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ABSTRACT

Pairwise comparison of data vectors represents a
large part of computational biology, especially with
the continuous increase in genome-wide approaches
yielding more information from more biological sam-
ples simultaneously. Gene clustering for function
prediction as well as analyses of signalling path-
ways and the time-dependent dynamics of a sys-
tem are common biological approaches that often
rely on large dataset comparison. Different metrics
can be used to evaluate the similarity between en-
tities to be compared, such as correlation coeffi-
cients and distances. While the latter offers a more
flexible way of measuring potential biological rela-
tionships between datasets, the significance of any
given distance is highly dependent on the dataset
and cannot be easily determined. Monte Carlo meth-
ods are robust approaches for evaluating the signif-
icance of distance values by multiple random per-
mutations of the dataset followed by distance cal-
culation. We have developed R. S. WebTool (http://
rswebtool.kwaklab.org), a user-friendly online server
for random sampling-based evaluation of distance
significances that features an array of visualization
and analysis tools to help non-bioinformaticist users
extract significant relationships from random noise
in distance-based dataset analyses.

INTRODUCTION

To compare large data vectors, such as gene expression lev-
els across multiple conditions, one needs to evaluate how
similar they are. Various metrics are more or less commonly
used that can be classified into two categories: correlation

coefficients (e.g. Pearson, Spearman) and distances (e.g. Eu-
clidean, Minkowski). As they do not yield identical results,
they are intended to address different biological questions,
and the appropriate metric to be used is highly dependent
on both the working hypothesis and the original dataset
(1,2). For instance, the Pearson correlation coefficient is the
method of choice when dealing with absolute values (3),
while Euclidean distance is described to perform better for
the comparison of log2 ratio datasets (3). The fact that cor-
relation coefficients are not sensitive to scaling is also a crit-
ical aspect when selecting a comparison method. Further-
more, distances allow for relative flexibility in the way the
data are compared. Euclidean distance is more generally
employed, but the use of the Minkowski distance with high
power values, for example, has been mentioned to work bet-
ter when analyzing high-dimensional datasets (4). This is
due to the ‘curse of dimensionality’ (5), which describes the
loss of contrast between entities of high dimension that is
caused by a narrowing of the distribution of distances rela-
tive to their average (in other words, the variance remains
constant while the mean increases proportionally to the
square [for the Euclidean distance] of the dimension) (6).
This phenomenon might be partially counteracted by in-
creasing the power value of the Minkowski distance, which
therefore appears to be a relevant approach for many bio-
logical, genome-scale datasets (4).

Distance values can be any positive real number, while
the space of possible values for a correlation coefficient is
constrained to the interval [−1,1]. This allows for the cal-
culation of significance values corresponding to correla-
tion coefficients (given a sample size N), which is difficult
to achieve using a distance value. In addition, the valid-
ity of statistical inferences from parametric statistical tests
(such as t- or F-tests) depends on various assumptions in-
cluding normality, sufficient sample size and the fact that
the experimental individuals have been chosen by taking
random samples from well-defined populations. Neverthe-
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less, all three assumptions are rarely true in biological con-
texts. Samples from gene expression or metabolomics exper-
iments, for instance, are usually acquired by non-random
selection and then divided by randomization into experi-
mental groups. Therefore, theoretical assumptions for para-
metric tests are rarely fulfilled, and it is theoretically invalid
to use the classical t- or F-tests to analyze the experimental
results.

With the continuous increase in computing power,
stochastic approaches, known to quickly become computer-
intensive, have emerged as robust and powerful ways of ex-
tracting meaningful information from random noise out of
complex datasets (7), including distance matrices. Random-
ization tests belong to the broad class of Monte Carlo meth-
ods that rely on repeated random sampling to obtain nu-
merical results. They are often used in computational biol-
ogy (8) and physics (9) to address mathematical problems
where it is difficult or impossible to obtain a closed-form
expression or where a deterministic algorithm cannot be ap-
plied. The primary goal of randomization approaches is to
test a null hypothesis (in this context, null is distinctly dif-
ferent from what it would be with a parametric test). The
hypothesis is that there is a tendency for a certain type of
pattern to appear in the data. The null hypothesis states that
if this pattern is present, then it is purely a chance effect of
observations in a random order. There is no requirement to
have random samples from one or more populations. The
following are the primary advantages afforded by the use
of a stochastic method. (i) It does not assume that the data
have any particular distribution. (ii) It applies to any test
statistic. (iii) Unlike the sign and rank tests, it does not dis-
card any information.

