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Abstract: High-strength steels are used more than general structural steel due to their combination
of properties such as high strength, good toughness and weldability. They are mainly used in the
manufacture of heavy vehicles for the mining industry, cranes, transportation, etc. However, welding
these grades of steel brings new challenges. Also, a simulation for welding high-strength steel is
required more often. To insert a material database into the simulation program, it is necessary to
conduct investigations using CCT (Continuous Cooling Transformation) diagrams, welded joints
research, and more. To investigate the behavior of S960MC steel during heating and cooling, we used
dilatometry analysis supported by EBSD (Electron Backscatter Diffraction) analysis. A CCT diagram
was constructed. The transformation temperatures of Ac1 and Ac3 increase with increasing heating
rate. The Ac1 temperature increased by 54 ◦C and the Ac3 temperatures by 24 ◦C as the heating rate
increased from 0.1 ◦C/s to 250 ◦C/s. The austenite decomposition temperatures have a decreasing
trend in the cooling phase with increasing cooling rate. As the cooling rate changes from 0.03 ◦C/s
to 100 ◦C/s, the initial transformation temperature drops from 813 ◦C to 465 ◦C. An increase in the
cooling rate means a higher proportion of bainite and martensite. At the same time, the hardness
increases from 119 HV10 to 362 HV10.

Keywords: high-strength steels; dilatometry analysis; CCT diagram

1. Introduction

In previous decades, there was a considerable demand for lightweight but high-
strength materials that led into the development of ultra-high-strength steels (UHSS),
which belong to high-strength low-alloy (HSLA) steels. HSLA steels have excellent combi-
nation properties such as toughness, weldability, and a high strength–weight ratio. These
steels enable usability in a wide range of industries including transportation vehicles, lifting
devices (mobile cranes, lifting platforms), the oil and gas industry, automotive, shipbuild-
ing, and shore constructions. The main advantage of HSLA steel application is reducing
construction weight, e.g., a weight reduction of 60% is achieved by replacing conventional
construction steel S355 with HSLA steel of grade S960MC [1–5]. HSLA steel consists of
ferritic-perlite, ferrite-bainite, bainite, or martensitic (eventually annealed martensite) struc-
ture, thanks to which the desired properties are achieved. The industrial use of these steels
is increasing, leading to reduced costs while maintaining all the required properties of
the steels. HSLA steel characteristics include a combination of high strength and high
toughness, good resistance against cold cracks, cold formability, and low carbon equivalent
values [6]. HSLA steels can be classified as microalloyed steels because they also contain a
small amount of alloying elements, e.g., aluminum (Al), titanium (Ti), niobium (Nb), and
vanadium (V) [7]. Microstructures depend on the state of austenite before transformation,
chemical composition (not only alloying elements), and cooling conditions. Various me-
chanical properties of steels are achieved by different combinations of microstructures and
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their mutual ratio [1]. Austenite can transform into all the aforementioned microstructures
in microalloyed steels depending on the chemical composition and the cooling rate. The
final microstructure is affected by the grain size of austenite before the transformation.
Refined austenitic grains in microalloyed steels are critical in achieving a fine grain mi-
crostructure with high strength and toughness. Small precipitates effectively reduce the
growth of austenitic grains during steel heating. The more stable the precipitation, the
more grain growth is suppressed at higher temperatures [8].

The typical carbon content of these steels ranges from 0.05 to 0.25%, less than 2% of
manganese, and a small amount of other elements such as chromium, nickel, molybdenum,
copper, nitrogen, vanadium, niobium, titanium, and zirconium [7,9]. The maximum
combined content of the elements titanium, vanadium, and niobium was up to 0.22%
according to EN 10149-2. In particular, Ti, V, and Nb, together with carbon and nitrogen,
form nitrides, carbides, and carbonitrides. The influence of each particle strongly depends
on their stability and solubility at a certain temperature while processing steel [9]. The
alloying element Nb is used for grain refinement and precipitation hardening. The particles
NbC and Nb(C,N) are precipitated during hot forming [10,11]. Titanium reacts with
nitrogen during the first process of melting steel. A small amount of Ti causes a fine
dispersion of Ti nitride nanoparticles that prevent the growth of austenitic grains at high
temperatures, 1200 ◦C [10,12]. Vanadium is more soluble in austenite than niobium. It
precipitates in clumps in ferrite, forming fine precipitates, which harden the steel. Grain
refinement is required; otherwise, the toughness of the steel reduces due to hardening [13].

Thermomechanical controlled processing (TMCP) is a technological process of con-
trolled rolling at transformation temperatures from austenite to bainite or martensite.
TMCP can be split into two steps: controlled rolling and controlled cooling [14]. The first
rolling process takes place in the austenitic region at high temperatures. The material is
still in the temperature range where recrystallization occurs. The second rolling of the final
material thickness starts at temperatures where the recrystallization process does not occur
and ends in the intercritical region (γ+α phase). The rolling process in the intercritical
region causes grain deformation (ledges) and deformation bands. Deformed austenite
does not regenerate and keeps the high dislocation density. During the transformation,
the formed deformation ledges and bands act as nucleation sites and lead to grain refine-
ment. The accelerated controlled cooling follows after the final rolling (at the intercritical
region) [12].

