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Multiple mechanisms contribute to the generation, propagation, and coordination of

the rhythmic patterns necessary for locomotion in Caenorhabditis elegans. Current

experiments have focused on two possibilities: pacemaker neurons and stretch-receptor

feedback. Here, we focus on whether it is possible that a chain of multiple network

rhythmic pattern generators in the ventral nerve cord also contribute to locomotion. We

use a simulation model to search for parameters of the anatomically constrained ventral

nerve cord circuit that, when embodied and situated, can drive forward locomotion on

agar, in the absence of pacemaker neurons or stretch-receptor feedback. Systematic

exploration of the space of possible solutions reveals that there aremultiple configurations

that result in locomotion that is consistent with certain aspects of the kinematics of

worm locomotion on agar. Analysis of the best solutions reveals that gap junctions

between different classes of motorneurons in the ventral nerve cord can play key roles in

coordinating the multiple rhythmic pattern generators.

Keywords: invertebrate, locomotion, motor control, neuromechanical model, central pattern generator,

rhythmic pattern

1. INTRODUCTION

Understanding how behavior is generated through the interaction between an organism’s brain,
its body, and its environment is one of the biggest challenges in neuroscience (Chiel and Beer,
1997; Chiel et al., 2009; Krakauer et al., 2017). Understanding locomotion is particularly critical
because it is one of themain ways that organisms use to interact with their environments.Moreover,
locomotion represents a quintessential example of how behavior requires the coordination of
neural, mechanical, and environmental forces. Caenorhabditis elegans is a particularly ideal
candidate organism to study the neuromechanical basis of locomotion because of the small number
of neurons in its nervous system and the reconstruction of its neural and muscle anatomy at the
cellular level, which has led to a detailed map of the connectivity of its the nervous system (White
et al., 1986; Varshney et al., 2011; Cook et al., 2019). However, despite the available anatomical
knowledge, how the rhythmic patterns are generated and propagated along the body to produce
locomotion is not yet fully understood (Cohen and Sanders, 2014; Gjorgjieva et al., 2014; Zhen and
Samuel, 2015).

As with many other organisms, there are likely multiple mechanisms, intrinsic and extrinsic
to the nervous system, contributing to the generation, propagation, and coordination of rhythmic
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patterns that are necessary for locomotion in C.
elegans (Rossignol et al., 2006). Until recently, the majority
of experimental work on C. elegans locomotion had been
focused on understanding the role of extrinsic contributions,
specifically the role of stretch-receptor feedback. The proposal
that stretch-receptor feedback plays an important role in the
generation of movement in the nematode dates back to the
reconstruction of the connectome (White et al., 1986). There
has since been evidence of mechanically gated channels that
modulate C. elegans locomotion (Tavernarakis et al., 1997;
Yeon et al., 2018), as well as evidence of a direct relationship
between body curvature and neural activity (Wen et al., 2012).
However, coordinated rhythmic patterns can also be produced
intrinsically, while remaining open to modulation through
extrinsic feedback. Intrinsic rhythmic pattern generators are
known to be involved in a wide variety of behaviors in a number
of different organisms, including insect flight, swimming in
molluscs, gut movements in crustaceans, and swimming and
respiration in vertebrates (Marder and Bucher, 2001; Goulding,
2009; Arshavsky et al., 2016; Katz, 2016; Minassian et al., 2017;
Dasen, 2018). In an intrinsic rhythmic pattern generator, the
rhythmic pattern can be generated through the oscillatory
properties of pacemaker neurons or it can emerge from the
interaction of networks of non-oscillatory neurons (Goulding,
2009). Recent experiments have provided support for the
role of intrinsic rhythmic pattern generation in C. elegans
locomotion (Fouad et al., 2018; Gao et al., 2018; Xu et al., 2018).

It is increasingly acknowledged that simulation models play
an important role in elucidating how brain-body-environment
systems produce behavior (Chiel and Beer, 1997; Pfeifer and
Bongard, 2006; Ijspeert, 2008; Izquierdo, 2018; Cohen and
Denham, 2019). InC. elegans, there has been a surge of theoretical
work focused on understanding the neuromechanical basis of
locomotion. By taking into consideration the mechanics of
the body and its interaction with the environment, several
computational models have demonstrated that extrinsic pattern
generation alone can result in locomotion (Marom and Shahaf,
2002; Putrenko et al., 2005; Chalasani et al., 2007; Li et al.,
2014; Gleeson et al., 2018; Pastore et al., 2018; Fenyves et al.,
2020). There have been a handful of models that have considered
the potential role of intrinsic rhythmic pattern generators in
C. elegans locomotion (Karbowski et al., 2008; Deng and Xu,
2014; Kunert et al., 2014; Denham et al., 2018). Some of these
models have considered a circuit capable of intrinsic rhythmic
pattern generation in the head motorneurons (Karbowski
et al., 2008; Izquierdo and Beer, 2018) or in the command
interneurons (Deng and Xu, 2014). Some of the models
have imposed a neural activation function in the form of a
traveling sine wave to drive a mechanical body to produce
movement (Denham et al., 2018; Palyanov et al., 2018). Only
a few models have considered the generation of rhythmic
patterns from networks of motorneurons in the ventral nerve
cord (Kunert et al., 2014; Olivares et al., 2018). In this model we
consider both the generation of rhythmic patterns from multiple
networks of motorneurons in the ventral nerve cord and the
dynamic interaction of these neural patterns with the mechanical
body and environment to produce movement.

Given the focus on extrinsic contributions to the generation,
propagation, and coordination of rhythmic patterns controlling
locomotion in C. elegans, current models have left a major
question unanswered: Can multiple network rhythmic pattern
generators in the ventral nerve cord coordinate their activity to
produce the traveling wave necessary for forward locomotion in
the absence of stretch-receptor feedback? And importantly, what
are the different possibilities for how this could be accomplished
in the worm? In this paper, we coupled multiple repeating neural
units in the ventral nerve cord (VNC), whose connectivity was
derived from theC. elegans connectome (Haspel andO’Donovan,
2011), to a model of the worm’s muscular system (Izquierdo
and Beer, 2018) and mechanical body (Boyle et al., 2012), which
in turn was situated in a simulated agar environment. In order
to examine the feasibility of multiple network rhythmic pattern
generators to contribute to forward locomotion within the
VNC, the current model deliberately leaves out stretch-receptor
feedback, it does not allow for the possibility of motorneurons
to be pacemaker neurons, and it does not include neurons
outside of the VNC to drive the circuit. We used a real-valued
evolutionary algorithm to determine values of the unknown
parameters of the neural circuit that optimized the ability of
the coupled neuromechanical model worm to match as best
as possible the ability to locomote forward on agar. To the
degree that this is possible, we will learn something about
what components of the worm can recreate movement under
these limited conditions. Given the unconstrained nature of
many problems in biology (Prinz and Marder, 2004; Gutenkunst
et al., 2007), instead of looking for one unique model, we ran
multiple evolutionary searches as a way to explore the space of
parameter configurations that could lead to the behavior. Each
successful search produced a distinct set of parameter values,
which led to an ensemble of models that we filtered down
to those that were most consistent with the worm’s behavior.
The properties of this ensemble were then analyzed to identify
different possible classes of solutions. Detailed analysis of the
operation of the representative exemplars suggests hypotheses
for mechanisms that can contribute to the generation and
propagation of rhythmic patterns for locomotion in the worm.

2. METHODS

In this section, we describe each of the components of the
model: the physical environment, the mechanical body, and the
neuromuscular system; as well as the optimization technique.

2.1. Model
The neuromechanical model (see Figure 1) integrates the neural
unit from Olivares et al. (2018), with the muscular model in
Izquierdo and Beer (2018), and the physical model of the body
and environment in Boyle et al. (2012).

