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ABSTRACT
Objective To systematically investigate the association 
of environmental risk factors and prodromal features 
with incident Parkinson’s disease (PD) diagnosis and the 
interaction of genetic risk with these factors. To evaluate 
whether existing risk prediction algorithms are improved 
by the inclusion of genetic risk scores.
Methods We identified individuals with an incident 
diagnosis of PD (n=1276) and controls (n=500 406) 
in UK Biobank. We determined the association of 
risk factors with incident PD using adjusted logistic 
regression models. We constructed polygenic risk 
scores (PRSs) using external weights and selected the 
best PRS from a subset of the cohort (30%). The PRS 
was used in a separate testing set (70%) to examine 
gene–environment interactions and compare predictive 
models for PD.
Results Strong evidence of association (false discovery 
rate <0.05) was found between PD and a positive family 
history of PD, a positive family history of dementia, non- 
smoking, low alcohol consumption, depression, daytime 
somnolence, epilepsy and earlier menarche. Individuals 
with the highest 10% of PRSs had increased risk of 
PD (OR 3.37, 95% CI 2.41 to 4.70) compared with the 
lowest risk decile. A higher PRS was associated with 
earlier age at PD diagnosis and inclusion of the PRS in 
the PREDICT- PD algorithm led to a modest improvement 
in model performance. We found evidence of an 
interaction between the PRS and diabetes.
Interpretation Here, we used UK Biobank data to 
reproduce several well- known associations with PD, to 
demonstrate the validity of a PRS and to demonstrate a 
novel gene–environment interaction, whereby the effect 
of diabetes on PD risk appears to depend on background 
genetic risk for PD.

INTRODUCTION
Parkinson’s disease (PD) is the second most preva-
lent neurodegenerative disorder worldwide.1 By the 
time an individual is diagnosed with PD, a substan-
tial proportion of nigrostriatal neurons has already 
been lost.2 Identification of at- risk individuals and 
earlier detection likely represent the best opportu-
nities for the development of effective treatments to 
prevent or reverse progression of PD.

Over the past decade, large genome- wide associ-
ation studies (GWAS) of PD have built on linkage 
studies of rare, familial forms of PD. From the latest 

PD GWAS, 90 independent signals were identified, 
which collectively explain ~16% of overall PD 
liability.3 Separately, epidemiological studies have 
identified potentially modifiable exposures, various 
comorbidities and prodromal features.4 5 There 
have been efforts to incorporate these non- genetic 
risk factors into predictive algorithms to identify 
individuals at higher risk of PD.6–9

The modest overall liability explained by genetic 
factors and small individual effect sizes of environ-
mental risk factors for PD suggest that interactions 
between them may explain some of the missing 
risk. Modelling interactions may yield insights 
into PD pathobiology, further improve prediction 
algorithms and suggest potential ways to modify 
risk through intervention in geneticallystratified 
groups.10–12

Here, we used the UK Biobank (UKB) cohort 
and the latest PD GWAS data to evaluate the asso-
ciation of environmental and prodromal factors 
with incident PD, explore how a polygenic risk 
score (PRS) for PD improves the performance of 
a prediction algorithm that combines these factors 
and explore how the PRS interacts with environ-
mental/prodromal factors.

METHODS
Data sources
The UKB is a large repository that contains health- 
related data on over 500 000 individuals across 
the UK. The methods by which these data were 
collected have been described elsewhere.13 Briefly, 
between 2006 and 2010 adults aged between 40 
and 69 years within close proximity to 1 of 22 UKB 
recruitment centres were invited to participate. 
Individuals had extensive demographic, lifestyle, 
clinical and radiological information collected. In 
addition to this, participants underwent genotyping 
and had health records collected using linked 
Hospital Episode Statistics.

Study design, definition of exposures and 
outcomes
For the analyses assessing the association of envi-
ronmental and prodromal factors, we included only 
incident cases of PD (those individuals in whom the 
diagnosis was recorded after their UKB initial assess-
ment visit) and excluded prevalent cases (individuals 
diagnosed with PD prior to their initial assessment 
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visit). PD diagnoses were derived from self- report or linked Hospital 
Episode Statistics ICD codes (online supplementary table 1). We 
included all participants without a PD diagnosis in the dataset 
as unmatched controls and adjusted for relevant confounding 
factors in the subsequent analyses. Of note, age at completion of 
full- time education was only available for a subset of participants 
(n=330 240). We chose to control for deprivation, a useful proxy 
for socioeconomic status, in our models to prevent exclusion of the 
~170 000 individuals with missing education data.