The combination of a controlled rolling process and low alloying element content
(including carbon content) provides these steels with good weldability while maintaining
the low construction weight and high joint strength [12,14]. However, the welding of
TMCP steels is more demanding than other common structural steels because stricter
technological parameters are required. Due to welding, microstructural changes occur in
areas affected by the thermal effect during the welding process. This heat-affected zone
(HAZ) significantly influences welded joints; therefore, monitoring and evaluating HAZ is
one way to control the quality of welded joints. Heat input, cooling rate (time t8/5), and the
type of additional material are critical welding parameters affecting the final properties of
HAZ. The heat-affected zone can be divided into four base regions: coarse-grained heat-
affected zone (CGHAZ), fine grains heat-affected zone (FGHAZ), intercritical heat-affected
zone (ICHAZ), and sub-critical heat-affected zone (SCHAZ).

A typical sign of HAZ-welded joints manufactured from HSLA steels is the presence
of a soft zone. There is a soft transformation zone when the peak temperature exceeds AC1
and a tempering soft zone when the temperature does not exceed AC1. These soft zones
are typical for high-strength steels, with a lower hardness than the base material and a
reduction in yield strength [15–19].

Nevertheless, this steel is possible to weld with suitable welding methods such as laser
or electron beam welding, hybrid welding technologies, or modern advanced arc welding
technologies [6,20–22].
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Gas metal arc welding (GMAW) is one of the most used welding techniques. The
conventional GMAW methods decrease the HAZ’s mechanical properties against the base
material. High heat input causes a slower cooling rate and decreases material hardness at
HAZ [3,23].

For this research paper [20], we compared the welding of S960MC steel with an
8 mm thickness using different methods (EB+CW—electron beam welding with cold wire,
LH—laser hybrid welding, P+CW—plasma arc welding with cold wire, and GMAW). The
most significant decreasing value of the hardness was observed in the heat-affected zone,
especially in the ICHAZ region. The goal of the mentioned investigation was to use the
non-match additional material and reach suitable welding joints achieved by laser and
electron beam welding. The next investigation [23–26] involved laser welding of S960MC
steel with 8 mm thickness for one pass. A significant drop in hardness was detected in the
SCHAZ region, which was very narrow. The hardness value measured in other sub-regions
of HAZ was higher than the base material. Nonetheless, the sample broke at the base
material during the tensile strength test, far enough from HAZ. The authors considered
that the weld created by the laser beam was narrow enough to achieve the behavior of all
HAZ subzones as one heat-affected zone. This phenomenon was observed and confirmed
by another investigation [2,13,16,18,19]. The effects of different heat inputs on the welding
joints were investigated in a research paper [27]. GMAW technologies were applied to
create S960MC steel joints with a 3 mm thickness. The most critical sub-zones of HAZ are
ICHAZ and SCHAZ. The width of HAZ and the toughness of the welded joint increased
with higher heat input simultaneously.

Phase transformation diagrams are created for specific steels to record austenite’s
transformational changes during the cooling process in the temperature and time axes
(eventually log time). The phase transformation diagrams depend on the chemical composi-
tion of the steel. These diagrams are applied in the fields of heat treatment, manufacturing,
and the development of steel or welding [28]. The construction of a CCT diagram can be
achieved in several ways. In the research papers [29–36], a CCT diagram was constructed
using dilatometric measurements, structural analysis, and hardness measurements. In
certain cases, in technical practice, the prediction of the CCT diagram is also sufficient,
especially for expensive materials, or lack of time. Another way to obtain a CCT diagram
is to use a software program, as was the case in the article [33], where the results were
compared with commercial software JMatPro and experimentally determined by CCT
diagram. In the investigation [4] article, the same S960MC steel was examined, but with
a thickness of 8 mm, to determine the decay structures due to different cooling rates. An
ARA diagram was constructed using dilatometric analysis, microstructural analysis, and
hardness measurement.

Based on the results obtained in the research [4,29–33], dilatometric analysis, together
with hardness measurement and metallographic analysis, was selected as the most suitable
method for accurate determination of the CCT diagram.

2. Materials and Methods
2.1. Experimental Material

The structural steel S960MC, manufactured by SSAB, was the material we chose to
investigate. It is a thermo-mechanically controlled processed (TMCP) steel designed for
cold forming at 400 ◦C [34]. The technical parameters, chemical composition, and delivery
conditions should fulfill the requirements of the STN EN ISO 10149-2:2014 standard [37].
The first measurement executed was a spectral analysis to detect the chemical composition
(average value from three measurements) of investigated steel shown in Table 1 compared to
the STN EN ISO 10149-2:2014 standard and material certificate. The mechanical properties
(elongation, yield, and tensile strength) were also measured and compared to the STN EN
ISO 10149-2:2014 standard in Table 2. Samples for tensile strength tests were prepared
from the steel sheet in three directions based on the rolling process: longitudinally (0◦),
diagonally (45◦), and transversely (90◦) in the rolling direction. Three samples were taken
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for each orientation. The samples for the mechanical properties test were prepared and
tested according to the STN EN ISO 6892-1:2022 with an INSTRON Series 5985 at ambient
temperature 22 ◦C [38]. The maximum force of this equipment at full speed is 125 kN,
force measurement accuracy is ± 0.4% of reading down to 1/100 of load cell capacity and
displacement measurement accuracy is ± 0.01 mm of displacement. The values of the
anisotropy coefficient showed that the base material did not show any signs of planar
anisotropy in all investigated parameters (tensile strength—Rm, yield strength—Rp0.2, and
percentage elongation after fracture—A).