2.1.1. Environment Model
In the laboratory, C. elegans is typically grown and studied in
petri dishes containing a layer of agar gel. The gel is firm, and
worms tend to lie on the surface. The experiments in this paper
focus on worm locomotion in agar. Given the low Reynolds
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FIGURE 1 | The neuromechanical model integrates a mechanical body, with a muscular system, and a repeating neural unit. (A) Following previous work (Boyle et al.,

2012), the mechanical body is modeled in 2D cross-section with a set of variable-width interconnected discrete segments. (B) Each segment consists of two

cross-sectional rigid rods (black), damped spring lateral elements (gray), and damped spring diagonal elements (dashed). (C) Following previous work (Izquierdo and

Beer, 2018), muscles are modeled as elements that lie along the cuticle that can contract and relax in the dorsoventral plane, staggered along the ventral and dorsal

sides of the model worm. Muscle force is distributed across all lateral elements they intersect. Seven repeating neural units innervate three ventral and three dorsal

muscles, except the most anterior and the most anterior subunits which innervate four muscles. (D) We modeled the motorneurons in the ventral nerve cord as a

network composed of repeating identical subunits. The architecture of each subunit extends previous work (Olivares et al., 2018) and is based on the statistical

analysis of the VNC motorneurons given the missing connectome data (Haspel and O’Donovan, 2011). One of seven repeating neural subunits is shown in complete

detail. Intraunit connections shown in color; interunit connections shown in black. Chemical synapses shown with solid lines; gap junctions shown with dashed lines.

number physics of C. elegans locomotion, inertial forces can be
neglected and the resistive forces of the medium can be well-
approximated as a linear drag F = −Cv (Niebur and Erdös,
1991; Boyle, 2009; Cohen and Boyle, 2010; Boyle et al., 2012).
The tangential and normal drag coefficients for agar used in this
model were taken from those reported in Berri et al. (2009) and
used in the model of the body that this work builds on Boyle et al.
(2012): C‖ = 3.2 × 10−3 kg·s−1 and C⊥ = 128 × 10−3 kg·s−1,
respectively (Wallace, 1969; Lighthill, 1976; Niebur and Erdös,
1991; Berri et al., 2009; Boyle, 2009; Boyle et al., 2012).

2.1.2. Body Model
When placed on an agar surface, the worm locomotes by
bending only in the dorsal-ventral plane. For this reason, the
worm body is modeled in 2D cross-section (Figure 1A). The

model of the mechanical body is a reimplementation of the
model presented by Boyle et al. (2012). The ∼1 mm long
continuous body of the worm is divided into discrete segments.
The width of the segments change along the length of the
body as represented in Figure 1A (for details see Boyle et al.,
2012). Each segment is bounded by two cross-sectional rigid
rods (Figure 1B). The endpoints of the rods are connected to
their neighbors via damped spring lateral elements modeling
the stretch resistance of the cuticle. The endpoints of the rods
are also connected to the adjacent rods on the opposite side
via damped spring diagonal elements modeling the compression
resistance of internal pressure. The rest lengths, spring constants
and damping constants of the lateral and diagonal elements are
taken directly from previous work (Boyle et al., 2012), which
in turn estimated them from experiments with anesthetized
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worms (Sauvage, 2007). The forces from the lateral and diagonal
elements are summed at the endpoints of the rods and then the
equations of motion are written for the center of mass of each
rod. Since each rod has two translational (x, y) and one rotational
(φ) degrees of freedom, the body model has a total of 3(Nseg + 1)
degrees of freedom. The current model has Nseg = 50, so a total
of 153 degrees of freedom. The full set of expressions for forces,
as well as all kinematic and dynamic parameters are identical to
those in previous work (Boyle, 2009; Boyle et al., 2012).

2.1.3. Muscle Model
Body wall muscles in the worm are arranged as staggered pairs in
four bundles around the body (Waterston, 1988; Altun and Hall,
2009). These muscles can contract and relax in the dorsoventral
plane. Following previous work (Izquierdo and Beer, 2018),
muscles are modeled as elements that lie along the cuticle
(Figure 1C). The force of each muscle is distributed across all
lateral elements that they intersect. Because adjacent body wall
muscles overlap one another in C. elegans, multiple muscles can
exert force on the same lateral elements. Since themodel is 2D, we
combine right and left bundles into a single set of 24 dorsal and
24 ventral muscles. Muscle forces are modeled as a function of
muscle activation and mechanical state using simplified Hill-like
force-length and force-velocity properties (Hill, 1938).

Following previous work (Boyle et al., 2012; Izquierdo and
Beer, 2018), muscle activation is modeled as a leaky integrator
with a characteristic time scale (τM = 100ms), which agrees with
response times of obliquely striated muscle (Milligan et al., 1997).
The muscle activation is represented by the unitless variable Ak

m

that evolves according to:

dAk
m

dt
=

1

τM

(

Ikm − Ak
m

)

(1)

where Ak
m is the total current driving dorsal and ventral (k =

{D,V}) muscles along the body (m = 1, . . . , 24). Also following
previous modeling work (Boyle et al., 2012) and experimental
evidence that electrical coupling between body wall muscle
cells plays only a restricted role for C. elegans body bend
propagation (Leifer et al., 2011; Wen et al., 2012), inter-muscle
electrical coupling is assumed to be too weak and therefore not
included in the model.

2.1.4. Ventral Nerve Cord Circuit
As connectome data is incomplete for the ventral nerve
cord (White et al., 1986; Varshney et al., 2011; Cook et al.,
2019), we relied on a statistical analysis of the motorneurons
in relation to the position of the muscles they innervate
to model the repeating neural unit along the VNC (Haspel
and O’Donovan, 2011). We modeled the VNC as a neural
network composed of seven identical subunits (Figure 1D). The
anatomy of the repeating subunit was grounded on previous
theoretical work, where we demonstrated that a subset of the
components present in the statistically repeating unit found in
the dataset were sufficient to generate dorsoventral rhythmic
patterns (Olivares et al., 2018). The minimal configuration found
in that work included motorneurons: AS, DA, DB, VD, VA,

and VB; and chemical synapses: DA→DB, DB→AS, AS→DA,
AS→VD, VD→VA, and VD→VB. Given that the subunits
need to coordinate their rhythmic patterns with neighboring
subunits in order to produce forward locomotion, we added
the following connections to adjacent neural subunits found
in the statistical analysis of the VNC (Haspel and O’Donovan,
2011): AS⊢⊣VA+1, DA⊢⊣AS+1, VB⊢⊣DB+1, where the superscript
+1 indicates that the neuron is part of the posterior subunit.
We use this notation to refer to interunit connections only;
for intraunit connections we leave the superscript out. The
minimal configuration found in previous work (Olivares et al.,
2018) did not include motorneuron DD because of the lack of
outgoing connections to the rest of the motorneurons within
the unit, and therefore its unlikeliness to be involved in the
generation of network rhythmic patterns. As the current model
involves a neuromuscular system, and DD has neuromuscular
junctions that allow it to drive the muscles of the worm, we
included it. We also included the connections to and from
DD present in the statistical analysis of the VNC (Haspel and
O’Donovan, 2011), including intraunit connections: DA→DD,
VA→DD, VB→DD, and VD⊢⊣DD; and interunit connections:
DB→DD+1, and VA+1 →DD.

Dorsal and ventral motorneurons in each unit drive the dorsal
and ventral body wall muscles adjacent to them, respectively. The
input to the body wall muscles is represented by variable Ikm,
such that:

Ikm =
∑

i∈Nk

γmqiSi (2)

where k denotes whether the body wall muscle is dorsal or
ventral (k = {D,V}) and m denotes the position of the muscle
along the body (m = 1, . . . , 24), the set Nk corresponds to
the dorsal/ventral motorneurons, {AS, DA, DB, DD}, {VA, VB,
VD} respectively. Following previous work (Boyle et al., 2012),
an anterior-posterior gradient in the maximum muscle efficacy
is implemented by a linearly (posteriorly) decreasing factor,
γm = 0.7

(

1−
(

((m− 1)F)/M
))

, where γm is the efficacy for
neuromuscular junctions connecting motorneurons to muscle
m, and F is the anterior-posterior gain in muscle contraction.
qi corresponds to the neuromuscular junction strength from
motorneuron i. Finally, Si corresponds to the synaptic output for
each motorneuron.

The strengths of the connections in the circuit are unknown.
The signs of the connections (i.e., whether they are excitatory
or inhibitory) were constrained only for the neuromuscular
junctions, but not for the chemical synapses between
motorneurons. The AS-, A-, and B-class motorneurons are
known to be cholinergic, and therefore excitatory to the
muscles they innervate; D-class motorneurons are known
to be GABAergic, and therefore inhibitory to the muscles
they innervate (McIntire et al., 1993; Rand et al., 1997). We
constrained the signs of neuromuscular junctions accordingly.
Note, however, we did not constrain the signs of the connections
between those motorneurons and other motorneurons in the
circuit because these are not known (Marom and Shahaf, 2002;
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Putrenko et al., 2005; Chalasani et al., 2007; Li et al., 2014; Pastore
et al., 2018; Fenyves et al., 2020).