We attempted to include all exposures shown to be associ-
ated with PD risk in a large meta- analysis.4 All exposures were 
captured at the time of the initial visit. Details of how each 
exposure variable was defined are provided in online supple-
mentary table 1. Exposures were excluded from this analysis 
if the reported prevalence in UKB was substantially lower than 
reported population prevalence (i.e. anosmia, erectile dysfunc-
tion, shoulder pain/stiffness)14–18 and therefore deemed unreli-
ably recorded.

Genotype data
Genotyping was performed using the Axiom (UK Biobank 
Axiom Array, ThermoFisher) and UK BiLEVE arrays. Geno-
typing, imputation and quality control procedures are described 
elsewhere.19 Genetic principal components were supplied by 
UKB (data- field 22 009).

Construction of PRS
A variety of PRS were created using the clumping- and- 
thresholding approach:
1. We extracted variant associations with PD from the most re-

cent GWAS but not including the UKB participants from that 
GWAS.3

2. We excluded palindromic variants and variants without an 
rsID.

3. We excluded variants associated with PD above an arbitrary 
p value threshold (0.00005, 0.0005, 0.005, 0.05, 0.1, 0.2, 
0.4, 0.6, 0.8, and 1).

4. We clumped using several r2 thresholds (0.1, 0.2, 0.4, 0.6, 
0.8) and a clumping distance of 250 kb, with the 1000 ge-
nomes EUR samples as the reference genome.20

Reference genome data were obtained from the 503 partic-
ipants of European ancestry in the 1000 genomes project.21 
Only autosomal, biallelic variants which passed quality control 
in both the PD GWAS and target (UKB) datasets were included. 
We excluded all duplicate rsIDs, duplicate positions, variants 
deviating from Hardy- Weinberg equilibrium (p<1e-06), rare 
variants with minor allele frequencies <0.01, variants with 
genotype missingness >10% and variants with low imputation 
quality (Mach R2 <0.3). After SNP QC, a total of 4 490 455 
markers overlapped between the reference and target datasets. 
For genetic analysis, individuals with >10% missing genotypes 
were excluded, and only individuals with self- reported ‘White 
British’ ethnicity and genetically European ancestry as defined 
by genetic principal components were included. We excluded 
one of each pair of individuals related at a kinship coefficient 
cut- off of 0.0442, equivalent to a third- degree relative. Kinship 
coefficients were calculated by UKB and are provided in the 
‘Relatedness’ file (category 263).

As a sensitivity analysis to determine whether as- yet- 
undiscovered genomic risk loci explained additional liability 
to PD, we created an additional PRS using the best- performing 
PRS (in terms of Nagelkerke’s pseudo- R2). We excluded all vari-
ants within 1 MB either side of the lead SNP for the 90 risk loci 

discovered in the most recent International Parkinson’s Disease 
Genomics Consortium (IPDGC) GWAS.3

Effect allele dosage at each locus was multiplied by the beta 
coefficient to generate the risk score for that locus. Scores were 
standardised to have mean 0 and a 1- unit variance for each SNP. 
For missing genotypes, the score at that locus was defined as 
the mean of all scores at that locus. Risk scores were totalled 
across the genome to calculate an individual’s score. All indi-
viduals in UKB with a PD diagnosis, prevalent or incident, were 
included. Analysis was performed in PLINK (V.2.00aLM 64- bit 
Intel) using the ‘--score’ flag.