Table 1. Chemical composition of investigated steel.

According
Chemical Composition wt.%—Strenx 960MC

C Si Mn P S Al Nb V Ti Mo B

EN 10149-2 * 0.200 0.60 2.200 0.025 0.010 0.015 0.090 0.200 0.250 1.000 0.005

Material certificate ** 0.085 0.180 1.060 0.010 0.003 0.036 0.002 0.007 0.026 0.109 0.001

Experimental measurement
average value/

standard deviation

0.055/
0.0024

0.168/
0.0045

1.203/
0.0047 <0.010 <0.010 0.037/

0.00023 <0.005 0.005/
0.00025

0.023/
0.00017

0.086/
0.00012 -

Cu Cr Ni N CEV CET

EN 10149-2 * - - - - - -

Material certificate ** 0.010 1.080 0.070 0.005 0.506 0.258

Experimental measurement
average value/

standard deviation
<0.005 1.056/

0.0081
0.046/
0.0017 - 0.489 0.238

* Maximum amount of alloying elements except Al. The prescribed Al content is its minimum amount. The sum
of the elements Nb, V, and Ti must not exceed 0.22%. ** According to EN 10204-3.1 inspection certificate supplied
by the manufacturer.

Table 2. Mechanical properties of S960MC steel.

According
Angle of
Rolling

Direction

Mechanical Properties S960MC, Thickness 3 mm

Rp0.2 [MPa] Rm [MPa] Rp0.2/Rm A [%]

EN 10149-2 - min. 960 980–1250 - min. 7

Average Rp0.2
[Mpa]/Standard
deviation [Mpa]

Average Rm
[Mpa]/Standard
deviation [Mpa]

Average
Rp0.2/Average Rm

Average A
[%]/Standard
deviation [%]

Coefficient of area
anisotropy P * [%]

PRm PRp0.2 PA

Experimental
measurement

0◦ 1007/15.6 1092/7.3 0.92 7.9/0.28 - - -

45◦ 1018/5.1 1106/7.4 0.92 6.7/0.16 1.2 1.1 −14.4

90◦ 1044/7.3 1124/4.6 0.93 6.5/0.05 2.9 3.6 −17.0

* The area anisotropy coefficient was calculated from the average values of Rp0.2, Rm and A.

The S960MC steel is a microalloyed, thermo-mechanically processed, high-strength
structural steel with a microstructure consisting of martensite, bainite, and their tempered
variants. Figure 1 (left) shows the microstructure of experimental steel; Figure 1 (right)
shows the electron backscatter diffraction (EBSD) grain size analysis. The resulting mean
grain size of the supplied material was 4.1 µm with standard deviation 2.3 µm. This kind of
microstructure provides a good combination of high tensile strength and fracture toughness.



Materials 2022, 15, 4637 5 of 19

Materials 2022, 15, x FOR PEER REVIEW 5 of 20 
 

 

shows the electron backscatter diffraction (EBSD) grain size analysis. The resulting mean 

grain size of the supplied material was 4.1 µm with standard deviation 2.3 µm. This kind 

of microstructure provides a good combination of high tensile strength and fracture 

toughness. 

 

Figure 1. The martenzite–bainitic structure (left) and EBSD grain size analysis (right) of tested 

S960MC steel (HV 20 kV, step size 0.2 um). 

2.2. Preparation of Samples for Dilatometric Analysis 

The dilatometry tests were conducted with a Quenching Dilatometer DIL 805L at the 

Technical University of Liberec. It is fully automated, containing self-contained units used 

to measure dimensional changes under extreme controlled heating and cooling condi-

tions. The inductive heating with constant sinus frequency is power controlled by ampli-

tude adjustment for superior temperature homogeneity in the sample. The heating sam-

ple, ranging from 20 °C up to 1500 °C, can operate under different environmental conditions 

of the chamber, such as air, vacuum, or special inert gases (especially argon, helium, and 

nitrogen). The minimum possible temperature is −160 °C in specific boundary conditions. 

The highest cooling rate is achievable by helium as the cooling medium and high heat con-

ductivity [39]. Resolution when measuring length change is ΔL/°C = 0.01 µm/0.05 °C. 

The samples for the dilatometry test were prepared from the sheet metal longitudinal 

to the rolling direction. In this case, we used prism-shaped samples with a rectangular 

base, Figure 2. Flat-shaped samples for the dilatometry test are used for thin materials, 

usually with a thickness of >4 mm [6,35,36]. Opposite surfaces (after a longer edge) of the 

test sample must be parallel and surface roughness of 5 µm or less is required. These sur-

faces were made by milling, followed by grinding (red line indicators). The investigated 

steel had a 3 mm thickness, and the sides were not machined. 

 

Figure 2. The schematic shape of samples for the dilatometric test with red lines indicating the ma-

chined sides. 

  

Figure 1. The martenzite–bainitic structure (left) and EBSD grain size analysis (right) of tested
S960MC steel (HV 20 kV, step size 0.2 um).