2.1.5. Neural Model
Following studies in C. elegans (Goodman et al., 1998; Mellem
et al., 2008) and previous modeling efforts (Izquierdo and
Lockery, 2010; Izquierdo and Beer, 2013, 2018), motorneurons
were modeled as nodes with simple first order non-linear
dynamics (Beer, 1995),

τi
dVi

dt
= −Vi +

N
∑

j=1

wjiσ (Vj + θj)+
N
∑

j=1

gji
(

Vj − Vi

)

(3)

where Vi represents the membrane potential of the ith neuron
relative to its resting potential. The time-constant of the neuron is
represented by τi. The model assumes chemical synapses release
neurotransmitter tonically and that steady-state synaptic activity
is a sigmoidal function of presynaptic voltage (Wicks et al., 1996;
Lindsay et al., 2011; Kuramochi and Doi, 2017), σ (x) = 1/(1 +
e−x). θj is a bias term that shifts the range of sensitivity of the
output function. The synaptic weight from neuron j to neuron i is
represented by wji. In line with previous theoretical work (Wicks
et al., 1996; Izquierdo and Beer, 2013; Kunert et al., 2017),
the electrical synapses were modeled as bidirectional ohmic
resistances, with gji as the conductance between cell i and j (gji >

0). The indices i and j used for the chemical synapses and the
gap junctions represent each of the motorneurons in the circuit
(AS, DA, DB, VD, VA, and VB) and the specific connectivity
between them is given by the neuroanatomy (Figure 1D). Self-
connections were included in the chemical synapses term to allow
for the functional equivalent of active membrane conductances
which have been reported for C. elegans neck muscle motor
neurons (Goodman et al., 1998; Mellem et al., 2008). This
allows the neural model to reproduce the variety of graded
activity that has been described in the free-living nematode C.
elegans (Goodman et al., 1998; Mellem et al., 2008; Liu et al.,
2009; Lindsay et al., 2011). Specifically, by changing the strength
of the self-connection on each neuron, that model neuron can
be either smoothly depolarized or hyperpolarized from a tonic
resting potential (Mellem et al., 2008), or bistable, with non-
linear transitions between a resting potential and a depolarized
potential (Goodman et al., 1998).

2.2. Numerical Methods
The model was implemented in C++. The neural model was
solved by Forward Euler method of integration with a 0.5ms
step. The body model was solved using a Semi-Implicit Backward
Euler method with a 0.1ms step.

2.3. Evolutionary Algorithm
All neural circuits described in this article were produced using
a simple model of evolution known as a genetic algorithm. The
parameters to be searched, such as the weights and signs of
the connections, were encoded as a vector of real values. A
population of such vectors was maintained. Initially, the vectors
in this population were randomly generated. In each generation,
the fitness of every individual in the population was evaluated. A

new generation of individuals was then produced by applying a
set of genetic operators: selection, recombination, and mutation.
Once a new population had been constructed, the fitness of each
new individual was evaluated, and the entire process repeated.

A naive parameterization of our model would contain around
300 neural parameters. However, it makes little sense to work
directly with such a large set of unconstrained parameters.
Instead, we assumed that the parameters in each repeating VNC
neural unit were identical. Altogether, the model was reduced to a
total of 44 free parameters. There are 28 parameters that describe
each of the 7 neuron classes and neuromuscular junctions: 7
biases, 7 time-constants, 7 self-connections, and 7 neuromuscular
junctions. There are 15 parameters that describe the strength and
sign (i.e., excitatory/inhibitory) of the connections: 10 weights for
intraunit connections: 9 chemical synapses (AS→DA, AS→VD,
DA→DB, DB→AS, VD→VA, VD→VB, DA→DD, VB→DD,
VA→DD) and one electrical synapse (VD⊢⊣DD); 5 weights
for interunit connections: 2 chemical synapses (VA→DD−1,
DB→DD+1) and 3 gap junctions (DA⊢⊣AS+1, VB⊢⊣DB+1,
AS⊢⊣VA+1). One additional parameter, F, describes the anterior-
posterior gain in muscle contraction.

To evaluate the ability of a configuration of neural parameters
to produce locomotion, when embodied and situated, we created
a fitness function with two components. The goal of the first
component was to make a ventral nerve cord neural unit produce
a rhythmic pattern. Specifically, the fitness function required that
the B-class motorneurons produce a rhythmic pattern and that
the frequency of the rhythmic pattern matched what has been
observed for body bending in crawling worms:

F1 =
∏

j∈{DB,VB}

(

2

A ∗ T

∫ T

0

∣

∣

∣

∣

dSj

dt

∣

∣

∣

∣

dt

)

(

1−
|fj − fa|

fa

)

(4)

where A corresponds to a rhythmic pattern amplitude threshold
(A = 0.5), Sj corresponds to the output of the motorneuron, T
corresponds to the duration of the simulation, fj is the frequency
of neuron j, and fa is the frequency of bending in the worm
(fa = 0.44Hz, Cohen et al., 2012). The first part of this
equation encourages the circuit to produce a rhythmic pattern
by maximizing the rate of change of neural activity in DB and
VB. The contribution from this component was capped to a value
of 1. The second part of the equation is aimed at matching the
frequency of the worm.

The goal of the second component of the fitness function
was to make the complete neuromechanical model worm move
forward by matching its forward velocity to that of the worm
on agar:

F2 = 1−
|V − Va|

Va
(5)

where V corresponds to the average velocity of the model worm
over the duration of the simulation, and Va corresponds to the
average forward velocity of the worm on agar (Va = 0.22 mm/s)
(Cronin et al., 2005).
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A B C

FIGURE 2 | Evolutionary algorithm reliably finds model configurations that match worm forward locomotion. (A) Stage 1: Evolution of the isolated neural unit to match

B-class neuron rhythmic patterns and frequency. The best and average fitness of the population are shown in blue and orange, respectively. The average over all

evolutionary runs is shown in a solid trajectory and the standard deviation is shown as a lighter shade of the respective color. (B) Stage 2: Evolution of the complete

neuromechanical model so as to additionally match the worm’s instantaneous velocity. Same color coding as in (A). (C) Distribution of best final fitness across

evolutionary runs. Sixty-five percent of the evolutionary searches found a solution with a fitness greater than 0.95 (red bar).

3. RESULTS

3.1. Generating an Ensemble of Model
Worms That Use Multiple Network
Rhythmic Pattern Generators for Forward
Locomotion on Agar
As the parameters for the physiological properties of neurons
and synapses involved in forward locomotion in C. elegans are
largely unknown, we used an evolutionary algorithm to search
through the space of parameters for different configurations that
could produce forward movement on agar in the absence of
stretch-receptors or pacemaker neurons. Because evolutionary
runs with the full neuromechanical model and environment
are computationally costly, we used an incremental approach.
During a first stage, isolated ventral nerve cord neural units
were evolved to produce a rhythmic pattern using fitness
function F1 (see section 2) (Figure 2A). Once the isolated
neural units could produce rhythmic patterns (fitness > 0.99),
they were integrated into the complete neuromechanical model
and evolved to move forward in agar using a combined
fitness function F1 · F2 (Figure 2B). We ran 160 evolutionary
searches with different random seeds. Of these, 104 (65%)
reliably found model configurations that matched the body
bending frequency and mean velocity of worms performing
forward locomotion on agar (Figure 2C). In other words, the
evolutionary search consistently found configurations of the
neuroanatomical circuit that could produce forward locomotion
through the coordination of multiple network rhythmic pattern
generators along the ventral nerve cord.

In order to focus on the subset of solutions that resembled
forward locomotion in C. elegans most closely, we filtered
the set of 104 solutions to those that matched an additional
set of locomotion features that were not imposed during the
evolutionary search. We applied the following three criteria:
(a) Relative role of the different neuron classes in forward
locomotion; (b) body curvature; and (c) trajectory curvature.
Altogether, 15 solutions fulfilled all three filtering criteria
(Figure 3D). We discuss each of the criteria in turn.

3.1.1. Relative Role of the Different Neuron Classes in

Forward Locomotion
A- and B-class neurons have been implicated in backward
and forward locomotion, respectively, through ablations
performed at the larval stage, when only DA and DB neurons
are present (Chalfie et al., 1985). Specifically, these studies
have revealed that ablating B-class motorneurons prevents
forward locomotion but not backward, and that ablating
A-class motorneurons prevents backward but not forward
locomotion (Chalfie et al., 1985). More recently, neural imaging
studies in the adult have provided evidence that both A- and
B-class motorneurons are active during locomotion (Faumont
et al., 2011). There is also evidence that the activity of B-class
motorneurons is higher during forward locomotion than
the activity of A-class motorneurons, and vice-versa during
backward locomotion (Kawano et al., 2011). In all evolved
solutions of our model, both A- and B-class motorneurons are
actively involved in forward locomotion. This is the case because
the solutions are all network oscillators. So although we cannot
ablate A- or B-class neurons without disrupting the network
oscillation, we can silence each of their contributions to the
muscles. In order to focus only on the solutions where the B-class
input to muscles is necessary to produce forward locomotion but
not the A-class, we simulated each solution while eliminating the
neuromuscular junctions from B-class motorneurons and from
A-class motorneurons, independently. We then evaluated the
velocities of the model worms as a result of this manipulation
(Figure 3A). We selected solutions that met the following two
criteria: (1) eliminating the A-class neuromuscular junction
does not seriously compromise locomotion (i.e., velocity greater
than 20% of target velocity); and (2) eliminating the B-class
neuromuscular junction does compromise forward locomotion
(i.e., velocity less than 20% of target velocity). A total of 74
solutions fulfilled both criteria.