Statistical methods
Incident case–control study
Multivariable logistic regression models were built for 
each risk factor using the entire UKB cohort as controls 
and adjusting for age, sex, ethnicity and deprivation status. 
Models were of the form: PD status ~Age+Sex+Ethnici-
ty+Townsend Deprivation status+risk factor. Next, a multi-
variable logistic regression model was built for incident PD 
comprising all environmental factors robustly associated 
(false discovery rate (FDR) <0.05) with PD risk, including the 
above confounders. Likelihood ratio tests were used to assess 
the improvement of model fit at an FDR threshold of 0.05, 
that is, for each risk factor the above model was compared 
with a null model of the form: PD status ~Age+Sex+Eth-
nicity+Townsend Deprivation status. For sex- specific covari-
ates, sex was not included as a confounding covariate. We 
performed the following sensitivity analyses: exclusion of 
individuals under the age of 60, exclusion of non- White indi-
viduals, exclusion of individuals whose PD diagnosis was 
solely derived from self- report and a matched case–control 
analysis (each case matched to exactly four participants for 
age, ethnicity and sex).

Application of the PREDICT-PD algorithm
We applied the PREDICT- PD algorithm to UKB participants 
to externally validate this risk score and determine whether 
its predictive performance was enhanced by the addition of a 
genetic risk score.7 The algorithm uses published estimates 
of relative risks and ORs derived from large meta- analyses of 
early non- motor features and risk factors for PD.4 Baseline risk 
of PD (on the odds scale) was determined from the following 
equation7:

 odds
(
PD

)
= Pr

(
PD

)
1−Pr

(
PD

) = 1
1+28.53049+73.67057×exp(−0.165308(Age−60))  

With the PREDICT- PD algorithm, the following adjustments 
to this baseline age- adjusted risk are made for individuals based 
on the presence or absence of the following traits7: females 
(divided by 1.5), current smoking (multiplied by 0.44), previous 
smoking (multiplied by 0.78), family history of PD (multiplied 
by 4.45), more than one cup of coffee per day (multiplied by 
0.67), more than one alcoholic drink per week (multiplied by 
0.9), constipation (multiplied by 2.34), anxiety or depression 
(multiplied by 1.86) and erectile dysfunction (multiplied by 3.8). 
The final odds for PD was converted to the probability scale 
using the equation:

 
Pr

(
PD

)
= Odds

(
PD

)
1+Odds

(
PD

)
  

To assess model performance as a covariate in logistic 
regression models, the PREDICT- PD estimate for liability was 
converted to the log odds scale.
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Evaluation of model performance
To determine whether the PRS explained PD risk in UKB and 
whether it improved existing risk prediction models, we first 
divided the subset of European, unrelated UKB participants into 
a training set (30%) and a testing set (70%). The training set was 
used to select the PRS which explained the maximal PD risk.

To evaluate PRS performance in the training set comprising 
451 prevalent PD cases and 100 446 controls, we used Nagelk-
erke’s pseudo- R2 metric comparing a full model (PD status 
~Age+Sex+Townsend+PCs 1–4+PRS) to a null model (PD 
status ~Age+Sex+Townsend+PCs 1–4+PRS). Ninety- five per 
cent CIs were derived from 1000 bootstrap replicates using 
normal approximations as test statistics were approximately 
normally distributed. We selected the PRS with the highest abso-
lute Nagelkerke’s pseudo- R2 for further validation.

To evaluate predictive model performance in the testing set, 
we calculated discrimination statistics (area under the curve 
(AUC)), calibration statistics and Nagelkerke’s pseudo- R2 using 
a variety of models (online supplementary figures).

Gene–environment interactions
All analyses examining gene–environment interactions were 
conducted in the testing set to mitigate against bias from overfit-
ting of the PRS. Interactions were assessed on both the additive 
and the multiplicative scales. Interaction on the additive scale 
was assessed by calculating the attributable proportion (AP) 
due to interaction. Additive interaction analyses were based on 
multivariable logistic regression models incorporating age at 
recruitment, sex, deprivation and the first four genetic principal 
components as confounders.22

For a logistic regression model of the form:

 log
(

p
1−p

)
= β0 + βRF1x + βRF2y + βRF1∗RF2x× y  

in which (p/(1- p)) is the log odds of PD and are the values 
of exposure variables (e.g. childhood body size, smoking, PRS) 
and is the interaction term, then the Relative Excess Risk due to 
Interaction (RERI) can be calculated as:
 RERI = exp

(
βRF1 + βRF2 + βRF1∗RF2

)
− exp

(
βRF1

)
− exp

(
βRF2

)
+ 1  

The AP can be conceived of as the proportion of the disease 
in the doubly exposed group attributable to the interaction 
between the risk factors, that is,