2.2. Preparation of Samples for Dilatometric Analysis

The dilatometry tests were conducted with a Quenching Dilatometer DIL 805L at the
Technical University of Liberec. It is fully automated, containing self-contained units used
to measure dimensional changes under extreme controlled heating and cooling conditions.
The inductive heating with constant sinus frequency is power controlled by amplitude
adjustment for superior temperature homogeneity in the sample. The heating sample,
ranging from 20 ◦C up to 1500 ◦C, can operate under different environmental conditions
of the chamber, such as air, vacuum, or special inert gases (especially argon, helium, and
nitrogen). The minimum possible temperature is −160 ◦C in specific boundary conditions.
The highest cooling rate is achievable by helium as the cooling medium and high heat
conductivity [39]. Resolution when measuring length change is ∆L/◦C = 0.01 µm/0.05 ◦C.

The samples for the dilatometry test were prepared from the sheet metal longitudinal
to the rolling direction. In this case, we used prism-shaped samples with a rectangular base,
Figure 2. Flat-shaped samples for the dilatometry test are used for thin materials, usually
with a thickness of >4 mm [6,35,36]. Opposite surfaces (after a longer edge) of the test
sample must be parallel and surface roughness of 5 µm or less is required. These surfaces
were made by milling, followed by grinding (red line indicators). The investigated steel
had a 3 mm thickness, and the sides were not machined.
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Figure 2. The schematic shape of samples for the dilatometric test with red lines indicating the
machined sides.

2.3. Determination of the Dilatometric Curve

For the dilatometric tests, 13 variants of different combinations for heating rate, delay
at the austenitizing temperature, and cooling rate were used. They all shared an austeniti-
zation temperature of 1100 ◦C. The austenitization temperature delay was set to 30 s (only
two variants were performed without delay). The heating for the dilatometric tests was
controlled by a programmed temperature with a control step of 0.25 ◦C, i.e., four values are
recorded when the programmed temperature increases by 1 ◦C. A control step of 0.05 ◦C
was set for the cooling part of the dilatometric curve to obtain a more detailed analysis of
austenite decomposition. Thus, 20 values were recorded when the programmed tempera-
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ture increased by 1 ◦C. Two samples represented each variant. The heating and cooling
rate parameters and all variants are listed in Table 3 (aligning with increased cooling rate).

Table 3. Heating and cooling rate variants in the dilatometric tests.

Variant Designation H5 C0.03 H100 C0.1 H1 C0.3 H10 C1 H50 C3 H0.1 C10 H50 C10

Heating rate ◦C/s 5 100 1 10 50 0.1 50

Cooling rate ◦C/s 0.03 0.1 0.3 1 3 10 10

Variant Designation H0.5 C30 H50 C30 H250 C100 H250 C100 * H50 C200 H50 C200 *

Heating rate ◦C/s 0.5 50 250 250 * 50 50 *

Cooling rate ◦C/s 30 30 100 100 * 200 200 *

* Sample without delay at austenitizing temperature 1100 ◦C.

We examined the following effects via dilatometry analysis:

1. The heating rate’s effect on shifts in the transformation temperatures, Ac1 and Ac3.
For this experiment, eight variants with different heating rate values were useds from
0.1 ◦C/s to 250 ◦C/s. The cooling method was not considered. These variants are
listed in Table 5 (aligning with increasing heating rate). Program control cycles are
shown in Figure 3 (left).

2. The cooling rate affects the resulting austenite transformation temperatures in the
cooling phase, microstructure, and hardness. We used eight variants with different
cooling rates from 0.03 ◦C/s to 100 ◦C/s for this experiment. The heating method
was not considered. These variants are listed in Table 4 (aligning with increasing
cooling rate). Program control cycles are shown in Figure 3 (right). Subsequently, a
CCT diagram was created from the data analysis.

3. The effect of heating and cooling rates on the resulting grain size. All variants listed in
Table 3 were used for this experiment. Out of these, variants have a constant heating
rate but a different cooling rate. Variants with significantly different heating rates
were used but with a constant cooling rate. We assessed which parameter (heating or
cooling rate) would have a greater effect on the resulting grain size.

Table 4. The chosen variants for analyzing austenite transformation temperatures in the cooling
phase, final microstructure, and hardness.

Cooling Rate ◦C/s 0.03 0.1 0.3 1 3 10 30 100

Heating rate ◦C/s 5 100 1 10 50 0.1 0.5 250
Variant H5C 0.03 H100 C0.1 H1 C0.3 H10 C1 H50 C3 H0.1 C10 H0.5 C30 H250 C100

Table 5. The chosen variants for analyzing the shift in transformation temperatures Ac1 and Ac3.

Heating Rate ◦C/s 0.1 0.5 1 5 10 50 100 250

Cooling rate ◦C/s 10 30 0.3 0.03 1 3 0.1 100
Variant designation H0.1 C10 H0.5 C30 H1 C0.3 H5 C0.03 H10 C1 H50 C3 H100 C0.1 H250 C100

The following descriptive statistics were used to process the experimental data: av-
erage value and standard deviation (as a measure of variability) if the measured quantity
was measured multiple times. Next, regression analysis was used. The aim of this analysis
is to clarify the relationship between the input variable (heating rate or cooling rate) and
the output measured variables (temperatures Ac1 and Ac3, transformation temperatures
of austenite and grain size). The influence of the input parameters must be verified at
low levels of values, as well as at high ones. For this reason, the input parameters were
chosen in a logarithmic series. A logarithmic function was used as a mathematical model
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to describe functional dependence. Furthermore, the Shapiro-Wilk test was used to confirm
the normality of the regression residues.
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2.4. Methodology for Determining Phase Transition Temperatures from Dilatometry Curves

The phase transformations were evaluated from the heating and cooling parts of
the dilatometry curves and recorded in the dilatation and temperature axes. Non-linear
changes to the length indicated phase transformation. For determining transformation
temperatures, the three tangent method and the first derivative method were used. Both
methods were used in several other studies and show good agreement of results [36,40–43].