3.1.2. Body Curvature
In addition to the frequency of the body bends, there are a
number of other features of the kinematics of movement during
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FIGURE 3 | Filtering solutions to include only those that match the ranges reported in the literature about worm locomotion on agar. (A) Relative role of the different

neuron classes in forward locomotion. Proportion of the forward locomotion speed maintained by each model worm when the neuromuscular junction from the

B-class motorneurons (x-axis) or the A-class motorneurons (y-axis) are ablated. See F2 in section 2 for the measure of locomotion performance. Each point in the

figure represents a single solution. Solutions in the shaded region represent those that match the filtering criteria: (1) Ablation to A-class neuromuscular junctions

should not impair forward locomotion entirely; and (2) Ablation to B-class neuromuscular junctions should impair forward locomotion performance. (B) Body

curvature. Measures of the model worms’ body wavelength (x-axis) and their anterior-posterior curvature profile (y-axis) (see Supplementary Material 1 for details).

Green shaded areas represent biologically plausible ranges. In the previous two figures, solutions in the darkest shaded region represent those that match both

criteria. Histograms are shown for the criteria on each axis. (C) Trajectory curvature. Distribution of the radius of curvature for the trajectories of each model worm in

the 2D plane (see Supplementary Material 1 for details). The blue shaded area represents solutions with a relatively straight trajectory. (D) Venn diagram

representing the distribution of the 104 selected solutions according to the fulfillment of the three different filters: relative role of different neural classes in red, body

curvature in green, and trajectory curvature in blue. We focus our analysis on the 15 solutions that matched all criteria.

forward locomotion that have been characterized (Cronin et al.,
2005; Karbowski et al., 2008; Pierce-Shimomura et al., 2008; Berri
et al., 2009; Fang-Yen et al., 2010; Vidal-Gadea et al., 2011; Cohen
et al., 2012; Lebois et al., 2012; Wen et al., 2012; Yemini et al.,
2013; Butler et al., 2015; Xu et al., 2018). We further filtered our
solutions based on two features: the body-bending wavelength,
and the anterior-posterior curvature profile. Measurements of
the wavelength of the body during locomotion in agar fall in the
range of 0.4 to 0.9 body length (Cronin et al., 2005; Karbowski
et al., 2008; Pierce-Shimomura et al., 2008; Berri et al., 2009;
Fang-Yen et al., 2010; Vidal-Gadea et al., 2011; Cohen et al.,
2012; Lebois et al., 2012; Yemini et al., 2013; Butler et al., 2015).
We evaluated the body wavelength in all solutions and selected
those that fell within the observe range (Figure 3B). The anterior-
posterior curvature profile corresponds to the relative amount of
curvature along the body axis and has been shown to be more
pronounced near the head of the worm than the tail (Boyle

et al., 2012; Wen et al., 2012; Xu et al., 2018). We evaluated the
mean curvature in the anterior-posterior axis in all solutions and
selected those with a negative slope in the linear regression that fit
the curvature profile (Figure 3B). Altogether, we narrowed down
the 104 solutions to 30 that fulfilled both criteria (Figure 3D).

3.1.3. Trajectory Curvature
The translational direction of C. elegans during forward
locomotion tends to be relatively straight, with only a small
degree of curvature in the absence of stimuli (McIntire et al.,
1993; Peliti et al., 2013). In the evolved model worms,
the straightness in the trajectory was not optimized, so
the distribution of curvature in the translational trajectory
is broad (Figure 3C). In order to filter out model worms
that curved much more than the worm during forward
locomotion, we measured the radius of curvature for the
trajectories of the centers of mass of each model worm
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FIGURE 4 | Locomotive behavior of model worms. Example from one model worm from the ensemble of solutions. (A) Kymograph depicting dorsoventral bending

across the body (y-axis) and over time (x-axis). The intensity of red and blue depict dorsal and ventral curvature, respectively (see Supplementary Material 1 for the

method used to calculate curvature). (B) Instantaneous velocity of the body center of mass (black trace) in relation to average velocity used for the fitness function (red

line). (C) Neural activity for dorsal neurons in the first neuromuscular segment. AS in black, DA in red, DB in blue and DD in green. (D) Neural activity for ventral

neurons in the first neuromuscular segment, VA in red, VB in blue and VD in green. (E) Worm body posture at different points in time (in seconds).

in the 2D plane (see Supplementary Material 1 for details).
We set a threshold of 1 mm in trajectory curvature radius
(Figure 3C) and we found 77 solutions that moved as
straight as the worm (Figure 3D), even in the absence of
proprioceptive information.

3.2. Behavior of Model Worms
Despite the absence of stretch-receptor feedback and pacemaker
neurons, when simulated, all 15 selected model worms exhibited
regular dorsoventral bends that propagated from head to tail
(see example of one model worm in Figure 4). The kymograph
shows that the traveling wave is not perfectly smooth across
the body, instead there is some amount of punctuation. This
is due to a combination of simplifying factors, including that
the model incorporates seven distinct neural subunits and the
lack of proprioceptive feedback. It can also be seen that the
traveling wave is less pronounced in the head and tail regions
of the body. This is because the mechanical body itself smooths
the distinct rhythmic patterns by each neural unit in relation
to the unit anterior and posterior to it, which is not the case
for the first and last units. The locomotion behavior of all
15 solutions can be observed in animations provided in the
Supplementary Material 2. A number of recent experiments
have provided support for the possibility that multiple intrinsic
rhythmic pattern generators in the ventral nerve cord could be
involved in aspects of forward locomotion in the worm (Fouad
et al., 2018; Xu et al., 2018). In this section, we examine the
different ways in which these model worms are consistent with
some aspects of what has been observed in those experiments.

3.2.1. Posterior Rhythmic Patterns Persist Despite

Anterior Paralysis
Recent experiments have provided evidence that posterior
dorsoventral bending persists despite anterior paralysis (Figure 2
in Fouad et al., 2018; and Figure 3 and Supplementary Figure 3

in Xu et al., 2018). The model presented here is consistent with
their experimental finding. In order to demonstrate this, we
replicated the experimental condition on themodel worms in two
ways. First, we suppressed the neuromuscular junction activity
for the three anterior-most neural units. Second, we silenced the
neural activity of all neurons in those same three anterior-most
neural units. Note that taking into consideration the suppression
of stretch-receptor feedback was not necessary given that this
model did not include stretch-receptor feedback. We examined
the resulting kinematics of movement under both conditions.
Specifically, we measured the magnitude of the amplitude of
dorsoventral rhythmic patterns in the head and the tail. In
both conditions, we observed a sharp reduction in dorsoventral
bending in the head, but only a slight reduction of dorsoventral
bending in the posterior regions of the body in all 15 solutions
(Figure 5A). Furthermore, coordination of themultiple rhythmic
patterns in the posterior part of the body remained intact (see
example from one model worm in Figure 5B). Therefore, as
with the worm, posterior dorsoventral bending persists in model
worms despite anterior paralysis.

3.2.2. Head and Tail Are Capable of Simultaneous

and Uncoupled Rhythmic Patterns
Recent experiments have also provided evidence that the head
and the tail are capable of simultaneously producing uncoupled
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FIGURE 5 | Filtered models are consistent with recent experimental observations. (A) Rhythmic posterior undulation persists despite anterior paralysis. Total bending

amplitude (y-axis) evaluated as in previous work (Fouad et al., 2018). [i] When motorneurons in the head are ablated, bending amplitude in the head decreases but not

in the tail. [ii] Similarly, when body-wall muscles (BWM) in the head are inactivated, bending amplitude in the head decreases but not in the tail. Therefore, paralysis in

the head does not abolish bending in the tail. (B) Example kymograph from one model worm shows bending over time when neuromuscular junctions in the head are

inactivated. The intensity of red and blue depict dorsal and ventral curvature, respectively. The color-coding is the same as the one used in Figure 4A. (C) Rhythmic

undulation persists simultaneously in the head and the tail despite midbody paralysis. [i] When motorneurons in midbody are ablated, bending amplitude decreases in

the midbody but not in the head or the tail. [ii] Similarly, when body-wall muscles (BWM) in the midbody are inactivated, bending amplitude decreases in the midbody

but not in the head or the tail. Therefore, midbody paralysis demonstrates that head and tail are capable of simultaneous and uncoordinated rhythmic patterns.

