated monochloroacetic acid as the monochloroacetate anion (Fig.1). Protonation of the N site of the cation is evident from $\mathrm{C}-\mathrm{N}$ bond distances and the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle. Other bond distances and angles are comparable with those found in creatininium hydrogen maleate (Ali et al., 2011a), creatininium cinnamate (Ali et al., 2011 b), creatininium hydrogen oxalate monohydrate (Bahadur, Kannan et al., 2007), creatininium benzoate (Bahadur, Sivapragasam et al., 2007) and bis(creatininium) sulfate (Bahadur, Rajalakshmi et al., 2007). The deprotonation on the COOH groups of the monochloroacetic acid is confirmed from the $-\mathrm{COO}^{-}$bond geometry. The plane of the five membered ring in the cation and that of the carboxylate group of the anion are oriented at an angle of $9.5(1)^{\circ}$.
In the crystal structure, molecular aggregations are stabilized through classical ( $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ ) and non-classical $(\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ ) hydrogen bonding interactions (Table 1). Cations are linked to anions forming ion pairs through two $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ bonds that produce characterestic $R_{2}{ }^{2}(8)$ ring motifs (Bernstein et al., 1995). This type of ring motif is observed in most structures of creatinine salts of inorganic/organic acids, especially when carboxylate anions are present (Fig. 2). These cation-anion pairs are connected through another $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond leading to an $R_{4}{ }^{2}(8)$ ring motif around the inversion centres of the unit cell. These centrosymmetric ring motifs are almost planar and oriented with an angle of $78.1(1)^{\circ}$ to each other and lie in the $(1 \overline{31})$ and $(13 \overline{1})$ planes respectively. leading to strong diffraction peaks for the planes. These molecular aggregates are further connected through three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. The C $-\mathrm{H} \cdots \mathrm{N}$ contacts link the molecules along the $a$ axis. Further, other $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions generate zigzag chains extending along $b$. Notably, the electronegative Cl atoms are not involved in any classical or non-classical hydrogen bonding interactions.

## Experimental

The title compound was crystallized from an aqueous mixture containing creatinine and monochloroacetic acid in a $1: 1$ stoichiometric ratio at room temperature by the slow evaporation technique.

## Refinement

H atoms bound to N and involved in hydrogen bonds were located from a difference Fourier map and refined isotropically. Other H atoms except were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ ( $\mathrm{CH})$ and $0.96 \AA\left(-\mathrm{CH}_{3}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}$ (parent atom).

## Computing details

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: $S H E L X T L / P C$ (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).


## Figure 1

The asymmetric unit of the title compound (I) with the numbering scheme for the atoms and $50 \%$ probability displacement ellipsoids. H bonds are drawn as dashed lines.


Figure 2
Packing diagram of the molecules viewed down the $b$-axis. H atoms not involved in the H -bonds (dashed lines) are omitted for clarity.

2-amino-1-methyl-4-oxo-4,5-dihydro-1 H -imidazol-3-ium monochloroacetate

## Crystal data

## $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}^{+} . \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}^{-}$

$M_{r}=207.62$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=5.7993$ (8) $\AA$
$b=13.934$ (2) $\AA$
$c=11.2205(16) \AA$
$\beta=95.326(2)^{\circ}$
$V=902.8(2) \AA^{3}$
$Z=4$
$F(000)=432$
$D_{\mathrm{x}}=1.527 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2516 reflections
$\theta=2.2-23.4^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Block, colourless
$0.24 \times 0.22 \times 0.19 \mathrm{~mm}$

## Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega$ scans
8205 measured reflections
1587 independent reflections