 
AP = RERI

exp
(
βRF1+βRF2+βRF1∗RF2

)
  

This model can be expanded to include confounding covariates, 
in which case the beta coefficients are adjusted for confounders. 
Derivation and further discussion of the advantages of this 
method over Rothman’s initial description can be found in Knol 
et al.22 We restricted this analysis to participants with geneti-
cally European ancestry determined by both self- report (‘Cauca-
sian’ in UKB data) and genetic ethnic grouping. For interaction 
analyses using the PRS, the covariates were age, sex, current 
deprivation and the first four genetic principal components. 
The PRS was transformed using the inverse normal transforma-
tion and treated as a continuous variable for these analyses. For 
the menarche analysis, age at menarche was also transformed 
using the inverse normal transformation. CIs for the AP were 
estimated using bootstrap resampling of the entire dataset with 
replacement for 5000 iterations.22 Ninety- five per cent CIs were 
derived from the 2.5th and 97.5th percentile values. Interactions 
on the multiplicative scale were assessed using a logistic regres-
sion model incorporating an interaction term. The presence of 
multiplicative interaction was assessed using the likelihood ratio 
test, with an overall FDR threshold at 5%.

Computing
This research was supported by the High- Performance Cluster 
computing network hosted by Queen Mary University of 
London.23

Statistical analyses were performed in R V.3.6.1. Extraction 
of European individuals from the 1000 genomes reference 
genome was conducted using vcftools. Construction of the PRS, 
application of the PRS to individuals and quality control were 
performed in PLINK V.1.9 and PLINK V.2.00. Code used for 
this paper is available at https:// github. com/ benjacobs123456/ 
PD_ UKB_ PRS.

RESULTS
Demographics of cases and controls
Phenotype data were available for 2127 individuals with PD, of 
whom 1276 were diagnosed after enrolment (incident cases) and 
500 406 controls. After the exclusions outlined for the genetic 
analyses, 1342 of the 2127 individuals with PD remained and 
801 of the 1276 incident PD cases remained. Of the 1276 inci-
dent cases, 1243 (97.4%) had a Hospital Episode Statistics coded 
diagnosis of PD and 33 (2.59%) individuals had a self- reported 
diagnosis only. Demographic characteristics of individuals with 
PD (both prevalent and incident cases) and controls are shown 
in online supplementary table 2. In unadjusted comparisons, 
cases with PD were more likely to be older (mean age at recruit-
ment 62.7 years, SD 5.49), male (61.6% male), born in the UK, 
of white ethnicity, and less deprived.. Age at PD diagnosis was 
consistent with published estimates (median 66.1 years, IQR 
59.5–71.7).24 Median follow- up time was similar for cases 
(median 12.01 years, IQR 11.01–13.01) and controls (median 
12.01 years, IQR 11.01–13.00).

Risk factors and prodromal features
There was strong evidence of a positive association 
(FDR<0.05) between incident PD diagnosis and having a 
family history of PD, not smoking, low alcohol consumption 
(<1 drink/week), depression, excessive daytime sleepiness, 
a family history of dementia, epilepsy and earlier menarche. 
There was weaker evidence (FDR<0.10) for an association 
between PD and having had peptic ulcer disease or diabetes 
mellitus (figure 1, table 1). Effect estimates and precision did 
not alter substantially in a multivariable model including all 
strongly associated (FDR<0.05) risk factors (age of menarche 
was excluded to allow inclusion of both sexes; table 2). Exclu-
sion of non- white individuals, individuals <60 years old at 
recruitment, self- reported PD cases and use of a matched 4:1 
case‒control design did not alter these results (online supple-
mental figures 1‒4).

Validation of PREDICT-PD risk algorithm
In the whole cohort, the PREDICT- PD algorithm had some 
discriminative ability for distinguishing incident PD cases 
from controls (Nagelkerke’s pseudo- R2 0.060, likelihood 
ratio p<2×10−16, online supplementary figures 5 and 6). The 
median predicted probability of PD was 2.31× higher among 
incident PD cases than controls (median risk 0.81%, IQR 0.61 
in cases vs median risk 0.35%, IQR 0.57 in controls; figure 2).