(D) Example kymograph from one model worm shows bending over time when neuromuscular junctions in the midbody are inactivated. The color-coding is the same

as the one used in Figure 4A. (E) Overexpression of electrical synapses on B-class motorneurons induce complete body paralysis. Overexpression was simulated by

increasing the synaptic strength of B-class gap junctions: VB⊢⊣DB+1, DB⊢⊣DB+1, VB⊢⊣VB+1. (F) Speed as a function of gap junction overexpression in the model

worms. The disks represent the mean and the bars represent the standard deviation. As the synaptic strength of the B-class gap junctions is increased, the speed of

the model worms decreases.

rhythmic patterns (Figure 3 in Fouad et al., 2018). The model
presented here is also consistent with this key component of their
experimental finding. To demonstrate this, we again replicated
the experimental condition in two ways. First, we suppressed
the neuromuscular junction activity for the three mid-body
neural units. Second, we silenced the neural activity of all
neurons in those same three mid-body neural units. In both
conditions, we observed that suppressing mid-body components
did not eliminate body bending in either the head or the
tail (Figure 5C). In other words, like in the worm, uncoupled
dorsoventral rhythmic patterns were present simultaneously in
the head and the tail (see example from one model worm in
Figure 5D). It is important to note that in the experiments on
the worm (Fouad et al., 2018; Xu et al., 2018), the frequency
of oscillations in the anterior and posterior were different. By
design, this aspect of their findings cannot be replicated by
our model because every unit is identical and because neurons
outside the VNC were not included. In additional experiments,
we enabled and disabled each of the segments individually.
We found that a single segment is not sufficient to drive
bending and locomotion. Also, other than the most posterior
segments, most segments contribute to forward locomotion (see
Supplementary Material 6).

3.2.3. Strengthening Gap Junctions in B-Class

Motorneurons Impairs Locomotion
Finally, recent experiments have provided evidence that
strengthening the gap junctions (via genetic overexpression
of unc-9, one of the genes responsible for gap junctions in
C. elegans) in the B-class motorneurons leads to constitutive
paralysis in the worm (Xu et al., 2018). Although their
experiments involved the manipulation of both local electrical
coupling between motorneurons as well as the descending
electrical coupling from the command interneurons, the authors
of that work suggest that the strong electrical couplings between
the motorneurons tends to synchronize motor activity along
the whole body, thus deteriorating the ability to propagate the
bending wave. Our model is consistent with their interpretation
of their results. To demonstrate this, we systematically increased
the synaptic weight of the gap junctions interconnecting B-
class motorneurons (both the VB⊢⊣DB+1, VB⊢⊣VB+1, and
DB⊢⊣DB+1) and measured the resulting bending along the
body and speed of the model worm. As the strength of the gap
junctions was increased, the bending in the body decreased.
Noticeably, the effect was more pronounced in the tail than in
the head (Figure 5E). Accordingly, the velocity of the simulated
worms also decreased as the strength of the gap junctions were
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increased, leading ultimately to total lack of movement forward
(Figure 5F). The reason for the reduced velocity is the increased
synchronization of the different network oscillators along the
body caused by the increased strength of the gap junctions
between them. Therefore, in the model worms, strengthening
the electrical couplings between the motorneurons deteriorated
their ability to propagate the bending wave. There are some
parallels between this result and the experiments described
previously (Xu et al., 2018). However, it is important to keep in
mind the limitations of this match. First, in those experiments
direct testing of the functional contribution of local electrical
couplings was not possible because of experimental limitations,
and therefore the electrical coupling between AVB and the
B-class motorneurons could also be playing a role. Second,
in those experiments stretch-receptor feedback has not been
eliminated, and it could therefore also be playing a role.

3.3. Rhythmic Pattern Generation and
Coordination in the Ensemble of Model
Worms
In the previous section, we provided evidence that the simulated
model worms can produce locomotion without stretch receptors
and without pacemaker neurons in a way that both resembles the
kinematic characterization of the worm’s forward movement on
agar and is consistent with various experimental manipulations.
This suggests that the way these model worms operate could
be illustrative for understanding the mechanisms responsible for
locomotion in the worm. Two basic mechanisms are necessary
for a chain of multiple rhythmic pattern generators to drive
locomotion in the worm. First, a network of neurons must be
able to generate rhythmic patterns intrinsically. Second, adjacent
rhythmic pattern generators must coordinate their activity with
the appropriate phase delay along the anterior-posterior axis. In
what follows, we examine the model worms in detail to answer
the following three questions: How dominant are inhibitory
or excitatory connections in the evolved rhythmic pattern
generators? How do the model worms generate dorsoventral
rhythmic patterns? And how do they coordinate these rhythmic
patterns across the length of the body to generate a propagating
wave capable of producing thrust against an agar surface?

3.3.1. Excitatory-Inhibitory Pattern in the Ensemble of

Model Worms
It has been proposed that generating intrinsic network rhythmic
patterns is difficult because the network would have to rely
extensively on inhibitory connections (Cohen and Denham,
2019). However, the evolutionary search revealed multiple
instantiations of possibilities over a wide range of the
inhibition/excitation spectrum (see Supplementary Material 3

for the full set of parameters for each of the solutions). Seven out
of the 15 solutions contained a majority of excitatory synapses.
Furthermore, across the 15 models analyzed, it is possible to
find one with any of its six chemical synapses in an excitatory
configuration. This suggests a wide range of possibilities for
the feasibility of multiple intrinsic network rhythmic pattern
generators in the ventral nerve cord.

3.3.2. Model Worms Use the Dorsal AS-DA-DB

Subcircuit to Generate Rhythmic Patterns
How do these model worms generate rhythmic patterns? To
answer this question, we first determined which set of neurons
are involved in producing rhythmic patterns. For a subcircuit
to be capable of generating rhythmic patterns in the absence
of pacemaker neurons, a recurrently connected set of neurons
are required. There are three possible subcircuits in the VNC
unit that are capable of generating intrinsic network rhythmic
patterns: AS-DA-DB, VD-VA-DD, and VD-VB-DD (Figure 6A).
We examined whether each of these subcircuits alone could
produce rhythmic patterns (Figure 6B). We measured the total
cumulative change in neural activity as an indicator of rhythmic
patterns. Because the subcircuits were evaluated in isolation from
the rest of the network, we examined each of them with a wide
range of compensatory tonic input to each neuron. Consistent
with our previous work in the isolated neural unit (Olivares et al.,
2018), all model worms generated rhythmic patterns in the AS-
DA-DB subcircuit. Out of the 15 model worms examined, only
one of them (solution M11) generated rhythmic patterns also in
the VD-VB-DD subcircuit and only one (solution M6) generated
weak rhythmic patterns in the VD-VA-DD subcircuit.

3.3.3. Model Worms Use the AS→VD Connection to

Propagate the Rhythmic Patterns to the Ventral

Motorneurons
Despite the primary role of the dorsal motorneurons in the
generation of rhythmic patterns, all model worms show rhythmic
patterns in their ventral neural traces. In the majority of model
worms (11 out of 15), the ventral motorneurons in an isolated
subunit can produce rhythmic patterns (Figure 7A). How does
the rhythmic pattern propagate to the ventral motorneurons in
these model worms? There are two possibilities: the AS→VD
or the DA→DD chemical synapses. We examined whether the
ventral B-class motorneuron could produce rhythmic patterns
when either of those connections was ablated (Figure 7). In 10
out of the 11 solutions the AS→VD (and not the DA→DD)
synapse was necessary to propagate the rhythmic patterns from
the dorsal core (Figures 7B,C). This is consistent with our
previous work in the isolated neural unit (Olivares et al., 2018).
In one of the model worms (solution M11), neither of the
connections were necessary. Recall from the previous section that
this solution was the only one that also generated strong rhythmic
patterns in the ventral side. There are four solutions where the
ventral motorneurons do not exhibit a rhythmic pattern in the
isolated subunit. In these solutions, the rhythmic pattern in the
ventral motorneurons is due to interunit contributions.

3.3.4. Rhythmic Patterns Coordinate Through a

Combination of Three Key Interunit Gap Junctions:

AS-VA+1, DA-AS+1, and VB-DB+1

That the model worms move forward is evidence that the
multiple rhythmic pattern generators along the body coordinate
their activity. But how is the coordination between the different
units achieved? To answer this question, we examined the
necessity and sufficiency of each interunit connection, chemical
and electrical (Figure 8). In all the model worms examined,
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A B

FIGURE 6 | Rhythmic patterns originate primarily in the dorsal core subcircuit: AS-DA-DB. (A) Subcircuits within a neural unit where network pattern generation is

possible. (B) Ability to produce rhythmic patterns for the three subcircuits in each of the solutions from the ensemble. The ability to produce a rhythmic pattern was

estimated using the average of the absolute value of the derivative of the neural outputs over time, normalized to run between 0 and 1.