The three tangent methods can also identify multiple phase transformations and is
suitable for determining transition temperatures of austenite decomposition. The first
derivation of the dilatometry curve method was used as the second method for evaluating
the phase transition temperatures. In this case, the phase change temperature was deter-
mined when the function of the first derivative of the dilatometry curve acquired a value
of zero.

2.5. Microstructure Observation and Hardness Measuring

The dilatometric samples were cut in half, perpendicular to the long side of the sample,
for the metalographic analysis and hardness test. Samples prepared in this way were
embedded in PolyFast resin with additional carbon content to secure electrical conductivity
for the electron microscope. Samples were prepared with the SimpliMet 1000 using the
following process parameters: heating temperature 180 ◦C, exposure time 4.5 min, cooling
time 3.5 min, and 250 bar pressure. Samples for the metallographic analysis were prepared
on grinding paper with grid FEPA P240, P500, P800, P1200, P2000, and P4000. Polishing
was conducted by diamond suspension with average grain sizes of 3 and 1 µm. The oxide
polishing with OP-S suspension and 0.25 µm were used for the final polishing. The samples’
structural analysis was performed on an optical microscope Olympus DSX 500. Photos of
the microstructure were processed by NIS—Elements software.

The grain size measurement was determined by the electron microscope Tescan SEM
Mira 3, which was equipped with a local chemical analysis detector (EDX) Oxford Ultim-
Max65 and EBSD detector Oxford Symmetry. Detector with its software-controlled tilting,
can be positioned at the ideal geometry for every sample type, from TEM foils to cm—scale
samples and can satisfy these criteria—full 1244 × 1024-pixel diffraction patterns are ideal
for high angular resolution (HR) EBSD. Measurements were performed using the following
process parameters: accelerating voltage of 20 kV and a measured area of 500 × 500 µm
with a measuring step of 0.2 µm. The equivalent circle diameter (ECD) parameter was used
for grain size analysis, which is determined by the complete grain area.

Similar to the microstructure analysis, hardness was measured for the surfaces of the
test samples. The Vickers method’s hardness measurement involving a load of 98.07 N



Materials 2022, 15, 4637 8 of 19

(HV10) was executed in the laboratory using a fully automatic micro-hardness tester Qness
Q30A with a load capacity from 0.98 N up to 306.6 N (HV0.1 up to HV30). Test force
tolerance is <0.5% for all test forces. The HV10 hardness measurement was performed on
cross-sections (the dilatometric sample was cut in two halves on the long side) at ambient
temperature 22 ◦C. Hardness was measured on the two surfaces, with 3 measurements on
one surface and 3 on the other, a total of 6 measurements for one variant.

3. Results and Discussion
3.1. The Heating Rate’s Effect on Shifts in the Transformation Temperatures Ac1 and Ac3

The austenite transformation temperature Ac1 and full austenitization temperature
Ac3 were determined from eight dilatometry curves. We used both methods for deter-
mining temperature—the three tangent method and the first derivation of the dilatometry
curve method.

Figure 4 shows the whole dilatometry curve for a heating rate of 10 ◦C/s and a
cooling rate of 1 ◦C/s (variant H10 C1). Points 1–3 are the temperatures in the heating
phase when the base material’s original structure austenitizes. Two temperatures (points 4
and 5) are determined in the cooling phase representing the phase transformation during
austenite decomposition.
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Figure 4. Dilatometry curves for 10 ◦C/s heating rate and 1 ◦C/s cooling rate (variant H10 C1) with
three tangents applied.

Figure 5 shows the heating part of the dilatometry curve (red curve) when heated at a
rate of 10 ◦C/s. In the same graph, the first derivative is shown in blue. Points 1 and 2 are
the transformation temperatures (Ac1 and Ac3) at which the first derivative acquires zero.

Figure 6 shows the cooling part of the dilatometry curve during cooling at a rate of
1 ◦C/s (red curve) and the first derivative of this section for the dilatometry curve (blue
curve). Points 1 and 2 are the transformation temperatures of austenite decay when the first
acquires the value zero. The transformation’s beginning and end indicate the alloy phase
boundaries, e.g., ferrite, carbide, pearlite, bainite, martensite, or other eutectoid phase
batches. We used the same procedures to evaluate all dilatometric curves.
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Figure 6. The cooling part of the dilatometry curve for a 1 ◦C/s cooling rate with the first deriva-
tive applied.

The deviation of the first derivation method from the tangent method was a maximum
of 2.1%. Values from the three tangent method were used in further analyses. Table 6 lists
all analyzed temperatures. Figure 7 shows the influence of the heating rate on temperatures
Ac1 and Ac3.
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Table 6. The effect of the heating rate on shifts in the transformation temperatures Ac1 and Ac3.

