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Wearable cardioverter defibrillator (WCD) is a life saving, wearable, noninvasive

therapeutic device that prevents fatal ventricular arrhythmic propagation that leads to

sudden cardiac death (SCD). WCD are frequently prescribed to patients deemed to

be at high arrhythmic risk but the underlying pathology is potentially reversible or to

those who are awaiting an implantable cardioverter-defibrillator. WCD is programmed

to detect appropriate arrhythmic events and generate high energy shock capable of

depolarizing the myocardium and thus re-initiating the sinus rhythm. WCD guidelines

dictate very high reliability and accuracy to deliver timely and optimal therapy.

Computational model-based process validation can verify device performance and

benchmark the device setting to suit personalized requirements. In this article, we

present a computational pipeline for WCD validation, both in terms of shock classification

and shock optimization. For classification, we propose a convolutional neural network-

“Long Short Term Memory network (LSTM) full form” (Convolutional neural network-

Long short term memory network (CNN-LSTM)) based deep neural architecture for

classifying shockable rhythms like Ventricular Fibrillation (VF), Ventricular Tachycardia

(VT) vs. other kinds of non-shockable rhythms. The proposed architecture has been

evaluated on two open access ECG databases and the classification accuracy achieved

is in adherence to American Heart Association standards for WCD. The computational

model developed to study optimal electrotherapy response is an in-silico cardiac

model integrating cardiac hemodynamics functionality and a 3D volume conductor

model encompassing biophysical simulation to compute the effect of shock voltage on

myocardial potential distribution. Defibrillation efficacy is simulated for different shocking

electrode configurations to assess the best defibrillator outcome with minimal myocardial

damage. While the biophysical simulation provides the field distribution through Finite

Element Modeling during defibrillation, the hemodynamic module captures the changes

in left ventricle functionality during an arrhythmic event. The developed computational

model, apart from acting as a device validation test-bed, can also be used for the design

and development of personalized WCD vests depending on subject-specific anatomy

and pathology.
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1. INTRODUCTION

Sudden cardiac death (SCD) is a sudden and unpredictable
event caused due to loss of cardiac functionality. SCD accounts
for the largest cause of natural death in the adult population,
causing around 13% of deaths in the overall population and
about 36% of deaths in heart failure patients (Smith and Cain.,
2006). The leading cause of SCD is primarily attributed to
electrical abnormality like ventricular arrhythmia (VA) and
ventricular fibrillation (VF) followed by structural cardiac
disorders like ischemia. VF is usually lethal within minutes of
its inception and if not immediately treated, leads to cardiac
arrest (Barraud et al., 2017). Electrical defibrillation is the only
effective therapy for such conditions. Electrical defibrillation
through wearable cardioverter-defibrillator (WCD) provides a
non-invasive therapeutic option for patients during a period
when the risk of SCD is changing or unclear (Poole et al., 2008;
Sharma et al., 2017).

Wearable cardioverter-defibrillator is mostly recommended
to patients who are newly diagnosed with non-ischemic
cardiomyopathy with severely reduced left ventricle ejection
fraction (LVEF), patients awaiting heart transplantation or in
patients with ventricular assist devices, temporary inability to
implant an intra-cardiac defibrillator (ICD) or in ambulatory
event monitoring, often performed for several weeks in an effort
to determine an arrhythmic etiology for syncope (Wan et al.,
2013). Similar to ICD, WCD detects ventricular arrhythmic
events and delivers a defibrillation shock to terminate VF
or tachycardia (>180 bpm) by resetting myocardial potential
distribution. Instead of the intracardiac electrogram (EGM)
signal, the ECG signal recorded from the body surface is used
to detect arrhythmic events. Therapeutic devices like WCD
though indispensable, have to maintain very high reliability and
accuracies in order to deliver timely and optimal therapy (Epstein
et al., 2013). WCD devices are programmed to be autonomous,
thus further burdening device complexity. Malfunction in any
form while in detection or during shock generation can cause
serious injury, which can even be fatal. An effective way of device
reliability and performance validation is through computational
model aided trials (Ariful et al., 2016). For WCD, computer-
aided validation processes could evaluate device performance
in virtual trials and benchmark the device settings to suit
personalized requirements. In this regard, two separate aspects
require validation and bench-marking: the classification accuracy
of detecting shockable rhythm from non-shockable rhythm and
shock voltage profile optimization based on a personalized
requirement to optimize shock efficacy.