A B C

FIGURE 7 | Model worms use the AS→VD connection to propagate the rhythmic pattern to the ventral motorneurons. (A) Rhythmic patterns in VB motorneurons.

Four solutions do not exhibit rhythmic patterns in VB (solid black). (B) Rhythmic patterns in VB is abolished when the connection AS→VD is ablated (connection

shown in red). This is true in all solutions, except M11 (shown with an asterisk), which shows rhythmic patterns in the ventral subcircuit. (C) Rhythmic patterns in VB

persists when the connection DA→DD is ablated (connection shown in red).

only the gap junctions played a role in coordinating rhythmic
patterns among the different units in the VNC. The interunit
chemical synapses were neither necessary nor sufficient for
the coordination. In 9 of the 15 solutions examined, a single
gap junction was both necessary and sufficient to coordinate
the chain of multiple rhythmic pattern generators to drive
locomotion forward in the worm. The VD⊢⊣DB+1 gap junction
was necessary and sufficient to coordinate rhythmic patterns in
four of the solutions; the DA⊢⊣AS+1 gap junction was necessary
and sufficient in three solutions; the AS⊢⊣VA+1 gap junction was
necessary and sufficient in two. These solutions are particularly
interesting because of how simple they are (Figure 8). We analyze
one from each of these groups in more detail in the next section.
There are three solutions where multiple single gap junctions
are sufficient, but no single gap junction was necessary. These
solutions use redundant mechanisms to coordinate (Figure 8).
Finally, there are three solutions where no single connection is
sufficient but several of them are necessary. These solutions are

the most complex of the ensemble because they rely on multiple
gap junctions to coordinate (Figure 8).

3.4. Analysis of Individual Representative
Solutions
We have analyzed the properties of the ensemble and we have
identified different possible categories of solutions based on
how they coordinate the multiple rhythmic patterns. In order
to understand how the circuits in the ensemble work, we need
to move away from the general features of the ensemble and
instead analyze in detail the operation of specific circuits. We
selected three representative solutions from the “simple” group
to analyze in detail, one belonging to each different cluster
of solutions based on which gap junction was responsible for
coordinating the subunits. Individuals were selected based on the
highest performance on the sufficiency test (i.e., solution M14
for VD⊢⊣DB+1, solution M15 for DA⊢⊣AS+1, and solution M6
for AS⊢⊣VA+1). Based on the results from the previous section,
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FIGURE 8 | Necessity and sufficiency of each interunit connection to coordinate rhythmic patterns for locomotion in each of the model solutions. Each of the 15

solutions (labeled M1-M15) are shown on the x-axis. On the y-axis is the locomotion performance of each solution as a result of examining each of their interunit

connections (labeled by color, see legend) for necessity and sufficiency. Locomotion performance was measured as the ability of model worms to match the speed of

the worm (see F1 in section 2). To evaluate necessity, we ablated the connection in question and examined the worm’s ability to move forward (solid disks). To evaluate

sufficiency, we ablated all but the connection in question and again examined the worm’s ability to move forward (circles). Analysis of all 15 solutions revealed three

categories of strategies for coordination. “Simple” solutions correspond to those in which a single gap junction is both necessary and sufficient to coordinate the chain

of multiple rhythmic pattern generators that drive locomotion. These group of solutions are further subdivided based on which of the three gap junctions is responsible

for coordinating the subunits: VD⊢⊣DB+1, DA⊢⊣AS+1, and AS⊢⊣VA+1. “Redundant” solutions are those in which more than one solution is sufficient to drive

locomotion. “Complex” solutions are those in which no single gap junction is responsible for coordinating between units. Asterisks in the x-axis label mark the

solutions with the highest single sufficient connection from each of the solutions in the “Simple” groups.

we simplified solutions to their minimal circuit configurations.
Simulated models could still perform locomotion efficiently
in these simplified configurations (Figure 9A). In all three
simplified solutions, the kinematics of movement exhibit a
rhythmic pattern in the head that travels posteriorly in a way
that remains consistent with what has been observed in the worm
(Figure 9B). Because all three solutions can generate movement
forward, we know that the multiple rhythmic pattern generators
along the body coordinate to achieve the required phase shift.
From the previous section we also know that an individual
synapse is sufficient to coordinate the rhythmic patterns. In this
section, we examine how the coordinated phase-shift is achieved
in each of these solutions.

3.4.1. Directionality of Coordination
The first thing we need to understand about coordination in
these circuits is their directionality. Do anterior units influence
the ones posterior to them, or vice-versa? Because the neural
units along the VNC are coordinating their phases through
gap junctions that allow for bi-directional communication, the
directionality of coordination is not directly obvious.

First, in the solution that relies on the VB⊢⊣DB+1 gap
junction (Figure 9A1), the anatomy suggests that the rhythmic
pattern propagates posteriorly. This is because the interunit
connection VD⊢⊣DB+1 places the posterior neural subunit
effectively downstream of the anterior neural subunit. The
rhythmic pattern in the anterior dorsal core propagates ventrally.
Then the VB⊢⊣DB+1 gap junction coordinates the rhythmic
pattern with the dorsal core unit immediately posterior to it.
Therefore, in this solution, despite the bi-directionality of the
coordinating gap junction, the anterior units are likely to be

setting the phase of the posterior ones, and not the other
way around. In order to test this hypothesis, we performed an
entrainment analysis. We introduced a shift in phase first in the
anterior-most neural unit and then in the posterior-most neural
unit, and we measured the degree to which the rest of the neural
units adopted the new phase (Figure 9C1). As expected, when the
phase was shifted in the anterior-most unit, the rest of the body
adopted that shift successfully; when the phase was shifted in the
posterior-most unit, the rest of the body was unaffected.

Second, in the solution that relies on the AS⊢⊣VA+1 gap
junction (Figure 9A3), the anatomy suggests that the rhythmic
pattern propagates anteriorly. This change in directionality is
a result of the interunit connection AS⊢⊣VA+1, placing the
anterior rhythmic pattern generator downstream of the posterior
one. The rhythmic pattern in the posterior dorsal core, once
propagated ventrally, affects through the AS⊢⊣VA+1 gap junction
the rhythmic pattern of the dorsal core in the unit immediately
anterior to it. Therefore, opposite to the previous model worm,
in this model worm the posterior units are likely to be setting
the phase of the anterior ones, and not the other way around.
This is again despite the bi-directionality of the coordinating gap
junction. We tested this hypothesis using the same entrainment
analysis as before (Figure 9C3). As expected, when the phase
was shifted in the anterior-most unit, the rest of the body was
unaffected; when the phase was shifted in the posterior-most unit,
the rest of the body adopted that shift successfully.

Finally, in the solution that relies on the DA⊢⊣AS+1 gap
junction (Figure 9A2), anatomy alone cannot tell us whether the
coordination is occurring anteriorly or posteriorly. Because the
connection is directly between the two neural subunits (neither
one is downstream of the other), and because the coordinating
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FIGURE 9 | Mechanisms of anterior-posterior coordination. (A) Minimal network capable of driving locomotion in each of the solutions from the “simple” group: M14

for VD⊢⊣DB+1 (A1), M15 for DA⊢⊣AS+1 (A2), and M6 for AS⊢⊣VA+1 ) (A3). Arrows represent excitatory chemical synapses. Connections ending in circles represent

inhibitory chemical synapses. Connections with line endings represent gap junctions. (B) Kymographs for each of the minimal configurations above show coordinated

bending waves through the body. The intensity of red and blue depict dorsal and ventral curvature, respectively. The color-coding is the same as the one used in

Figure 4A. (C) Entrainment analysis for each of the solutions reveals the directionality of the coordination among the subunit rhythmic pattern generators. The purple

trajectory depicts the shift in phase that occurs in the posterior-most unit when the phase of the anterior-most unit is displaced. The brown trajectory depicts the shift

in phase that occurs in the anterior-most unit when the phase of the posterior-most unit is displaced. In solutions M14 and M15, the anterior-most neural unit is

capable of entraining the posterior-most neural unit but not the other way around (C1,C2). This suggests the coordination afforded by these two gap junctions is

directed posteriorly. On the contrary, in solution M6, it is the posterior-most neural unit that can entrain the anterior-most unit and not the other way around (C3). This

suggests the coordination afforded by this gap junction is directed anteriorly.

component is a bi-directional gap junction, the coordination
can occur in either direction. We used the same entrainment
analysis as before to examine the directionality of coordination
in this model worm (Figure 9C2). When the phase was shifted
in the anterior-most unit, the rest of the body adopted that shift
successfully; when the phase was shifted in the posterior-most
unit, the rest of the body was unaffected. Thus, in this model
worm the coordination of the shift occurs from head to tail.