Heating Rate [◦C/s] 0.1 0.5 1 5 10 50 100 250

Variant Designation H0.1 C10 H0.5 C30 H1 C0.3 H5 C0.03 H10 C1 H50 C3 H100 C0.1 H250 C100

Three
tangent method

Ac1 [◦C] 758 761 763 770 774 795 795 812
Ac3 [◦C] 858 858 850 850 853 863 870 882

First
derivation method

Ac1 [◦C] 753 758 763 770 788 806 812 832
Ac3 [◦C] 855 850 850 850 870 880 886 898

Difference between
used methods

diff. Ac1 [%] 0.66 0.40 0.00 0.00 1.78 1.36 2.09 2.40
diff. Ac3 [%] 0.35 0.94 0.00 0.00 1.95 1.93 1.81 1.78
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The austenitic transformation (Ac1 temperature) increases with an increased heating
rate. This trend was observed in other works [36,43]. The Ac3 temperature, when complete
austenitization is achieved, was almost constant up to a heating rate of 10 ◦C/s. At heating
rates higher than 10 ◦C/s, it began to grow. The differences between Ac3 and Ac1 decreased
with an increased heating rate, as shown in Figure 8. The phenomena described are
important in creating the width of the heat-affected zone and welding process modeling.
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3.2. Austenite Transformation Temperatures in Cooling Phase

Determining the transformation temperatures of austenite decomposition was crucial
for the later design of the S960MC steel CCT diagram. Eight cooling dilatometry curves
were used. The deviation of the first derivation method from the tangent method was a
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maximum of 3.7%. Other transformation temperatures, T2 and T3, occurred in addition
to the first -T1 and last -T4 transformation temperatures and were also evaluated from
the three tangent method. Curves with multiple transformation temperatures and optical
microstructural analyses were important in determining all the excluded structural phases.
The transformation temperatures are provided in Table 7.

Table 7. The transformation temperatures of austenite decomposition.

Cooling Rate [◦C/s] 0.03 0.1 0.3 1 3 10 30 100

Variant Designation H5C 0.03 H100 C0.1 H1 C0.3 H10 C1 H50 C3 H0.1 C10 H0.5 C30 H250 C100

Three
tangent method

T1 [◦C] 813 752 690 620 594 553 497 465
T2 [◦C] - 744 - - - 534 465 456
T3 [◦C] - - - - - 514 469 442
T4 [◦C] 750 704 612 580 539 469 431 432

First
derivation method

T1 [◦C] 784 744 679 626 602 551 491 463
T4 [◦C] 749 704 612 571 532 468 429 426

Difference between
used methods

diff. T1 [%] 3.70 1.08 1.62 0.96 1.33 0.36 1.22 0.43
diff. T4 [%] 0.13 0.00 0.00 1.58 1.32 0.21 0.47 1.41

During slow cooling rates, austenite decomposition occurred at high temperatures,
slightly under the AC1 temperature. A slow cooling rate and high transformation tem-
perature are typical signs of diffusion transformation of austenite to ferrite or perlite,
particularly in the case of low-carbon and low-alloyed steel [4,6,36,44–46]. Austenite de-
composition occurs at a lower temperature with an increasing cooling rate, indicating
a bainite or martensite structure. This process occurred with the shear transformation
of austenite [44]. Hardness measurements for all samples were performed to compare
with the microstructure while considering hardness the ferrite–perlite steel structure, next
bainite, martensite and their mixture [4,6,36,47]. The cooling rate’s effect on the values of
the first and last austenite decomposition transformation temperature for both methods of
determination is shown in Figure 9.
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tangent method; right—first derivation method.

3.3. The Analysis of the Hardness after Cooling

The hardness of the final microstructure for different cooling rates is recorded in
Table 8. The sample’s average hardness value for a 100 ◦C/s cooling rate corresponded
with the hardness of the base material. The base material’s microstructure is predominantly
martensitic and was the same for the 100 ◦C/s cooling rate, the typical cooling rate for
hardening HSLA steels [36,43,45,47,48]. The first significant hardness drop was recorded
at a 10 ◦C/s cooling rate with a 23% decrease compared with the base material. As the
cooling rate decreased, the hardness of the microstructure also decreased. Figure 10 shows
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the influence of the cooling rate on material hardness. The approximate hardness value of
the base material is reached at a cooling rate between 30 and 100 ◦C/s. A rising cooling rate
did not increase hardness; therefore, a cooling rate of 100 ◦C/s was set as the critical cooling
rate. On the contrary, decreasing the cooling rate under 0.03 ◦C/s did not significantly
decrease material hardness.

Table 8. The hardness of the final microstructure for different cooling rates.

Cooling Rate
[◦C/s] Variant Hardness HV10

Average
Hardness

HV10/Standard
Deviation HV10

0.03 H5C 0.03 118 116 122 117 119 123 119/2.54
0.1 H100 C0.1 152 145 157 144 148 143 148/4.94
0.3 H1 C0.3 196 201 203 197 200 199 199/2.36
1 H10 C1 223 231 227 227 227 223 226/2.75
3 H50 C3 236 238 240 232 237 239 237/2.58

10 H0.1 C10 276 268 279 281 273 271 275/4.50
30 H0.5 C30 349 344 352 352 346 342 348/3.81

100 H250 C100 357 365 356 372 361 360 362/5.40

Base material 362 363 357 362 360 358 360/2.21
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3.4. The Microstructural Analysis and Design of CCT Diagram

A microstructural analysis confirmed the occurrence of phases such as martensite and
bainite and their temperate variants, perlite or ferrite. Microstructures at different cooling
rates are shown in Figure 11. A slow cooling rate (0.03 ◦C/s, 0.1 ◦C/s, and 0.3 ◦C/s) led to an
average grain size growth, and the structure consisted of ferrite and perlite. The proportion
of perlite increased with the increased cooling rate; it had a structure of about 60% at the
cooling rate of 0.3 ◦C/s. We performed this analysis using NIS-Elements software.