Here we present R. S. WebTool (http://rswebtool.
kwaklab.org), a user-friendly platform for Monte Carlo-
based significance evaluation of pairwise distances. The
website implements a set of visualization tools and clus-
tering algorithms and is intended to allow researchers with
little to no experience in statistical methods to compute P-
values associated with their pairwise distance of choice for a
particular dataset. Publication-quality graphs are automat-
ically generated, and all the output files can be retrieved for
further analyses using third-party software. The R script is
also fully available upon request for more advanced use and
customization.

CONCEPTS AND METHODS

Server setup

While the overall structure of the website is written in PHP,
the core code for distance calculation, random permuta-
tion, P-value computation, hierarchical clustering, adja-
cency function computation and static graph output is en-
tirely written in R (10). Dynamic visualization tools are
coded in JavaScript and are compatible with any browser
without the need of external plugins.

Distance calculation

Distance matrices are generated using the built-in dist
function of R (10), which are then vectorized. Euclidean

distance d(p, q) =
√∑n

i=1 (pi − qi )2 is arguably the most
widely used measure of dissimilarity between vectors in
biology and is therefore selected by default for one-click
analyses. The Manhattan distance d(p, q) = ∑n

i=1 |pi − qi |,
also called city-block distance, produces similar results to
the Euclidean distance, although less sensitive to outliers.
Both metrics are actually specific cases of the more general

Minkowski distance d(p, q) = k

√∑n
i=1 |pi − qi |k, k = 1. Al-

though less commonly used in biology, additional metrics
such as Canberra (11) and Chebyshev (12) distances are also
available. Table 1 presents a summary of the available dis-
tances, together with examples of their use in the literature.

Random permutation and significance evaluation

Exact permutation tests are designed to make statistical in-
ferences under the randomization model although the con-
clusions apply only to the results of experiments actually
performed (13,14). By permuting the statistic of interest,
such as the difference between means, distance, etc., the
probability is calculated that the observed difference or a
more extreme one could have occurred by chance (14,15).
In this case, each data vector is independently shuffled by
random sampling of the entire vector (all values are re-
sampled) without replacement (each value can only be sam-
pled once).

A statistic S is chosen to measure the extent to which the
data show pattern A. The value s of S for the observed data
is then compared with the distribution of S that is obtained
by randomly reordering the data. A typical randomization
test procedure includes (i) randomly shuffling the data many
times, (ii) each time i, recording the value s∗

i of the test statis-
tic S and (iii) computing the P-value by one of the following
methods.

Evaluation of distance significances using discrete values.
The P-value (or significance level of s) for a randomization
test is the proportion of the shuffled test statistics that are
more extreme in absolute value than the observed statistic
(15). We will call this estimation the raw P-value. In mathe-
matical terms, this is the estimation of (S ≥ s), the probabil-
ity that S (test statistic, a random variable) is larger than or
equal to the observed statistic s. Most of the time, the cumu-
lative distribution function F(s), where F(s) = P(S ≤ s), is
unknown, and P-values have to be obtained by randomiza-
tion tests.

Density-based P-value computation. Direct estimation of
the raw P-value possesses one major drawback. If the real
(unknown) P-value is too small, as in a biological sequence
randomization test (16) where the P-value can often range
from 0.1 to the order of magnitude of 10−30, the number
of randomizations can be too small to estimate the raw P-
value (17). A classical method to avoid this drawback is to
first directly estimate a density distribution function ρ(s) =
d F
d S (s) from the randomized statistic s∗

i by a kernel density
estimation (18,19) and then to estimate the P-value from
numerical integration of ρ(s) (20,21) using the R built-in nls
function.

Bandwidth optimization. A key feature of R. S. WebTool
is the optional optimization of the density bandwidth for
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Table 1. Summary of the distances that can be used with R. S. WebTool

Distance Equation Example of use References

Manhattan (Minkowski, P = 1) d(p, q) =
n∑

i=1
|pi − qi |

Euclidean (Minkowski, P = 2) d(p, q) =
√

n∑
i=1

(pi − qi )2 Although the Euclidean distance
remains largely preferred in gene
expression dataset analysis, the
use of higher power values is
becoming more frequent as a way
to overcome the ‘curse of
dimensionality’. On the other
hand, lower power values
(Manhattan distance or fractional
values) allow for less sensitivity to
outliers, and should be preferred
in cases where they might interfere
with the results.