3.4.2. Interunit Phase-Shift
The second aspect of the coordination that is crucial to
understanding how locomotion is generated is the shift in phase
between adjacent neural units. In order to examine this, we
identified the approximate shift in phase that occurs at every
step of the way from the DB neuron in one unit to the DB
neuron in the adjacent unit (Figure 10). We selected to measure
the shift in phase between adjacent B-class neurons because
of their primary role in forward locomotion. Although the
neural dynamics in the model correspond to periodic patterns

of activity, the specific shape of each neural activity is different.
Because of the differences, we cannot relate the dynamic of two
neurons as merely a shift in phase [i.e., f (t) = g(t + T), where
f and g are the dynamics of the two neurons]. Nevertheless, we
can approximate the shift in phase by assuming that the neurons
in the model share the same rhythmic pattern frequency. This is
the case particularly in the midbody subunits. For this analysis,
we used units 3 and 4 to calculate the shift in phase. In order
to estimate the phase of each neuron, we calculate the middle
point between the maximum and minimum rate of change for
one rhythmic cycle for each neuron.

The highlighted neurons and connections for each network
illustrates the shortest path from one DB to the DB in the
adjacent neural unit in the direction of the transmission of
information determined from the directionality analysis in the
previous section. The first thing to note is that the path is different
for each network (Figure 10). Second, the shift in phase between
two neurons is different among the different networks. For
example, in one of the solutions (Figure 10A), DB→AS is linked
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A B C

FIGURE 10 | Phase delay among adjacent subunits in the three representative solutions analyzed in more detail: M14 for VD⊢⊣DB+1 (A), M15 for DA⊢⊣AS+1 (B), and

M6 for AS⊢⊣VA+1 (C). The highlighted neurons and connections for each network illustrates the shortest path from one DB to the DB in the adjacent neural unit in the

direction of the transmission of information determined from the directionality analysis in the previous section. Despite large differences in how these different model

circuits operate, the shift in phase from one unit to the one immediately posterior to it are relatively similar.

to an eight-degree shift in phase between DB and AS, whereas
the same connection is linked to a 72-degree shift in phase in
another network (Figure 10B). However, despite the differences
in how the model circuits operate at the level of pairwise neuron
interactions, the shifts in phase from one complete neural unit
to the one immediately posterior are relatively similar. It is key
to note that it is this shift in phase from one unit to the next
which is the primary functional activity of the network, which
ultimately leads to efficient forward locomotion on agar. This
analysis suggests that high level of variability at the neuron-
level implementation of solutions can result in similar functional
results. To highlight this result, we examined the rest of the
circuits in the “simple” networks. The phase shift measured
between neurons DB→AS had a mean of 154.0 degrees and a
standard deviation of 109.9. Yet, adjacent units had a mean phase
shift of 54.4 with a standard deviation of only 8.9.

3.5. Interunit Gap Junctions Present in
Connectome
It is important to recall that the ventral nerve cord connectome
data is to date still incomplete (White et al., 1986; Varshney
et al., 2011; Cook et al., 2019). Therefore, the repeating neural
unit upon which we based our model is based on a statistical
summary of the VNC (Haspel and O’Donovan, 2011). In this
section, we address how the key components that we have
identified map onto the actual neuroanatomy of the worm. We
examined the most recent reconstructions of the hermaphrodite
and the male (Varshney et al., 2011; Jarrell et al., 2012; Xu
et al., 2013; Cook et al., 2019) for the existence of the three key
interunit gap junctions responsible for coordinating the multiple
rhythmic patterns in the model worms. We found that all three
key components occur in a large portion of the ventral nerve
cord in both hermaphrodites and males (Figure 11). Moreover,
because the connectome reconstruction is still incomplete in
the mid-body and posterior section of the VNC, additional
connections are likely to be present in these regions. The presence
of additional connections can only strengthen the possibility of
network oscillations. Although no single connection is present
for every pair of adjacent units, there are combinations of
different connections scattered throughout the full length of the

ventral nerve cord. As observed in many of the evolved solutions,
these three interunit gap junctions can work together to help
coordinate rhythmic patterns. One thing to keep in mind is that
not all of these connections are directed in the way we have
idealized in the model. For example, although most AS⊢⊣VA
connections are directed posteriorly (i.e., with AS anterior to
VA), in one of the connections the directionality is inverted
(see posterior of the hermaphrodite). Assuming the directionality
shown in the model, VB⊢⊣DB and DA⊢⊣AS will coordinate
units posteriorly, and AS⊢⊣VA will coordinate units anteriorly.
Variability in the directionality in the connectome will have the
effect of inverting the directionality of the coordination for those
connections. Altogether, from these results, it seems plausible
that multiple network rhythmic pattern generators in the ventral
nerve cord could robustly coordinate their phases, even in the
absence of stretch-receptor information, both anteriorly and
posteriorly in the worm.

4. DISCUSSION

Given the importance of locomotion for the worm, there
is a likelihood that the worm has multiple, redundant,
and overlapping mechanisms for generating and coordinating
rhythmic patterns. One of the mechanisms for which there
is a growing consensus is proprioception (Tavernarakis et al.,
1997; Mailler et al., 2010; Boyle et al., 2012; Cohen et al.,
2012; Wen et al., 2012; Fieseler et al., 2018; Izquierdo and
Beer, 2018). In this paper, we examined the possibility that
multiple intrinsic network rhythmic pattern generators could
coordinate through motorneuron gap junctions to produce a
traveling wave along the body. The model did not aim to
reproduce any one existing experiment in the literature. Instead,
the model aimed at proposing a new experiment that has not
been possible experimentally yet: to eliminate proprioception
in the worm, to eliminate descending inputs from command
interneurons, to eliminate the ability for any motorneurons to
produce pacemaking activity, and to examine the worm’s ability
to propagate a bending wave. The hypothesis that this model
makes is that it is theoretically possible for the generation and
coordination of oscillatory patterns that can generate a traveling
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A

B

FIGURE 11 | Key interunit gap junctions present in the C. elegans connectome for the hermaphrodite (A) and the male (B). Gap junctions are color coded based on

the pair of motorneurons they connect, as in previous figures: VB⊢⊣DB in yellow, DA⊢⊣AS in green, and AS⊢⊣VA in red. Connections shown are present in one or

several of the main datasets. For the hermaphrodite, each connection is marked as appearing in one or more of the following three datasets: j (Jarrell et al., 2012),

v (Varshney et al., 2011), or c (Cook et al., 2019). For the male, each connection is marked as appearing in one or more of the following two datasets: j (Jarrell et al.,

2012), or c (Cook et al., 2019).

wave, even under those conditions. If this mechanism were to
be operational in the worm, then it is likely that it would be an
additional contributing mechanism for forward locomotion in
the worm.

We developed amodel of a repeating ventral nerve cord neural
circuit, and embodied and situated it to produce locomotion. In
order to test whether coupling between motorneurons could be
capable of generating and coordinating rhythmic patterns, the
model deliberately excluded proprioceptive feedback, it excluded
the ability of A- and B-type motorneurons to exhibit intrinsic
oscillatory activity, and it excluded descending signals from the
command interneurons. Using an evolutionary algorithm, we
found 15model configurations that reproduced the kinematics of
locomotion on agar. Themodels were consistent with some of the
recent experimental results that suggest the feasibility of multiple
sources of rhythmic pattern generation (Fouad et al., 2018; Xu
et al., 2018).

The multiple intrinsic oscillatory mechanism found by
evolution in this model depends entirely on the collective
operation of the following ventral nerve cordmotor components:

It depends on motorneurons AS, DA, and DB to produce the
network oscillations; it depends on motorneurons VD, VA, and
VB to drive ventral oscillations out of phase to the dorsal ones;
and it depends on one of a set of three different inter-segmental
gap junctions VB-DB, DA-AS, and AS-VA to coordinate the
multiple oscillations across the length of the body. The model
provides theoretical support that these components would be key
places to look for intrinsic pattern generation and coordination
in the worm, if it were to be identified experimentally. It
follows naturally that the mechanism proposed is not robust to
ablations to any of those individual components. To the degree
that ablations to any of those individuals components disrupts
the generation and coordination of rhythmic patterns in the
worm, this mechanism for generating and coordinating network
oscillations is not the sole or primary mechanism responsible
for forward locomotion in the worm. In the absence of any
one of the VNC motorneurons neurons, this mechanism would
cease to be a possible contributor to locomotion. The hypothesis
that this model makes is that in the absence of stretch receptor
feedback, but otherwise with all neurons intact, it is theoretically
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possible for the worm to generate and coordinate multiple
intrinsic oscillations. This has not been tested experimentally
yet. Furthermore, the model postulates that the components
mentioned above would play key roles. We discuss each of them
in turn.