The central requirement of autonomous WCD devices is the
detection of VF by means of reliable detection algorithms. Over
the past decades, special focus has been given toward developing
efficient algorithms that can correctly detect VF abnormality,
especially in real-time (Ayala et al., 2014; Figuera et al., 2016).
Different large-scale machine learning (ML) methods have
been explored for ECG beat classification identifying shockable
rhythm (Jekova, 2000; Amann et al., 2005). In spite of the
high accuracy of classification, incorporating complex feature
measurement within theWCD setting is a challenge.WCD shock

detection algorithm requires real-time analysis with minimal
decision delay, low complexity, and low memory requirement
for computations that presents a certain risk of poor feature
quality due to inaccurate delineation of ECG waves, filtering, or
approximations (Aramendi et al., 2010). As an alternate, several
self-learning approaches based on the deep neural network have
been proposed recently (Zhong et al., 2020) and are now widely
applied on arrhythmia classification using Convolutional Neural
Network (CNN) (Lee et al., 2019). The CNN-based arrhythmia
classification could eliminate the cumbersome requirement of
criteria selections and parameters setting in traditional ML-
based arrhythmia detection methods while achieving high
detection accuracy. Some notable prior arts (Silva et al., 2019)
implementing CNN architecture for arrhythmia classification,
reports the use of various architectural layers (Kwon et al., 2018),
attention on noise removal, use of LSTM networks (Krasteva
et al., 2020), etc. The most recent work reporting the highest
accuracy to date uses a bidirectional LSTM (bi-LSTM) instead of
unidirectional LSTM (Jeon et al., 2020).

Irrespective of high detection accuracy and type of
defibrillator, strong shocks that are required during defibrillation
are reported to have serious adverse effects, most prominently
via electroporation that may initiate post-shock arrhythmia
(Colley et al., 2019). Strong shocks can also potentially cause
myocardial damage, giving rise to mechanical dysfunction
(stunning), increase in contractility, and development of
hemodynamically mediated symptoms (Qiana et al., 2018).
Hence, it is extremely important to tune and optimize the
shock energy to get the desired effect. The mechanism of
defibrillation has been studied extensively in recent years, mostly
for ICD placements (Stinstra et al., 2008; Onofrio et al., 2018).
Computational models analyzing defibrillation mechanism and
the after-effect of shock voltage in the myocardium can provide
an in-depth understanding of the fibrillation mechanism and
help in optimizing the defibrillation threshold (Stinstra et al.,
2007). The distribution of electric fields in the heart is closely
related to defibrillation outcomes. Three dimensional cardiac
models like the volume conductor models coupled with Finite
Element Modeling are well suited to reflect the electric field
distribution in myocardium substrate (Stinstra et al., 2010;
Trayanova et al., 2011; Tate et al., 2018).

Prior art lists sufficient methods of classifying shockable
and non-shockable rhythms but for defibrillator performance
validation, an integrated pipeline that could classify shockable
rhythm as well as validate the shockable energy delivery efficacy
is the need of the hour. The shock delivery circuit of WCD
generates very strong fields of fixed energy or current to
stop the arrhythmic propagation by resetting the myocardial
potentials to a depolarized state (Morgan et al., 2009). It has been
observed that field distribution required to provide defibrillation
effect is greatly dependent on subject-specific parameters like
torso geometry, trans-thoracic impedance, cardiac structure, etc.
(Hatib et al., 2000). A computational pipeline that could integrate
the aspects of shock identification and pre-plan personalized
shock delivery can be extremely useful as a WCD device
validation. Mathematical modeling and computer simulation can
efficiently accelerate the process of optimizing and testing of
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WCDs. A computational model-based validation approach could
evaluate device performance on virtual trial and benchmark the
device setting to suit personalized requirements.

In this article, we propose a computational pipeline for
WCD validation, both in terms of shock classification and
shock optimization. The schematic representation of the
proposed computational framework is shown in Figure 1.
The computational model is an in-silico cardiac model
integrating cardiac functionality in terms of hemodynamics
and electrophysiology, encompassing biophysical simulation
to compute the effect of shock voltage on myocardial potential
distribution. We propose a CNN-LSTM architecture for the
classification of VF, VT (shockable), and other (non-shockable)
rhythms. The proposed network is evaluated on two open-
access databases, the CUDB and the VFDB databases. A 3D
cardiac computational model in line with the volume conductor
model is developed utilizing high definition torso-cardiac MRI.
This model is used to study the variation of shock efficacy by
varying plausible electrode configurations. A novel metric is
designed for quantifying the shock efficacy computed using
the energy required to obtain DFT and extent of myocardial
damage. Along with the biophysical modeling aspect, the
cardiac computational model also integrates the hemodynamics
functionality that closely replicates the dynamic changes in left
ventricular functions during VF/VT episodes, thus providing key
physiological insights. Novelty and uniqueness of the proposed
computational pipeline for shock classification and distribution
analysis lies in incorporating a CNN-LSTM overlapping window
algorithm, deriving defibrillation efficacy metric for optimal
electrotherapy, and inclusion of hemodynamic insights during
VF initiation and subsequent termination. Such concepts have
not been proposed earlier for WCD and have the potential to
enhance conventional WCD functioning in terms of device
validation and personalization.