Genetic risk score
After ancestry and relatedness exclusions (online supplementary 
figures 7 and 8), we divided the cohort into training (30%) and 
testing (70%) sets to mitigate against overfitting. We evaluated 
the performance of various polygenic scores in the training set, 
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which consisted of 451 PD cases altogether (including prevalent 
cases) and 100 446 controls. Within the training set, the best- 
fitting PRS had the following parameters: p value threshold 
<5×10−5, clumping R2 threshold 0.4, Nagelkerke’s pseudo- R2 
0.0097, 95% CI 0.0095 to 0.0099, 983 SNPs included (figure 3, 
online supplementary tables 4 and 5). We then evaluated the 
performance of this PRS in the testing set, which consisted of 600 
incident PD cases, 1007 PD cases altogether (including prevalent 
cases) and 234 418 controls. The selected PRS had predictive 
power for incident PD in the testing set comparable with that 
in the training set (Nagelkerke’s pseudo- R2 0.0099, likelihood 
ratio test p<2×10−16; figure 3, supplementary figures 5 and 6).

Individuals in the highest PRS decile had approximately 3.4× 
increased risk of PD (OR 3.37, 95% CI 2.41 to 4.70) compared 
with the lowest decile (figure 3, online supplementary table 7 
for case and control counts in each decile). Higher PRS scores 
were also associated with age at PD diagnosis in a linear model 
adjusting for age, sex and the first four genetic principal compo-
nents (PCs; beta −0.060 per 1- SD increase in PRS, p=0.016, 
figure 3). This estimate is similar to a published estimate from 
the IPDGC.25

Inclusion of the PRS improved model fit for PD risk compared 
with a null model including only the PREDICT- PD algorithm 
(which incorporates age and sex), and the first four genetic PCs 

Figure 1 Associations of risk factors and incident cases of PD. Point estimates for association are depicted as log ORs and 95% CIs. Estimates of 
association were derived from logistic regression models adjusting for age, sex, Townsend deprivation index at recruitment and ethnicity. BMI, body mass 
index; PD, Parkinson’s disease.
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(Nagelkerke pseudo- R2 0.005, p=2.11×10−9, online supple-
mentary figures 5 and 6). We modified this PRS to exclude all 
variants within known PD genomic risk loci (see Nalls et al 
2019 and online supplementary table 6): for each risk locus, all 
variants 1 MB either side of the lead SNP were removed. This 
modified PRS did not explain additional PD liability compared 

with the PREDICT- PD algorithm alone (Nagelkerke pseudo- R2 
2.94×10–6, p=0.89), suggesting that variation within estab-
lished PD risk loci accounts for the majority of the predictive 
power of the PRS.

Interactions
Interactions between the PRS and eight risk factors/prodromal 
symptoms found to be associated with PD risk at FDR<0.10 
were analysed (family history of PD and dementia were not 
included because of the potential overlap with the PRS, and 
smoking exposure included as never/ever smoker). Although 
there was no evidence for multiplicative interactions surpassing 
the FDR of 5%, there was nominal evidence (p<0.05) for a 
negative multiplicative interaction between diabetes and the PRS 
(beta −0.40, p=0.026, online supplementary table 7). We also 
found evidence of interaction on the additive scale between the 
PRS and diabetes (AP −0.39, 95% CI −1.03 to−0.03; figure 4). 
These results suggest that diabetes is a more potent risk factor 
among people at low genetic risk of PD.

DISCUSSION
In this study, we used data from UKB to determine risk factors 
and protective factors for PD, demonstrate the predictive 
power of a PRS relative to a previously validated risk prediction 