First, the models demonstrated that rhythmic patterns can be
generated in a small subcircuit within each subunit of the model.
The network of neurons identified extends the circuit proposed in
previous work (Olivares et al., 2018), and it includes the collective
participation of all motorneurons in the VNC.However, we know
from experimental studies that ablation of AS motorneurons
disrupts coordination of the bending wave (Tolstenkov et al.,
2018). Together, this provides further evidence to the already
strong hypothesis that stretch receptor feedback is a fundamental
contributor to forward locomotion. It also suggests that, if the
multiple intrinsic network oscillations mechanism is possible
in the worm, it is a secondary, complementary contributor
to its locomotion. Furthermore, if the nematode has multiple
redundant mechanisms for producing locomotion (using stretch
receptor feedback; using pacemaker neurons; and using network
oscillators), then it follows that eliminating any one of the
components in one of the three mechanisms will not cause a
full disruption. To fully test the hypothesis of network rhythmic
pattern generation will require analyzing the subcircuit of a
VNC neural unit in isolation from proprioceptive feedback,
without descending inputs from command interneurons, and
in conditions where A- and B-type motorneurons are not
generating intrinsic oscillations.

Second, although recent experimental work has focused
on demonstrating the importance of proprioception for
coordinating the multiple rhythmic pattern generators within
the ventral nerve cord (Fouad et al., 2018; Gao et al., 2018;
Wen et al., 2018; Xu et al., 2018), the results of our model
suggest that the coordination between multiple rhythmic
pattern generators can be achieved by any one of the repeating
interunit electrical synapses between motorneurons. Specifically,
analysis of the ensemble of models suggested three candidate
electrical junctions: VB⊢⊣DB, DA⊢⊣AS, and AS⊢⊣VA. These gap
junctions are present throughout the ventral nerve cord in the
available connectome data. However, only a complete anatomical
reconstruction of the ventral nerve cord will reveal the full
extent of their presence. To test this hypothesis would require
examining whether stimulation of one set of motorneurons
in the ventral nerve cord can entrain the anterior or posterior
motorneurons in the absence of proprioceptive feedback and
with descending input from command interneurons disabled.

Finally, analysis of the ensemble of models also demonstrated
that coordination between the multiple intrinsic network
rhythmic pattern generators can be achieved in either the
anterior or posterior direction, and some solutions coordinate
in both directions. Regardless of the direction of neural pattern
coordination, the behavior of the integrated neuromechanical
model was a posterior traveling wave that moved forward on
agar. Altogether, analysis of the solutions revealed how different
configurations of the network can generate and coordinate
multiple rhythmic pattern generators that will result in almost
identical forward locomotion behavior.

Given the deliberate effort to remove from the model a
number of components that are known to play important roles
in forward locomotion for the sake of addressing a question
that had not been tackled yet, the model naturally reveals
discrepancies with a number of experiments. Specifically, there
is evidence that: silencing A-class motor neurons does not
entirely disrupt forward locomotion (Xu et al., 2018); ablating
AS does not disrupt forward locomotion entirely but leads to
a ventral bias in the bending (Tolstenkov et al., 2018); and D-
class motor neurons may not be playing a role in coordinating
body waves under certain conditions (McIntire et al., 1993; Deng
et al., 2020). In contrast, the multiple network rhythmic pattern
generators hypothesis in this model relies on the participation
of all motor neurons, including classes A, AS, and D. Although
there is further experimental work that remains to delineate
with precision the role of each of those neurons in forward
locomotion, there is one relatively trivial way to resolve the
inconsistency between the model and the hypothesis that those
neurons play no substantial roles in forward locomotion: the
re-introduction of proprioceptive feedback back into the model
as an independent mechanism for generating reflexive rhythmic
patterns. With such a mechanism in place, silencing those
neuronal classes would no longer cause disruptions to forward
locomotion, as evidenced by several models that do not include
those neurons, do include proprioception, and generate forward
locomotion (Boyle et al., 2012; Izquierdo and Beer, 2018). That
proprioceptive feedback has been removed from the model in
this paper should not be taken as a postulation that it plays
no role. On the contrary, we acknowledge the important role
proprioceptive plays in locomotion in the worm and proceeded
deliberately with the development of a model that could test
the limits of whether locomotion would be possible in its
absence. A second way to resolve some of the inconsistencies
could arise from a complete map of the ventral nerve cord
connectome. The present model only included the statistically
repeating connections in the partially mapped connectome.
With new connections added to the model, the possibilities for
generating network rhythmic patterns only increases. With such
an increase, the possibility that one of those alternatives may
not require all the motor neurons in the ventral nerve cord
also increases.

A more considerable discrepancy arises with the observation
that body wall muscles of partially constrained worms display
no activity (Supplementary Figure 1 in Wen et al., 2012). The
results from those experiments suggest proprioceptive feedback
is not just sufficient, but necessary for rhythmic activity in the
ventral nerve cord. To the degree that proprioceptive feedback is
demonstrated to be necessary for neural rhythmic activity, then
the multiple network rhythmic pattern generators hypothesis
must be discarded. However, despite those experiments, the
possibility that the ventral nerve cord exhibits rhythmic neural
patterns in the absence of proprioceptive feedback remains
tenable. There is a possibility that the neural rhythmic
activity generated is too weak to drive the muscles under
the constrained condition. There is also a possibility that the
constrained condition makes the activation of the muscles
unfeasible. Although the lack of muscle activity in constrained
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worms provides strong evidence against intrinsic network
pattern generation, it would be premature to discard the
hypothesis altogether without first imaging neural activity while
proprioceptive feedback is silenced.

Our model has a number of limitations. Locomotion in the
worm is composed of many movements, including forward,
backward, turns, and reversals (Yemini et al., 2013). A-
and B- class VNC motorneurons receive descending input
from command interneurons AVA and AVB, respectively,
and activation from these neurons drives changes in the
oscillatory patterns that lead the worm to transition between
forward, backward, reversals, and turns (Chalfie et al., 1985;
Kawano et al., 2011; Rakowski et al., 2013; Xu et al., 2018).
Furthermore, the locomotory pattern of the worm varies
drastically with different mechanical loads from the viscosity
of the environment (Berri et al., 2009; Fang-Yen et al., 2010).
Although a more comprehensive model would address questions
regarding all of those interrelated components of locomotion
in the worm, the scope of this model was much narrower.
The goal of this study was not to capture all aspects of the
worm’s rich locomotory behavior; but to systematically search for
the different parameter configurations that resulted in multiple
intrinsic rhythmic pattern generators for forward locomotion on
agar under the limited conditions where all VNC neurons are
intact and stretch receptor feedback is not available. To study the
effects of different mechanical loads on the worm’s movement,
it is essential to include stretch-receptor feedback into the model.
To study the changes between forward and backward locomotion
and changes in speed, it is essential to include the descending
input from the command interneurons.

Despite the breadth of knowledge available about the
worm’s connectome, the signs of its connections are yet to be
elucidated, and a systematic characterization of the physiological
properties of the neurons and the role they play in different
behaviors remains experimentally challenging, making modeling
the neural basis of its behavior a massively under-constrained
problem. Our approach takes this challenge seriously, generating
multiple possible hypotheses for how different parameter
configurations and patterns of activity could lead to the observed
behavior. Despite these obvious limitations, the strength of the
approach is that it integrates connectomic, physiological, and
behavioral data to infer candidate configurations of synaptic
properties. As experiments that map neural manipulations to
behavioral kinematics increases and the data becomes public
and standardized, these can be used to further constrain the
optimization search and thereby hone in on the space of
candidate models.

Finally, it is important to note that the fitness function used
in any evolutionary experiment defines a level of constraint on
the ensemble of solutions analyzed. In this work, we chose to
search for model worms that could match as best as possible
aspects of the worm’s movement during forward locomotion on

agar that have been characterized in some detail, such as the speed
of movement (Cronin et al., 2005; Cohen et al., 2012). However,
the conditions of the model worm are different from those of the
wild type worm, crucially no stretch receptor feedback and no
information from the command input neurons. The motivation
of this simplification was that to the degree that a model worm
without those crucial components could replicate some aspects of
the wild-type behavior, then analysis of those solutions will reveal
new insights about mechanisms for producing the behavior.
Future work will involve setting up different levels of constraints
on the model, which will result in different ensembles, each of
which might be useful to understand. One interesting avenue of
research can be aimed at understanding how the ensemble of
solutions changes as constraints are changed.
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