2. MATERIALS AND METHODS

The proposed computational framework is divided into three
major sections involving the key features of the proposed model
which are

• CNN-LSTM based shockable rhythm classifier architecture
with both non-overlapping and overlapping window
variations

• Biophysical modeling of shock propagation and shock efficacy
index generation

• Capturing hemodynamics changes during VF/VT episodes
and recovery

Subsequent sections concentrate on the development and
integration of each of these features in a computational model
incorporating the functionality of a standardWCD. Themodeled
WCD referred to in this paper is the WCD model of Zoll
electronics (WCD system, LifeVest, ZOLL, Pittsburgh, PA, USA)
(Reek et al., 2017). The basic working of WCD can be found in
the Supplementary Material.

2.1. Dataset and ECG Pre-processing
The classification algorithm is designed and validated using two
publicly available datasets, the MIT-BIH Malignant Ventricular
Arrhythmia database (VFDB) (Greenwald, 1986) and the
Creighton University Ventricular Tachycardia database (CUDB)
(Nolle et al., 1986). The VFDB dataset contains 30-min long
Holter ECG record files belonging to 22 subjects. The CUDB
dataset contains 8-min long ECG records collected from 35
patients who have experienced sustained episodes of lethal VA.
The sampling rate for all recordings is 250 Hz.

A pre-processed version of the ECG recording datasets,
as discussed in Krasteva et al. (2010) and Bisera et al.
(2008), have been utilized for the design and validation of the
proposed algorithm. The preprocessing steps followed are mean
subtraction, moving average filtering [order = 5], a high-pass
filter with fc = 1Hz to eliminate drift suppression, and low-pass
Butterworth filter with fc = 30Hz. Further, noise and artifacts
have been excluded from the datasets along with intermediate
rhythms like slow VT (<150 bpm) and fine VT. Also, recording
segments with minimal electrical activity have also been excluded
from the datasets. With all the preceding pre-processing steps
applied, the resultant recording is split into windows of different
lengths namely, 2, 4, 6, and 8 s. Further, windows with uniform
labeling only have been retained for use. The details regarding

FIGURE 1 | Schematic representation of the computational model to analyze Wearable cardioverter-defibrillator (WCD) efficacy.
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the final count of windows generated through the process for the
different classes under consideration (VT, VF, and Others) are
given in Table 1. These instances have been used for training and
validation of the proposed algorithm in a k-fold cross-validation

TABLE 1 | Dataset segmentation details.

CUDB VFDB

Segment length (s) NSh VF VT NSh VF VT

2 6,075 120 1,390 16,005 1,473 1,597

4 2,986 53 663 7,861 702 784

6 1,959 31 422 5172 446 516

8 1,446 21 302 3,823 326 377

FIGURE 2 | Sample ECG-(A) 8 s duration Ventricular Tachycardia (VT) signal,

(B) 8 s duration VF signal, (C) 8 s duration non-shockable signal.

framework. Plots of the 8 s recordings with labels VT, VF, and
non-shockable rhythm are given in Figures 2A–C, respectively.

Apart from the above-discussed processing strategy, another
approach toward dataset segmentation has been explored. In
this second approach, the datasets have been segmented into
training and validation subsets in a subject-wise manner. This
process ensures that data signatures of a particular subject are
not present in both the training and validation sets, thereby
ensuring a robust evaluation strategy of the proposed algorithm.
This study only considers data with 8 s of data length. In addition,
in order to study the impact of over-lapping contiguous windows
on classification scores, three overlapping scenarios have been
considered under this approach. The three scenarios pertain
to 25, 50, and 75% overlapping of contiguous windows. For
the different overlapping percentages, the number of windows
generated can be expressed in terms of Equation (1).

m = (n− r)/(k− r) (1)

where, m = number of windows, n = total samples, r = overlap
sample, and k= window sample.