The microstructure of steel at a cooling rate of 1 and 3 ◦C/s comprises a mixture of
ferrite and bainite (bainite predominates). Martensite appears in the microstructure only at
a cooling rate of 10 ◦C/s. Its content increases with the increased cooling rate. At a cooling
rate of 30 ◦C/s, its content is at the level of 90%.

Based on the transformation temperatures of austenite decomposition and microstruc-
ture (with hardness values), it was possible to design a CCT datagram for the structural
steel S960MC. The resulting diagram is shown in Figure 12. It should be noted that the dia-
gram is valid for a range of chemical compositions provided in Table 1. Furthermore, it only
applies to previous mechanical properties shown in Table 2, which reflect the processing
method during production.
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A similar diagram for S960MC steel is provided in [4]; however, differences in chemical
composition do not correspond to the diagram shown in Figure 12.

3.5. The Effect of Heating and Cooling Rates on the Resulting Grain Size

The mechanical properties of high-strength structural steel correspond to their grain
size (e.g., via the Hall–Petch relationship); strength is inversely dependent on the square
root of grain size. Although conventional methods for determining grain size using optical
microscopy are well-established, EBSD methods offer many advantages over these tech-
niques, including increased spatial resolution and a quantitative description of the grains’
orientation. Figure 13 is a comprehensive overview of the analyzed SEM microstructures
and the EBSD grain size analysis results for all thirteen heating and cooling rate combina-
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tions. A band contrast filter was used for the SEM’s microstructural analysis, which is the
base for EBSD. Table 9 shows the grain size values after EBSD analysis for the equivalent
circle diameter (ECD). The values from Table 9 are graphically presented in the graph in
Figure 14.
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Table 9. The chosen variants for analyzing the final microstructure, hardness, and austenite transfor-
mation temperatures in the cooling phase.

Variant
Designation Cooling Rate [◦C/s]

Grain Size ECD ** [µm]
Area 500 × 500 µm, Step 0.2 µm,

Average Value/Standard Deviation

H5 C0.03 0.03 26.2/15.94
H100 C0.1 0.1 15.0/8.87

H1 C0.3 0.3 10.0/7.89
H10 C1 1 9.0/6.98
H50 C3 3 9.4/6.01

H50 C10 10 5.7/4.22
H0.1 C10 10 5.8/4.71
H50 C30 30 4.4/2.71
H0.5 C30 30 4.9/3.17

H250 C100 100 5.3/3.76
H250 C100 * 100 * 4.9/2.89

H50 C200 200 5.8/4.64
H50 C200 * 200 * 5.1/3.19

As rolled - 4.1/2.34
* without delay, ** equivalent circle diameter.
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Considering these measured values, we can state that the cooling rate significantly
affects grain size. Variants (H50 C3, H50 C10 and H50 C30) confirmed this finding when
the heating rate was constant, equal 50 ◦C/s, and grain size decreased from 9.4 µm to
4.4 µm with the rising cooling rate (3 ◦C/s, 10 ◦C/s and 30 ◦C/s). This means that when
the heating rate is increased by 10 times, the grain size is reduced by 53%. It can also
be stated that the heating rate is not significant for grain growth. The cooling rate was
constant, equal 10 ◦C/s, for variants H50 C10 and H0.1 C10, and the heating rates were
0.1 and 50 ◦C/s at the grain size (5.7 µm and 5.8 µm). Despite the high change in heating
rate, the grain size change was at the level of 2%. It was also confirmed at other tests for
the constant cooling rate of 30 ◦C/s and heating rates of 0.5 and 50 ◦C/s. The grain size
was 4.4 µm and 4.9 µm, which is the difference <10%.

The effect of delay on the austenitization temperature of 1100 ◦C was investigated
on pairs of variants H250 C100 and H50 C200. One of the pair of variants was allowed to
stand at the austenitization temperature for 30 s. The difference in grain size was 8% for
the H250 100 variant and 14% for the H50 C200 variant. It can be stated that this effect is
much smaller than the effect of the cooling rate. A more pronounced effect of delay at the



Materials 2022, 15, 4637 16 of 19

austenitization temperature on grain growth would be manifested at higher time values
from 30 min and more. However, these values are not applicable to the welding area.

Dramatic changes in the grain size were observable until the 30 ◦C/s cooling rate
closest to the base material. The measured grain size of the base material was 4.1 µm.
Further increases in cooling rate did not result in a reduction in grain size. At a speed of
30 ◦C/s, the structure was already 91% martensite and the higher speed no longer brought
significant changes in structure and hardness.