1472 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-6 \rightarrow 6$
$k=-16 \rightarrow 16$
$l=-13 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0666 P)^{2}+0.3396 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.33$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27$ e $\AA^{-3}$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| N11 | $1.0950(2)$ | $0.16015(11)$ | $0.55491(13)$ | $0.0435(4)$ |
| C11 | $1.1347(4)$ | $0.13325(16)$ | $0.67962(17)$ | $0.0517(5)$ |
| H11A | 1.0491 | 0.1753 | 0.7270 | $0.078^{*}$ |
| H11B | 1.2969 | 0.1383 | 0.7052 | $0.078^{*}$ |
| H11C | 1.0845 | 0.0683 | 0.6895 | $0.078^{*}$ |
| C12 | $1.2339(3)$ | $0.22831(14)$ | $0.49571(17)$ | $0.0474(5)$ |
| H12A | 1.3926 | 0.2064 | 0.4957 | $0.057^{*}$ |
| H12B | 1.2328 | 0.2908 | 0.5336 | $0.057^{*}$ |
| C13 | $1.1149(3)$ | $0.23140(13)$ | $0.37071(18)$ | $0.0471(5)$ |
| O13 | $1.1682(3)$ | $0.27677(12)$ | $0.28629(14)$ | $0.0668(5)$ |
| N14 | $0.9267(3)$ | $0.17187(11)$ | $0.37131(14)$ | $0.0434(4)$ |
| C15 | $0.9179(3)$ | $0.13198(12)$ | $0.48112(15)$ | $0.0390(4)$ |
| N15 | $0.7527(3)$ | $0.07372(13)$ | $0.50395(16)$ | $0.0482(4)$ |
| H1N | $0.741(4)$ | $0.0498(17)$ | $0.569(2)$ | $0.063(7)^{*}$ |
| H2N | $0.636(4)$ | $0.0637(17)$ | $0.441(2)$ | $0.062(6)^{*}$ |
| H14N | $0.835(4)$ | $0.1546(17)$ | $0.311(2)$ | $0.062(7)^{*}$ |
| C21 | $0.4400(3)$ | $0.07309(13)$ | $0.22026(16)$ | $0.0434(4)$ |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| C22 | $0.2464(4)$ | $0.04780(17)$ | $0.12518(18)$ | $0.0561(5)$ |
| H22A | 0.0995 | 0.0614 | 0.1564 | $0.067^{*}$ |
| H22B | 0.2520 | -0.0206 | 0.1099 | $0.067^{*}$ |
| O21 | $0.6111(2)$ | $0.11830(11)$ | $0.19341(13)$ | $0.0578(4)$ |
| O22 | $0.4072(2)$ | $0.04254(11)$ | $0.32210(12)$ | $0.0547(4)$ |
| C11 | $0.25524(10)$ | $0.10901(5)$ | $-0.01176(5)$ | $0.0725(3)$ |

## Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N11 | $0.0406(8)$ | $0.0488(8)$ | $0.0392(8)$ | $-0.0010(6)$ | $-0.0055(6)$ | $-0.0015(6)$ |
| C11 | $0.0518(11)$ | $0.0622(12)$ | $0.0390(10)$ | $0.0059(9)$ | $-0.0074(8)$ | $-0.0025(9)$ |
| C12 | $0.0363(9)$ | $0.0517(11)$ | $0.0536(11)$ | $-0.0030(7)$ | $0.0016(8)$ | $-0.0055(8)$ |
| C13 | $0.0405(9)$ | $0.0501(10)$ | $0.0510(11)$ | $-0.0005(8)$ | $0.0067(8)$ | $0.0015(8)$ |
| O13 | $0.0589(9)$ | $0.0813(11)$ | $0.0612(10)$ | $-0.0129(7)$ | $0.0108(7)$ | $0.0176(8)$ |
| N14 | $0.0409(8)$ | $0.0507(9)$ | $0.0373(8)$ | $-0.0039(6)$ | $-0.0028(6)$ | $0.0016(6)$ |
| C15 | $0.0382(9)$ | $0.0401(8)$ | $0.0379(9)$ | $0.0037(7)$ | $-0.0009(7)$ | $-0.0010(7)$ |
| N15 | $0.0462(10)$ | $0.0556(10)$ | $0.0414(9)$ | $-0.0097(7)$ | $-0.0043(8)$ | $0.0082(7)$ |
| C21 | $0.0448(10)$ | $0.0456(9)$ | $0.0380(9)$ | $-0.0027(7)$ | $-0.0056(8)$ | $0.0014(7)$ |
| C22 | $0.0539(11)$ | $0.0694(13)$ | $0.0427(10)$ | $-0.0161(10)$ | $-0.0087(9)$ | $0.0053(9)$ |
| O21 | $0.0544(8)$ | $0.0748(10)$ | $0.0418(8)$ | $-0.0223(7)$ | $-0.0081(6)$ | $0.0098(6)$ |
| O22 | $0.0545(8)$ | $0.0661(9)$ | $0.0413(8)$ | $-0.0140(7)$ | $-0.0068(6)$ | $0.0123(6)$ |
| C11 | $0.0710(4)$ | $0.0998(5)$ | $0.0426(3)$ | $-0.0207(3)$ | $-0.0164(3)$ | $0.0133(3)$ |

Geometric parameters ( $\hat{A}^{\circ}{ }^{\circ}$ )