2.2. Deep Learning Architecture for
Classification
For classifying different arrhythmic rhythms, we propose a deep
CNN-LSTM architecture for the classification of VT, VF, and
other conditions from ECG. Here, other conditions can include
any cardiac condition other than VT and VF, that do not require
shock therapy. The block diagram of the proposed network
architecture is shown in Figure 3.

The CNN-LSTM is a type of LSTM architecture specifically
designed for sequence prediction problems for input data with
spatial structure that can not be easily modeled with a vanilla
LSTM. The architecture contains a series of CNN layers for
the extraction of features from the input data which are then
applied to an LSTM architecture for temporal modeling and
prediction. As shown in Figure 3, input ECG data after pre-
processing is applied to a series of 1D convolutional layers. For
each convolutional layer, the kernel dimension is taken as 5.
Batch normalization is applied at the end of the convolution
operation for standardizing the inputs to a layer for each mini-
batch. The number of filters in the base convolutional layers is
selected as 16. As we go deeper, the number of filters in the
convolutional layers are gradually increased by a factor of 2 to
extract more detailed features. However, the dimension of the
feature is reduced by applying the stride length of 2 in every
alternate layer for doing the convolution operation. The neurons
in the convolutional layer are activated using the non-linear
Rectified linear unit (Relu) activation function. The output of the
final convolutional layer is applied to an average-pooling layer
having a window size of 4 to select a representative feature set
at a reduced dimension. This is applied to a pair of LSTM layers
having 128 and 64 units, respectively, followed by a dense layer
having 3 neurons for classification of VT, VF, and other rhythms
using a softmax activation function.
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FIGURE 3 | Block diagram of the proposed convolutional neural network-"full form of LSTM" (CNN-LSTM) architecture.

2.2.1. Network Parameters

Selection of the optimum network hyper-parameters becomes a
major challenge in designing a neural network architecture. In
our architecture, we focused on a few parameters while designing
the optimum architecture including, (1) number of filters in the
base convolutional layer, (2) dimension of the filter kernel, (3)
the stride length, and (4) number of hidden units in the LSTM
layers. We opted for a randomized search as the hyper-parameter
selection strategy, where the possible values of different hyper
parameters are randomly selected from a pre-defined range to
train and evaluate the network on a small representative dataset
obtained from the CUDB database. The evaluation is done
based on 5-fold cross-validation on the representative dataset.
The combination of hyper-parameters producing the maximum
median accuracy in the cross-validation approach is selected
as the optimum combination for designing the network. The
duration of instances in the representative dataset is considered
as 4 s.

2.2.2. Training of the Proposed Network

The proposed architecture is implemented in python 3.6.9 using
TensorFlow 1.5. The platform where the network was trained
contains an Intel Core i7 processor and 8 GB of primarymemory.
The mini-batch size is selected as 32. During training, the
categorical cross-entropy loss of the network is minimized using
an Adam optimizer with learning a rate of 0.005 and 300 epochs
limit are used before stopping the training. The initial weights
are set using Xavier initialization. In this process, the values are
randomly assigned from a Gaussian distribution of zero mean
and a finite variance var = 2

nin+nout
, where nin and nout are the

number of input and output neurons in that layer, respectively.
The bias terms are initialized by zeros.

2.3. Cardiac in-silico Model
The cardiac in-silico model is a computational model
encompassing a 0D lumped hemodynamic model and a 3D
volume conductor model enabling biophysical simulation.
There is also electrophysiology (EP) block that can synthesize
ECG template and is responsible for the initiation of cardiac
contraction and pulsating behavior of heart chambers that
drives the hemodynamic block. In this particular work, the ECG
signal is used directly from the database or it can be the signal
measured by sensing leads of WCD. If required, synthesized
VF/VT ECG can also be generated using the proposed in-silico
model (Mazumder et al., 2021).

2.3.1. Hemodynamics Module

The Hemodynamic block consists of a four-chambered heart
with lumped pulmonary and systemic circulations. The pressure
variations across the cardiac chambers are modulated through
time-varying compliance functions. Heart valves are modeled
to replicate the functionality of each cardiac phase, capturing
the pressure difference across the cardiac chambers to ensure
unidirectional blood flow through the heart and maintain
the pressure-volume dynamics. The model is also coupled
with central nervous system modulation in terms of a
baroreflex control, which regulates pressure autonomously
through sympathetic and parasympathetic interaction of heart
rate, contractility, and systemic vascular resistance, explained in
detail in our prior works (Mazumder et al., 2019; Roy et al., 2021).
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The dynamic equations to replicate the pressure dynamics of
the model at various chambers and pulmonary and aortic arteries
can be represented by state-space equations, depicting the flow
variation due to resistance to blood flow from the vessel along
with the compliance property of the chambers. As an example,
the flow equation of the left ventricle is expressed in Equation
(2).