(4,5)

Minkowski d(p, q) = k

√
n∑

i=1
|pi − qi |k

Canberra d(p, q) =
n∑

i=1

|pi −qi |
|pi |+|qi | The Canberra distance has been

successfully used as a measure of
stability for biological indicators
identified from microarray data.

(11)

Chebyshev (Minkowski, P = ∞) d(p, q) = max
i

(|pi − qi |) Seldom used in biology, the
Chebyshev distance can be utilized
in gene set analysis and gene
selection, in particular when
UPGMA approaches are
conducted.

(12)

normalized datasets. On-the-fly computation of the appro-
priate density bandwidth for each distribution using Scott’s
rule of thumb (22) works effectively in most cases (‘Nrd’
bandwidth setting from the analysis options panel). How-
ever, as it relies in part on the standard deviation of the
distribution, very narrowly distributed distances after ran-
domization (Figure 1A) appear to yield extremely low band-
width, resulting in an ‘over-reactive’ density kernel estima-
tor (Figure 1B) and therefore incorrect calculated P-values.
To address this issue and prevent misinterpretation of the
results, the R script implements a method for detecting such
behavior and optimizing the density bandwidth (Figure 1C)
by iterative adjustment until the standard deviation of the
density falls below 1 (‘Optimized’ bandwidth setting from
the analysis options panel).

Clustering

A very common step in a gene expression analysis workflow
is the clustering of various genes or experimental conditions
that are compared for function prediction (23) or identifica-
tion of signalling cross-talk (21). While this server does not
implement all possible algorithms for the numerous clus-
tering methods, the script includes a hierarchical clustering
step using P-value-based single, average and complete link-
age followed by tree cutting at the following heights: h =
0.05, 0.01, 10−3, 10−4, 10−5, 10−6. The resulting clusters
can be mapped to the output weighted matrix and network
view by entity reordering and color-coding, respectively.

P-value–distance function

The adjacency function that maps the interval of distances
[0,∞] into [0,1] can be computed if the user has selected
data normalization at the time the job is launched. The
dataset then becomes usable in analysis frameworks for
weighted networks assuming pairwise edges of values con-
strained to the interval [0,1] (24). The relationship P-value
versus distance is therefore inferred by a logistic regression.
Let R(x,y) be a possible relationship between two vectors
x and y (genes, biological samples, etc.). Then we can have
R(x, y) = 1 if x and y are in relation (respectively, R(x, y) =
0 if x and y are not in relation). Let D(x, y) be a predictive
variable (for instance, a distance computed between x and
y). We have the a priori probability P(R(x, y) = 1) (respec-
tively, P(R(x, y) = 0))) to take the value 1 (resp. 0) and the
conditional probabilities P(D(x, y) ≤ d|R(x, y) = 1) and
P(D(x, y) ≤ d|R(x, y) = 0) of distance d conditionally to
the R(x,y) values. The logistic regression is based on the hy-

pothesis that we have the relation log
(

P(D(x,y)≤d|R(x,y)=1)
P(D(x,y)≤d|R(x,y)=0)

)
=

a + bd for some a and b. The general sigmoid function p =
A 1

1+e
B−d

C
is used for non-linear model fitting of P-value–

distance with A = 1, where P is the P-value and d is the
distance.

WEBSITE USAGE

Performing a new analysis is a three-step process that in-
cludes (i) dataset upload, (ii) options setting and (iii) anal-
ysis run.
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Figure 1. Density bandwidth optimization for narrowly distributed distances. The P-value is calculated from the original ‘true’ distance between the vectors
(red) compared to the distribution of distances after random permutation of the dataset (black histogram). When computed, the density curve is displayed
in blue. (A) Raw (non-density-based) computation yields a P-value of 0.008. (B) Density estimation using the ‘Nrd’ bandwidth from Scott’s rule of thumb.
Using this method gives a bandwidth of 2.85e-14, resulting in an over-reactive density kernel estimator. The computed P-value from density integration is
1. (C) Density estimation using the optimized Nrd bandwidth, which iteratively adjusts the density kernel bandwidth until the standard deviation of the
density falls below 1. The new bandwidth is 0.109, yielding a P-value of 8.899e-3. The presented data are from the hormone dataset example file (normalized
dataset, ABA 30 min versus ACC 1 h).