| N11-C15 | 1.318 (2) | N14-C15 | 1.357 (2) |
| :---: | :---: | :---: | :---: |
| N11-C12 | 1.446 (2) | N14-H14N | 0.86 (3) |
| N11-C11 | 1.446 (2) | C15-N15 | 1.299 (2) |
| C11-H11A | 0.9600 | N15-H1N | 0.81 (3) |
| C11-H11B | 0.9600 | N15-H2N | 0.94 (3) |
| C11-H11C | 0.9600 | C21-O21 | 1.236 (2) |
| C12-C13 | 1.505 (3) | C21-O22 | 1.251 (2) |
| C12-H12A | 0.9700 | C21-C22 | 1.517 (2) |
| C12-H12B | 0.9700 | C22-Cl1 | 1.762 (2) |
| C13-O13 | 1.203 (2) | $\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$ | 0.9700 |
| C13-N14 | 1.371 (2) | C22-H22B | 0.9700 |
| C15-N11-C12 | 109.98 (15) | C15-N14-C13 | 110.45 (16) |
| C15-N11-C11 | 125.12 (16) | C15-N14-H14N | 122.0 (16) |
| C12-N11-C11 | 124.71 (15) | C13-N14-H14N | 127.1 (16) |
| N11-C11-H11A | 109.5 | N15-C15-N11 | 127.46 (17) |
| N11-C11-H11B | 109.5 | N15-C15-N14 | 121.71 (16) |
| H11A-C11-H11B | 109.5 | N11-C15-N14 | 110.83 (16) |
| N11-C11-H11C | 109.5 | C15-N15-H1N | 124.1 (18) |
| H11A-C11-H11C | 109.5 | C15-N15-H2N | 116.0 (14) |
| H11B-C11-H11C | 109.5 | $\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 15-\mathrm{H} 2 \mathrm{~N}$ | 120 (2) |
| N11-C12-C13 | 102.72 (14) | $\mathrm{O} 21-\mathrm{C} 21-\mathrm{O} 22$ | 126.16 (17) |
| $\mathrm{N} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$ | 111.2 | $\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22$ | 120.37 (16) |
| $\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$ | 111.2 | $\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 22$ | 113.46 (16) |

# supplementary materials 

| $\mathrm{N} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 111.2 |
| :--- | :--- |
| $\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 111.2 |
| $\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 109.1 |
| $\mathrm{O} 13-\mathrm{C} 13-\mathrm{N} 14$ | $125.77(19)$ |
| $\mathrm{O} 13-\mathrm{C} 13-\mathrm{C} 12$ | $128.30(18)$ |
| $\mathrm{N} 14-\mathrm{C} 13-\mathrm{C} 12$ | $105.92(16)$ |


| $\mathrm{C} 15-\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$ | $-3.13(19)$ |
| :--- | :--- |
| $\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$ | $-178.40(16)$ |
| $\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 13$ | $-178.5(2)$ |
| $\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 14$ | $2.23(19)$ |
| $\mathrm{O} 13-\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 15$ | $-179.97(19)$ |
| $\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 15$ | $-0.7(2)$ |
| $\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 15-\mathrm{N} 15$ | $-177.63(18)$ |


| $\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 11$ | $114.92(14)$ |
| :--- | :--- |
| $\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$ | 108.5 |
| $\mathrm{C} 11-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$ | 108.5 |
| $\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$ | 108.5 |
| $\mathrm{C} 11-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$ | 108.5 |
| $\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$ | 107.5 |
|  |  |
| $\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 15-\mathrm{N} 15$ | $-2.4(3)$ |
| $\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 15-\mathrm{N} 14$ | $2.9(2)$ |
| $\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 15-\mathrm{N} 14$ | $178.17(16)$ |
| $\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 15-\mathrm{N} 15$ | $179.15(17)$ |
| $\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 15-\mathrm{N} 11$ | $-1.4(2)$ |
| $\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{Cl} 11$ | $-13.4(3)$ |
| $\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 22-\mathrm{Cl} 1$ | $167.75(15)$ |

Hydrogen-bond geometry ( $\stackrel{A}{ },{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 15 — \mathrm{H} 1 N \cdots \mathrm{O} 22^{\mathrm{i}}$ | $0.81(3)$ | $2.02(3)$ | $2.762(2)$ | $152(2)$ |
| $\mathrm{N} 15 — \mathrm{H} 2 N \cdots \mathrm{O} 22$ | $0.94(3)$ | $1.82(3)$ | $2.758(2)$ | $179(2)$ |
| $\mathrm{N} 14 — \mathrm{H} 14 N \cdots \mathrm{O} 21$ | $0.86(3)$ | $1.83(3)$ | $2.686(2)$ | $173(2)$ |
| $\mathrm{C} 11 — \mathrm{H} 11 A \cdots \mathrm{O} 13^{\mathrm{ii}}$ | 0.96 | 2.46 | $3.305(3)$ | 147 |
| $\mathrm{C} 11 — \mathrm{H} 11 B \cdots \mathrm{O} 13^{\mathrm{iii}}$ | 0.96 | 2.55 | $3.448(3)$ | 156 |
| $\mathrm{C} 12 — \mathrm{H} 12 A \cdots \mathrm{~N} 15^{\mathrm{iv}}$ | 0.97 | 2.78 | $3.695(3)$ | 157 |
| $\mathrm{C} 12 — \mathrm{H} 12 B \cdots \mathrm{O} 21^{\mathrm{iii}}$ | 0.97 | 2.36 | $3.208(2)$ | 146 |

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x-1 / 2,-y+1 / 2, z+1 / 2$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iv) $x+1, y, z$.