Ṗlv =
1

Clv(t)

[

Umi ×
Pla − Plv

Rmi
− Uao ×

Plv − Psa

Rao
− Ċlv(t)Plv

]

(2)

Here Pla, Plv, Psa are the pressure variables in the left-atrium,
left-ventricle, systemic arteries, respectively, Rmi, Rao are the
valvular resistances across the mitral and aortic valve, Clv is
the left ventricle compliance. The symbols Umi,Uao are the

control functions to mimic the opening or closing of the
respective cardiac valves. Pulsating action of the heart is driven
by a compliance function, which determines the time-varying
compliance of auricles and ventricles and brings about the
pumping action of the heart, utilizing time and morphological
metrics from ECG signal. This compliance adjustment is the
most crucial part of this study as the effect of VF is modeled
by decoupling atrium and ventricular compliance and then
modulating the ventricular compliance to emulate the effect of
VA.

In generic ECG signal, for one cardiac cycle, the characteristic
cardiac electrical events like PQ (auricular depolarization),
QRS (ventricular depolarization), ST duration (ventricular re-
polarization), and R-R intervals are marked by a specific
set of PQRST peaks whose amplitudes and time-instances
can be represented as

[

(Pp,Tp) (Pq,Tq) (Pr ,Tr) (Ps,Ts) (Pt ,Tt)
]

FIGURE 4 | (A) ECG signal decomposed to its constituent components and phase matched cardiac chamber compliance functions, (B) Compliance variation of left

ventricle tuned with arrhythmia ECG signal levels derived from the database.
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(Figure 4A). These electrical instances are encoded to modulate
compliance function and timing information to control the
synchronized operation of four heart chambers (Roy et al., 2021).
Compliance function of the left ventricle can be modeled as
follows:

Ci(t) = Ci × uv(t − d), i ∈ {lv, rv} (3)

uv(t) =















0.5− 0.5 cos
(

π t
T1

)

, 0 ≤ t < T1

0.5+ 0.5 cos
(

π t−T1
T2−T1

)

, T1 ≤ t < T2

0, T2 ≤ t < T

(4)

where uv(t) is the activation function, and d = (Tr − Tp)
represents the delay in activation of ventricles from the right-
atrium, T1 = (Tr + Tt)/2 and T2 = Tt are the systolic and
diastolic duration of the cardiac cycle (T), respectively. Similarly,
compliance for the other chambers can also be modeled. The
ventricular compliance (Ci; ∀i ∈ {lv, rv}) are computed by
the ratio between the R-peak and T-peak, expressed as Ci =
Pr
Pt
. Compliance functions estimated from ECG template for a

healthy heart for all the 4 chambers are shown in Figure 4A.
Ventricular fibrillation is an abnormal heart rhythm, where

irregular heart signals cause the ventricles to twitch uselessly.
As a result, the cardiac elasticity across the ventricles increases,
and hence, those cardiac chambers get stiff with decreased
compliance (Arts et al., 2005). Subsequently, the heart does
not pump blood to the rest of the body. To hemodynamically
simulate this effect, the compliance function during the VF
condition has been remodeled. Let us assume that Ci

(v,Nor)
(t),

where, (i ∈ RV , LV) is the compliance across the ventricles (right
and left) during normal conditions at the tth time. When the VF
episode starts, Ci

(v,Nor)
(t) starts decreasing. To model this effect

analytically, we have formulated the following equation:

Ci
v(t) =

{

Ci
v,Nor × exp(− t

τ
), if VF = 1

Ci
v,Nor , else

; ∀i ∈ {RV , LV} (5)

where, t is the duration of the VF/VT episode, and τ defines
the time constant of that VF episode. Thus, during the
VF occurrence, the ventricular compliance starts decreasing
exponentially. One such instance of remodeled ventricular
compliance phase tuned with VF/VT occurrence is shown in the
Figure 4B. The raw ECG signal along with the annotated labels,
derived from the CUDB dataset is used as a reference to show
the modulation of ventricular compliance with changes in ECG
morphology and arrhythmic patterns.