Table 1 Associations of risk factors with incident PD status

Risk factor Category OR Lower 95% CI Upper 95% CI P value Likelihood ratio FDR Q

Family history: PD Family history 2.19 1.81 2.65 3.62E-13 9.78E-12

Alcohol: <1 drink per week Environmental 1.39 1.24 1.57 8.96E-08 1.21E-06

Depression Comorbidity 1.76 1.43 2.17 9.40E-07 8.46E-06

Epilepsy Comorbidity 2.87 1.97 4.19 2.58E-06 1.39E-05

Excessive daytime sleepiness Prodrome 1.33 1.19 1.50 2.07E-06 1.39E-05

Smoking status: current Environmental 0.65 0.51 0.81 2.34E-04 0.001

Smoking status: previous Environmental 0.88 0.78 0.98 2.34E-04 0.001

Family history: dementia Family history 1.26 1.09 1.45 0.002 0.008

Age at menarche Early life 0.93 0.88 0.98 0.010 0.032

Diabetes Comorbidity 1.27 1.03 1.57 0.030 0.086

Gastric ulcer Comorbidity 1.69 1.09 2.64 0.032 0.086

Age at voice breaking: older than average Early life 1.01 0.70 1.45 0.073 0.156

Age at voice breaking: younger than average Early life 1.54 1.09 2.18 0.073 0.156

Family history: stroke Family history 1.11 0.99 1.26 0.075 0.156

Head injury Comorbidity 2.00 1.03 3.87 0.064 0.156

Childhood obesity Early life 1.13 0.97 1.32 0.132 0.255

Hypertension Comorbidity 1.08 0.96 1.22 0.182 0.328

Exposed to maternal smoking Early life 0.92 0.80 1.05 0.213 0.343

Family history: depression Family history 1.11 0.94 1.32 0.216 0.343

Anxiety Comorbidity 1.30 0.82 2.04 0.281 0.400

Breastfed as a baby Early life 0.91 0.77 1.08 0.281 0.400

Family history:diabetes Family history 0.93 0.81 1.07 0.331 0.447

BMI Environmental 1.01 0.99 1.02 0.363 0.467

Age completed full time education Early life 0.99 0.96 1.02 0.403 0.473

Right- handed Early life 0.92 0.77 1.11 0.398 0.473

Migraine Comorbidity 1.14 0.80 1.62 0.488 0.549

Constipation Prodrome 1.28 0.32 5.13 0.741 0.789

Pesticide exposure Environmental 1.12 0.55 2.30 0.759 0.789

Cups of coffee per day Environmental 1.00 0.97 1.03 0.918 0.918

Output is from logistic regression models of the form PD status ~Age+Sex+Deprivation+Ethnicity+risk factor. P values are asymptotic p values calculating from the z statistic. 
Likelihood ratio test Q values represent the local FDR- corrected p value for the likelihood ratio test comparing model fit with and without the risk factor term (ie, compared with 
a null model consisting only of the covariates age, sex, ethnicity and deprivation).
BMI, body mass index; FDR, false discovery rate; PD, Parkinson’s disease.

Table 2 Associations of risk factors with incident PD status in a 
combined model adjusting for all other risk factors

Risk factor OR Lower 95% CI Upper 95% CI P value

Family history: PD 2.13 1.76 2.58 1.38E-14

Depression 1.72 1.40 2.12 3.93E-07

Epilepsy 2.65 1.80 3.89 7.35E-07

Alcohol: <1 drink/week 1.34 1.19 1.51 2.53E-06

Excessive daytime sleepiness 1.29 1.14 1.45 3.01E-05

Current smoking 0.65 0.52 0.82 3.10E-04

Family history: dementia 1.22 1.05 1.40 0.008

Age at menarche 0.94 0.88 0.99 0.026

Previous history of smoking 0.90 0.80 1.01 0.070

Output is from logistic regression models of the form PD 
status~Age+Sex+Deprivation+Ethnicity+risk factors. P values are asymptotic p values 
calculating from the z statistic. In this model, all covariates found to be associated with PD 
at FDR<0.05 were included. The estimate for menarche is derived from a model without a 
sex term as it was restricted to females.
FDR, false discovery rate; PD, Parkinson’s disease.
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algorithm and provide novel evidence for differential effects of 
diabetes on PD risk depending on prior genetic risk.

We observed strong associations with incident PD for several 
well- established risk and protective factors. In a model adjusted 
for age, sex, ethnicity and current deprivation, risk factors for 
incident PD were having a family history of PD, not smoking, 
low alcohol consumption (<1 drink/week), depression, exces-
sive daytime sleepiness, a family history of dementia, epilepsy 
and earlier age of menarche. All of these factors remained asso-
ciated with incident PD when modelled jointly. We also found 
suggestive evidence of association (FDR<0.10) for gastric ulcer-
ation and diabetes mellitus. There was no evidence in this cohort 
that anxiety, BMI, constipation, pesticide exposure or coffee 
consumption influence PD risk.