Inputs

The input dataset is in tab-delimited format and can be ei-
ther copied and pasted into a text field or directly uploaded
from a file. The columns represent the different data vectors
to be compared with the first row considered the column
names. Empty cells are allowed, provided they do not ac-
count for more than 50% of a data vector; the first column
may contain characters other than numbers, in which case
it will be assumed to be the row names and ignored when
running the job. A typical file could contain expression val-
ues for a set of genes (rows) in various biological samples
(columns). Such a file can be seen from the example dataset,
which the user can fetch and use as a demo dataset. Once
uploaded, the dataset is checked for errors before the user
is directed to the next step (analysis options settings).

Although the default settings (Euclidean distance, no
density calculation) allow for immediate submission of the
new job, the user is also given the option of tweaking the
way his dataset will be handled. Distances that can be used
include the most common ones.

Outputs and visualization tools

Pairwise P-value graphs. The first panel focuses on pair-
wise significance evaluation of the different data vec-
tor combinations. Two types of R-generated, publication-
quality graphs are displayed here, and dynamic filtering of
the graphs (leftmost section) allows for quick retrieval of a
particular comparison. Boxplot panels (Figure 2A, upper
carousel) provide a per-vector overview of its similarity to
each of the other vectors. The boxplots represent the dis-
tribution of the computed distances (after random permu-
tation of the dataset) with which the original distance, dis-
played as a red star, can be compared. The reference data
vector for a particular boxplot panel is specified on top of
the graph. Using this view, the user may immediately iden-
tify the various data vectors that are similar to a particu-
lar one and evaluate to what extent this similarity is signif-
icant. For a more accurate view of each dyadic compari-

son, the lower graph carousel presents the distribution of
the distances obtained after random sampling for each pair
of vectors (Figure 2A). It is displayed as a histogram along
with the original pairwise distance (red line) and, if com-
puted, the density curve (in blue) of the distance distribu-
tion. Both the original distance and its associated P-value
are displayed at the bottom of the graph. All images are
available for individual download from this first panel, but
can also be obtained as a batch from the download panel.

Integrated visualization tools

The subsequent panels present the dataset from a more in-
tegrated standpoint. The adjacency matrix (Figure 2B) dis-
plays the P-values of all the combinations in a color-coded
matrix. Red squares indicate P-values that are lower than a
user-specified threshold (significantly similar vectors given
the specified metric), while blue squares indicate signifi-
cantly different vectors over the same threshold (P-value >
1 – threshold). Entering 0.5 as a threshold will enable all the
squares to be displayed and can therefore be used to avoid
hard filtering of the displayed dataset. All squares can be
clicked to show the corresponding vector pair and its asso-
ciated P-value. By default, the vector names are displayed in
alphabetical order, and the user may reorder the dataset to
match any of the 18 different clustering methods that have
been pre-computed.

The network view (Figure 2C) is complementary to the
matrix view. It displays each data vector as a node, while
pairwise similarities are represented by the edges. Only
those edges matching user-specified criteria are displayed,
and pre-computed clusters are mapped to the network by
node color-coding. The SIF (Simple Interaction Format)
file associated with the displayed network is available for
use in more advanced network visualization software such
as cytoscape or gephi.