2.3.2. Biophysical Modeling

Understanding and replication of defibrillator behavior need
reconstruction of torso-cardiac anatomy with bio-physically
detailed realistic-geometry models. We have used anMRI scan of
a 19-year-old healthy subject, obtained from a dataset developed
by an Open Source software project of the SCI Institute’s
NIH/NIGMS CIBC Center (SCI, 2016) to create a 3D torso-
cardiac model. Conductivity levels of various organs and tissues
in the torso section, like the skin, skeletal muscles, fat, bones,

lungs, spleen, liver, stomach, kidneys, and spinal cord are defined
as per standard values reported in the literature (Lim et al.,
2018). Finite element meshes are created in the 3D cardiac-torso
model to help in solving the biophysical model associated with
the application of external fibrillation. This is similar to forward
electrophysiology, the only difference being that instead of using
cardiac potential as the source model, defibrillator voltage is
acting as the source. We have used monodomain equations to
solve the biophysical model. Shocking electrodes are placed in
the torso section for various possible configurations. Effect of an
external voltage applied at the electrodes is captured through the
modified torso and cardiac potential generation. The standard
shocking configuration in WCD is via Apex-Posterior shock.
In one of our previous works (Mazumder and Sinha, 2021),
we compared three other shocking electrode configurations to
obtain optimized defibrillation, expressed in terms of the critical
mass hypothesis. In that analysis, Front-Back configuration
resulted as the most optimized electrotherapy. In this work,
we extend our previously designed defibrillator efficacy concept
and focus on analyzing electrotherapy responses at various sub-
locations in Apex-Posterior and Front-Back configurations.

The governing equation for biophysical simulation is the
modified steady state electrical potential in an inhomogeneous
volume conductor described by Laplace equation:

∇(σ∇φ) = 0 (6)

where, σ is the conductivity tensor field and φ is the electric
potential. This is subjected to two boundary conditions, Dirichlet
boundary condition, defined as φ(x, y, z) |�k

= Vk applied
anywhere the electric potential is known (Vk is the known
potential of electrode k, and �k specifies the domain coincident
with electrode k) and Neumann boundary condition, defined

as ∂φ
∂n |� = 0, applied on the surface of the object being

simulated, not defined by �. In this implementation, we assume
a linear and isotropic volume conductor model, with negligible
capacitance and inductance, and applied the Galerkin finite
element formulation with tri-linear interpolation (Colley et al.,
2019). All the processes involved in a biophysical simulation
like monodomain equation solving, mesh model generation, and
their visualization were done using SCIRun software (Burton
et al., 2011). For computing the biophysical equation, the torso
model and the electrode model (defined over any place in
�) are integrated into a computational mesh composed of
hexahedral elements suitable for finite element modeling. Mesh
created for the cardiac structure consists of 34,927 elements with
1,17,649 nodes, while the torso structure has 45,328 elements
and 8,25,871 nodes, build around a lattice volume of 50 x 50
x 75 cm. SCIRun uses BioPSE modeling library and packages
like TetGen for generating mesh structure (Stinstra et al., 2007).
During simulations, boundary conditions are specified on all
finite element nodes within the geometrical regions defined
by the electrodes above. Electrodes are assigned a constant
potential over their surface. For shocking electrodes (anode),
the extracellular potential was fixed at the specified values to
define the strength of the applied shock (500 V); for ground
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electrodes (cathode), the extracellular potential was defined to be
0 V throughout.

There are various theories to define defibrillation efficacy,
but the underlying principle for all of them suggests that for
fibrillation to be effective, the Defibrillation threshold voltage
(DFT) value should be high enough to stop the fibrillation
effect but lower than upper threshold level (ULV), that is
capable of regenerating fibrillation mechanism through reentry
(Karagueuzian and Chen, 2001). We have implemented the
Critical point theorem (Zipes et al., 1975) which considers
DFT value capable of changing at least 95% myocardial mass
to a potential gradient of 5V/cm as a measure of complete
defibrillation. After the potential distribution is solved using
the finite element method, the gradients of the potential
field are evaluated for the full thorax using tri-linear spatial
derivatives and DFT values are computed. The DFT surrogate
intrinsically obtains extracellular potential fields throughout the
3D volume of the myocardium making it inherently convenient
for use in computational modeling studies in real-time (Morgan
et al., 2009). Along with DFT, ventricular mass with voltage
gradient distributions are also calculated. Higher voltage gradient
(>30 V/cm) causes irreversible damage to the myocardium
(Dosdall et al., 2010). Defibrillation energy is calculated using
the formulation for energy type defibrillator, defined as E =
1
2CV