In a recent paper from some members of this group, novel 
cross- sectional associations with PD were reported for migraine 
and epilepsy.5 Here, we have not only replicated the association 
with epilepsy but also demonstrated a temporal relationship 
with incident PD. Whether the association is driven by epilepsy, 
chronic use of antiepileptic drugs or residual confounding 
remains to be determined. There was no convincing association 
with migraine in the present study.

The association of earlier age at menarche with PD is novel 
and intriguing. In addition, we observed weak evidence for a 
similar effect of earlier age at voice breaking in males, suggesting 

that earlier pubertal timing in both sexes may increase PD risk. 
The sex dimorphism in PD incidence suggests possible protective 
roles for female sex hormones or possible harmful roles for male 
sex hormones.26 In animal models of PD, sex hormones have 
pleiotropic effects, which are inconsistent between studies.26–30 
The broad consensus from animal models and epidemiological 
studies of menopausal timing and PD31 32 is that oestrogens may 
be neuroprotective. In this context, our findings are counterin-
tuitive, as earlier menarche should predispose towards greater 
lifetime oestrogen exposure. It is possible that the observational 
association between earlier puberty and PD risk is driven by 
residual confounding. Both the genetic and the environmental 
determinants of pubertal timing may confound the relationship 
with PD risk.33 Thus, we would interpret this association with 
caution and encourage replication in other settings.

Next, we demonstrated that a basic risk algorithm previously 
developed in the PREDICT- PD study could be used to predict 
incident cases of PD in UKB with moderate discriminative capa-
bility (AUC 0.76).34 Whether risk prediction algorithms based 
on clinical parameters can be enhanced by use of genetic risk 
scores is an area of considerable scientific and clinical interest.35 
To answer this question for PD in UKB, we first created several 
candidate PRS using association statistics from the largest PD 
GWAS to date. Next, we selected the best fitting PRS using a 
subset of the UKB data (30% training set). We then validated the 

Figure 2 PREDICT- PD determined probability (on the absolute risk scale) of PD, determined at recruitment, for individuals who would go on to develop PD 
(incident cases) and those who would not (controls). PD, Parkinson’s disease.
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predictive performance of this PRS in the remaining 70% of the 
cohort (testing set). We show that inclusion of a PRS improves 
predictive performance over the PREDICT- PD algorithm in 
UKB; however, the absolute incremental advantage is very small, 
consistent with previous similar efforts in other disease areas.36–38 
Although this small increment is not helpful for clinical risk 
prediction, this approach can be used to enrich cohort study 
populations for individuals at higher risk of developing PD.39 
The use of a PRS with and without other risk factors for PD has 
been previously validated in a large case–control setting,40 but 
there are limited examples of application in a population setting 
such as we have done.41

Finally, we undertook some preliminary study of the role of 
gene–environment interactions for PD in UKB. We compared 
how the association of the various exposures in the model varied 
across strata of genetic risk. Prior to this, simple gene–environ-
ment interaction studies have been undertaken to investigate the 
effect modification by a single gene or locus on an environmental 
risk factor.42 43 Here, we used the PRS to show that the associ-
ation with diabetes is potentially modified such that it plays a 
bigger role as a risk factor in those at lower genetic risk and may 
have (or its treatment may have) a protective effect in those at 
higher genetic risk.

This observation is especially interesting in the context of recent 
phase II clinical trial data showing that the antihyperglycaemic 

drug exenatide (a glucagon- like peptide-1 agonist) had efficacy 
in reducing off- medication motor symptoms in PD.44 Potentially 
shared cellular signalling pathways for this group of drugs and 
PD pathophysiology have also been highlighted.45 It is conceiv-
able that our results may therefore reflect confounding by drug 
treatment—that is, if the treatment of diabetes differs system-
atically between individuals at high and low risk of PD. As 
genetic risk for PD (quantified by genome- wide PRS) may itself 
be a surrogate for subtle ethnic variation, socioeconomic status 
and other confounders, so it is plausible that there could be 
real differences in access to particular antidiabetes medications 
between strata of the PRS. If the effect of antidiabetic drugs on 
PD is modified dramatically by prior genetic risk for PD, it may 
be possible to select individuals who are more likely to benefit 
from these drugs in phase III trials. Validation of our results and 
exploration of the mechanism for this interaction are required 
before translation into trial selection criteria.