Dendrogram visualization of the dataset is also available
(Figure 2D), taking the computed P-values or the normal-
ized distances, if available, as input. The corresponding R-
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Figure 2. Overview of the various outputs and visualization tools available from R. S. WebTool. (A) The first panel focuses on pairwise comparisons: the
upper carousel features boxplot panels that provide a one-to-all overview of the distance value significance for each entity (each column of the dataset versus
all others). The lower carousel presents one-to-one comparisons for each pair of entities. In both types of graphs, true (original) distances are displayed
in red, while distributions of the distances obtained after random permutation of the dataset are in black. (B) Adjacency matrix of the pairwise P-values
resulting from the Monte Carlo analysis. Significantly similar entities (over a user-provided threshold) are in red, and significantly dissimilar entities are
in blue. Dynamic cluster mapping can be achieved by reordering the rows and columns to highlight groups of similar entities. (C) Weighted network
representation of pairwise distance value significance. Pre-computed clusters are mapped by color-coding the nodes (entities), and dyadic significance
values above a user-provided threshold are represented by edge thickness. (D) Dendrogram representation of the adjacency matrix. This graph highlights
potential clusters as well as the degree of similarity between them. (E) P-value–distance plot. If requested at the time the analysis has been launched, the
adjacency function (red curve) for mapping the space of possible distances [0,∞] to the interval [0,1] of P-values is computed from the plot. The equation
of the deduced non-linear model and the coefficient of determination R2 are provided. The presented screenshots are from various datasets, including those
from the demo pages of R. S. WebTool.

generated Newick statement is shown along with the tree for
use in third-party software. As a common way of displaying
entity relationships, trees can be particularly meaningful in
terms of visual clustering of the various elements to be com-
pared as well as evaluation of inter-cluster relationships.

Downloadable files

All the generated files and datasets are made available for
download. They include in particular the normalized in-
put dataset (if normalization was requested), the adjacency
matrix and the distances file (both original distances and
those after random permutation). These files are in tab-
delimited format. Newick and SIF files can also be retrieved
for more advanced tree construction and network analy-
sis, respectively, and R-output graphs (histograms, boxplot

panels and adjacency graph) can be obtained as a batch
from the download panel as well.

Personal information and data retrieval

Each analysis is given a unique ID containing a set of ran-
dom characters that is used to generate a permalink. All
analyses will remain on the server for at least a year and can
therefore be accessed using this link. Although not required,
users are encouraged to provide a valid email address to eas-
ily retrieve their previous work. To this end, a link toward a
summary of all the performed analyses corresponding to a
particular email address is sent upon user request.

DISCUSSION

We have developed the R. S. WebTool to address the specific
issue of evaluating the significance of a distance value. Al-
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though it is more targeted toward biologists, the proposed
platform can handle any type of data, and its visualization
tools are generic enough to be useful to a broad range of
scientists. The main objectives of this tool are to provide re-
searchers with (i) the possibility of applying a hard thresh-
old for filtering significantly similar data vectors (using a
standard P-value of 0.05 or 0.01, for instance) using a sim-
ilarity metric of their choice other than a correlation coef-
ficient and (ii) an adjacency function for mapping the do-
main of possible distances [0,∞] into the interval [0,1] when
using soft thresholding approaches (or other types of analy-
ses), assuming constrained pairwise similarity values are to
be used (24). In the latter case, additional adjustment func-
tions can be employed to ensure compliance of the dataset
with the requirements of subsequent analytical methods,
such as correlation coefficient-like values by using the func-
tion x = 1 − 2y that maps the interval [0,1] into the interval
[1,−1].

There are also some limitations to the use of R. S.
WebTool. This, for instance, is the case when gene clusters
are constitutively co-expressed, or when genes exhibit con-
stitutive, nearly identical expression changes in response to
numerous stimuli, but which relationship (e.g. inter-genes
and inter-samples relationships, respectively) is not relevant
to the biological question underlying the analysis. If these
undesired dependencies account for a significant part of
the dataset, Random Sampling-based analyses might pro-
duce low P-values that are not necessarily representative
of a meaningful, biological interaction between the com-
pared vectors with respect to the original question. For
these very specific scenarios, one could simplify the dataset
via Principal Components Analysis or any multivariate and
multidimensional data analysis method, and use the gener-
ated eigenvectors (or eigengenes (25)) in subsequent Monte
Carlo analyses.

Many gene function prediction algorithms heavily rely on
expression profile similarity, which is almost always com-
puted using a correlation coefficient (7,23). The possibil-
ity of evaluating the significance of a similarity value given
by any distance metric, some examples of which have been
shown to perform better than correlation coefficients in
multiple cases (1–4), will increase the flexibility of the com-
parison methods as well as the accuracy of the predic-
tion while still allowing one to make use of the available
clustering/gene function prediction software that requires
correlation coefficient-like data. The simplicity of the in-
terface will make it easy for non-bioinformaticists to assess
the significance of distance values from their dataset, while
more advanced users can further process their results after
downloading the generated files.
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