2 where C = 130µF and V is the required voltage DFT
for the particular electrode configuration (Reek et al., 2017).
In Figure 5, the electrode locations in the 3D volume model

(cardiac-torso integrated), torso potential and cardiac potential
just after defibrillation, and the myocardial voltage gradient for
Apex-Posterior and Front-Back configurations are shown. Apex-
Posterior is the default standard shocking electrode configuration
used in WCD. Out of the two posterior electrodes, only one is
functional at any given time. For our analysis, we have considered
the right electrode as the shocking electrode. The cardiac
potential reflects the state of complete cardiac depolarization,
indicating effective defibrillation. The histogram representation
of voltage gradient distribution gives an idea of the defibrillation
pattern and efficacy.

2.3.3. Defibrillation Evaluation

Defibrillation threshold value reaching the critical mass is
capable of stopping the VA but the shock magnitude itself has
sufficient energy to damage the myocardium. We calculate the
ventricular mass with a voltage gradient >30, >45, and >

60V/cm, to assess possible myocardial damage. A new measure
combining DFT and myocardial damage is formulated using
probabilistic distribution and weighted KL divergence (KLD)
(Mazumder and Sinha, 2021). We define an ideal distribution
of myocardial voltage gradient after defibrillation by combining
two exponential functions, one rising and the other decaying
in amplitude for below and above of 5V/cm, respectively. The
distribution is defined such that the required critical mass
defibrillation is achieved ideally around the 5 V/cm mark and
the decay component diminishes for a value of the voltage

FIGURE 5 | Left to right: Electrode location, torso potential distribution just after defibrillation, cardiac potential indicating complete myocardial de-polarization state

and defibrillation threshold (DFT) histogram representation for Apex-Posterior (upper) and Front-Back configuration (lower).
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gradient (x) ≥ 30V/cm (Zipes et al., 1975). Considering the
modeled distribution asM and the defibrillation Voltage gradient
distribution as C, the divergence or the information gain from
M to C can be computed using KLD (Sekeh et al., 2013). Higher
voltage gradient leads to greater myocardial damage, hence we
have proposed the error measure reflecting the efficacy of the
defibrillation (ED) using weighted KLD (WKLD) Dw

KL. Here, the
weight (W = x) allows the regions with a higher myocardial
gradient to be penalized more in the computation of the error

measure (ED). Lower the measure, lower is the difference in
entropy between M and C, making the actual defibrillation
function closer to the modeled or ideal one. This difference can
be considered as the error between these two distributions and
provide an informative efficacy measure (ED) combining both
DFT and myocardial damage information expressed as follows:

WKLD(C) = Dw
KL(C||M) =

∞
∑

x=0

x.C(x)ln
C(x)

M(x)
(7)

FIGURE 6 | Calculation of metrics derived from the relative orientation of heart with respect to the WCD electrodes-(A) flow chart, (B) schematic representation, (C)

electrode locations considered for Apex-Posterior, and (D) Front-Back configuration.
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Defibrillation threshold, energy, and WKLD values are
calculated for two standard shocking electrode orientations
(Apex-Posterior and Front-Back) as well as in between various
plausible subspaces of the specified configurations. WCD
electrodes are all of similar shape and size (0.1 m × 0.1 m).
For the Apex-Posterior configuration, the “apex” electrode acting
as the cathode is positioned at the mid-axillary line at the level
of the 5th intercostal space, apex coordinates being (0.1420,
–0.074, and 0.0224) with respect to 3D world co-ordinate center
(0,0,0). Here the representation is (X,Y , and Z), where X is along
the medio-lateral, Y is along anterio-posterior and Z is along
the vertical direction, the units are in meter (m). The center
(0, 0, and 0) is taken as the center of torso at the transverse
plane aligned center to the heart. Anode electrodes are placed
under the right clavicle at the 4th intercostal level (−0.099,
0.0744, and 0.1225). The cathode electrode is placed on the
left precordium, in front of the chest at coordinates (−0.0301,
−0.0744, and 0.0225), and an anode is placed on the back
behind the heart in between the scapulas (−0.0301, 0.0744, and
0.0225) for the Front-Back configuration (shown in Figure 5).
For each of these configuration, we create a subspace of probable
electrode locations to study the variation in defibrillation efficacy.
We examine the variation of the defibrillation energy (E) and
WKLD for each such electrode locations to find the location
which minimizes the WKLD, while having a low and acceptable
value of E. For a given configuration (Apex-Posterior or Front-
Back), the variation in the position of the anode, leads to a
different view point from which the electric field is propagated
through the myocardium. Such change in the relative view
point, with respect to the orientation of the heart, is quantified
using certain distance and area metrics. In total, four metrics
are defined namely, three distance metrics D1,D2,D3, and one
area metric A1. The flow chart of the computation is given in
Figure 6A. A schematic representation of the axes, planes, and
projections used to define the metrics is shown in Figure 6B.
D1 is the perpendicular distance from the origin of the world
3D coordinate “O” to line “AC” connecting the center of the
anode and cathode. D2 is the distance between “O” and the
center of the anode “A.” To compute the remaining metrics, the
structure of the 3D heart is projected on the plane perpendicular
to the line connecting the anode and cathode. The vector EAC
is computed using the centers of the anode (XA,YA,ZA) and
cathode (XC,YC,ZC), which defined the view direction of the
electrodes. Next, a projective transformation matrix (TO) is
derived (given by Equation 8) to project any data point from the
world 3D coordinate to a plane (P) perpendicular to the vector
EAC.