4. Conclusions

Our research paper focused on determining transformation temperatures by dilatom-
etry analysis, the effect of the cooling rate on hardness, grain size, and creation of the
final microstructure. Furthermore, the heating rate’s effect on shifts in the transforma-
tion temperatures Ac1 and Ac3 was investigated. The influence of the cooling rate on the
final microstructure properties was also investigated. The executed measurements and
experiments led to the creation of a CCT diagram for structural steel S960MC with a 3 mm
thickness and specific chemical composition stated in Table 1. The main conclusions of the
above research are as follows:

• Both methods, the three tangent method and the first derivation of the dilatometry
curve method, are suitable for determining transformation temperatures. The devia-
tion of the first derivation method from the tangent method was a maximum of 2.1%
(determination of transformation temperatures in the heating phase) and a maximum
of 3.7% (determination of transformation temperatures in the cooling phase).

• The austenitic transformation (Ac1 temperature) increases with an increased heating
rate. The dependence of these two parameters was tested by regression analysis. A
linear regression model with a logarithmic function was used, which demonstrated
the strong dependence of parameters (coefficient of determination was R2 = 0.9). This
analysis shows that in the range of heating rates from 0.1 to 250 ◦C/s, the temperature
Ac1 increased from 749 ◦C to 804 ◦C.

• The Ac3 temperature, when complete austenitization is achieved, was almost constant
up to a heating rate of 5 ◦C/s (average value was 854 ◦C and standard deviation was
4 ◦C). At heating rates higher than 10 ◦C/s, it began to grow. From a heating rate
of 10 ◦C/s to 250 ◦C/s the dependence was also described by a logarithmic function
with coefficients of determination equal to R2 = 0.96. The phenomena described
are important in creating the width of the heat-affected zone and welding process
modeling. The welding processes with a high heating rate of the base material (laser
welding and electron beam welding) will be characterized by a narrow HAZ. This
eliminates the “softening effect of HAZ” that is typical for HSLA steel welding.

• The dependence of the cooling rate on the transformation temperatures T1 and T4
of austenite decomposition is significant and has the opposite trend as in the heat-
ing phase. As the cooling rate increases, the austenite decomposition temperature
decreases. A linear regression model with a logarithmic function was used, which
demonstrated the strong dependence of parameters (coefficient of determination was
R2 = 0.98 for temperature T1 and R2 = 0.97 for temperature T4). The data are valid
for the three tangent method. This analysis shows that in the range of cooling rates
from 0.03 ◦C/s to 100 ◦C/s, the temperature T1 increased from 796 ◦C to 449 ◦C and
temperature T4 increased from 734 ◦C to 394 ◦C.

• A slow cooling rate and high transformation temperature are typical signs of diffusion
transformation of austenite to ferrite or perlite. The microstructure of steel at a
cooling rate of 1 ◦C/s and 3 ◦C/s comprises a mixture of ferrite and bainite (bainite
predominates). Martensite appears in the microstructure only at a cooling rate of
10 ◦C/s. Its content increases with the increased cooling rate. At a cooling rate
of 30 ◦C/s, its content is at the level of 91% and at a cooling rate of 100 ◦C/s the
microstructure is fully martensitic.
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• The hardness of the samples increased with the increased cooling rate due to the
higher percentage of hardness phases such as bainite and martensite. The dependence
of these two parameters was tested by regression analysis as well. A linear regression
model with a logarithmic function was used. The coefficient of determination was
R2 = 0.97, which means a strong tightness of the variables and a well-chosen regression
function. This analysis shows that in the range of cooling rates from 0.03 ◦C/s to
100 ◦C/s, the hardness increased from 116 HV10 to 362 HV10. The hardness of the
base material 360HV10 will be achieved according to this model at a cooling rate of
94 ◦C/s. This cooling rate represents a time t8/5 of 3.6 s, which can be achieved by
using concentrated heat source welding methods.

• As the cooling rate increases, a trend of decreasing average grain size can be observed.
However, regression analysis did not show strong parameter tightness using the full
cooling rate range (from 0.03 ◦C/s to 100 ◦C/s). The coefficient of determination was
R2 = 0.72 for the logarithmic regression function and R2 = 0.85 for the power regression
function. Data selection and analysis, however, demonstrated these findings. We can
state that the cooling rate significantly affects grain size. Variants (H50 C3, H50 C10
and H50 C30) confirmed this finding when the heating rate was constant (50 ◦C/s),
and grain size significantly decreased from 9.4 µm to 4.4 µm with the rising cooling
rate (from 3 ◦C/s to 30 ◦C/s). This represents a decrease of 53% with a cooling rate
change of 27 ◦C/s. The effect of the heating rate is not significant on the change in
grain size. The cooling rate was constant for variants H50 C10 and H0.1 C10 (10 ◦C/s),
and the heating rates were 0.1 and 50 ◦C/s at the same grain size (5.7 µm and 5.8 µm).
The difference in grain size in these two variants is up to 2% with a change in heating
rate of approximately 50 ◦C/s. It was also confirmed at the tests for the cooling rate
of 30 ◦C/s and heating rates of 0.5 and 50 ◦C/s. The difference in grain size for both
cases was <10%.

• The data presented in the graphs in Figures 7–10 were subjected to the Shapiro-Wilk
test. In all cases, the normality of the residue distribution was confirmed.

• The CCT diagram is valid for the range of chemical compositions provided in Table 1.
It can only be applied to the mechanical properties recorded in Table 2, reflecting the
processing method during production.
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46. Skočovský, P.; Bokůvka, O.; Konečná, R.; Tillová, E. Náuka o Materiáli; EDIS: Žilina, Slovakia, 2014.
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