We have previously observed markedly different effects of 
diabetes on PD risk depending on study design.4 While survival 
bias may account for some of the observed variability in effect esti-
mates comparing case–control and cohort studies, genetic popu-
lation stratification may also be an important source of variation 
as indicated here. Correcting for genetic principal components 
should mitigate confounding due to population stratification but 
may not eliminate it. The importance of genetic stratification for 

Figure 3 (A) Several candidate Polygenic Risk Scores (PRSs) were created using summary statistics from the Meta5 PD GWAS excluding UKB participants. 
For each candidate PRS, the degree of variation in PD risk explained was estimated using Nagelkerke’s pseudo- R2 metric. 95% CIs were derived from 1000 
bootstrap resamples of the training dataset. As test statistics were approximately normally distributed, 95% CIs were derived from the normal distribution 
(mean±1.96 x SE). (B) Normalised PRS values for incident PD cases and controls. (C) OR of PD by PRS decile compared with lowest PRS decile. (D) 
Correlation between increasing PRS and earlier age at PD diagnosis. GWAS, genome- wide association studies; PD, Parkinson’s disease.
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PD intervention studies has been recently explored,38 and in the 
current study, we demonstrate further evidence for why genetic 
stratification is an important consideration.

The strengths of this study are that we used a very large 
sample size to measure risk and protective factors for PD, as 
well as to externally validate the PREDICT- PD algorithm in a 
cohort where incident cases are accruing. The prospective design 
reduces the likelihood of reverse causation but in diseases with 
a long prodromal phase (such as PD), reverse causation cannot 
be completely dispelled. However, for the purpose of predicting 
incident cases, whether factors in the model are true exposures 
or prodromal features is less concerning. As many of the expo-
sures vary by age and gender, we adjusted all exposure variables 
for important confounding factors. We have previously surveyed 
a subgroup of the PREDICT- PD participants and found that less 
than 5% were participants in UKB, hence overlap in populations 
is minimal. The latest PD GWAS used data from PD cases in UKB 
and the controls, but we used summary statistics which excluded 
UKB cases, UKB controls and UKB proxy cases to avoid sample 
overlap and overfitting models.

General limitations are that the definition of incident PD 
cases in this setting relied to a small extent on self- report and 
several important risk factors for incident PD were inadequately 
captured. Both of these factors may lead to bias and impreci-
sion in the effect estimates. Another important consideration is 
the generalisability of UKB. Recruitment into the UKB cohort 
was voluntary with 5.5% of those invited ultimately joining. 
Comparing the UKB population to UK Census and representa-
tive cross- sectional survey data shows that typically UKB partic-
ipants were more likely to be White British (by self- report), 
female, older and from more affluent areas. Within the cohort 
rates of smoking, obesity and daily drinking were less than that 
in the general UK population.46 A major concern is that such 
non- random recruitment may introduce spurious associations 
and destroy true associations due to collider bias.47 We excluded 

participants of non- European ancestry from analyses including 
the PRS, so these results are likely to have limited applicability to 
other populations. Although overfitting of the PRS is still a possi-
bility, we mitigate this by strictly dividing the cohort into training 
and testing sets for tuning and testing the PRS, respectively.

To conclude, we have confirmed several well- established risk 
and protective factors for PD and shed further light on several 
novel associations (migraine, epilepsy, earlier menarche). We 
have externally validated the basic PREDICT- PD algorithm and 
extended this approach to incorporate population- level common 
genetic variation. We have modelled interactions between envi-
ronmental factors, comorbidities and polygenic risk to demon-
strate how interplay between genetic and other risk factors may 
contribute to PD risk. These findings could have implications 
for risk stratification of individuals for studies examining the 
‘pre- diagnostic’ phase of PD and for our understanding of how 
genetic variation and other risk factors interact in the pathogen-
esis of PD.
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