TO =









m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
0 0 0 1









(8)

The mii indicates the rotation and scaling related parameters
and the entries in the last row and last column, except m44 are
zeros indicating no translation and the scenario of orthographic
projection (Hu et al., 2014). Recently, the orthographic projection

was also used to analyze the structure of various parts of the
human heart (Sherknies et al., 2003; Liu et al., 2019). We have
considered such a projection to preserve the relative distances
between a pair of points from the 3D space to the plane, which
is required for the computation of the distance and area metrics
on the plane P. A 3D mesh of the heart is created and then the V
vertices of the mesh, with coordinates (vi

xh
, vi

yh
, vi

zh
), ∀1 ≤ i ≤ V ,

are projected to the 2d plane P using the transformation matrix
TO as shown in Equation (9).
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The vertices of the 3D mesh are used as homogeneous form
([vi

xh
vi
yh

vi
zh

1]T), where T denotes the transpose. The projected

coordinates [vixp viyp]
T lies on the 2D plane P perpendicular to

the view vector EAC. A convex-hull (CH) is derived using the 2D
co-ordinates [vixp viyp]

T on the plane P. The centroid of the CH

is computed as XPC,YPC, and the line AC intersects the plane P
(atXPL,YPL) as shown in Figure 6B. ThemetricD3 is the distance
between (XPL,YPL) and XPC,YPC, and the metric A is the area of
the convex hull.

Along with the standard Apex-Posterior and Front-Back
configuration, 12 similar orientations are recreated by placing
the anode electrode in different locations and recomputing the
mesh and biophysical simulations, keeping the cathode fixed.
The top-most right location being (–0.1025, 0.0744, and 0.1025)
and bottom left location being (0.1025,0.0744, and –0.1025). The
other 10 electrodes are distributed in a symmetrical pattern with
a 0.05 m gap in both “X” and “Z” axes. From the findings of these
12 new locations for each configuration, a finer distribution is
studied by introducing 5 separate electrode locations in places
translating to a better defibrillation index. The electrode sub-
locations throughout the torso space are shown in Figures 6C,D.

3. RESULTS

Initially, we present the results regarding the accuracy of
detection of the shockable rhythms based on two datasets
namely, CUDB and the VFDB. Then, the characteristics of
the hemodynamics obtained from the cardiovascular simulation
model, during both shockable and non-shockable segments, are
given. Finally, results on the defibrillation metrics are presented
for different electrode positions in two configurations namely,
Apex-Posterior and Front-Back.

3.1. Detection of Shockable Rhythm
This sub-section details the performance of the proposed deep
learning classifier in identifying VT, VF, and other classes on both
CUDB and VFDB datasets based on a 5-fold cross-validation
approach. The ECG measurements from all subjects, as available
in the original dataset, are first segmented into small non-
overlapping windows of equal length. Every single window is
considered as an independent training or test instance for the
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classifier. The objective of this study is not only to measure the
classification accuracy but also to estimate the optimum window
length required for robust classification performance. Table 2
summarizes the classification performance of the proposed
CNN-LSTM architecture on the CUDB and the VFDB datasets
on different window lengths of 2, 4, 6, and 8 s. Here, we report the
median classification performance in terms of precision, recall,
and F1-score of detecting various target classes across 5-fold
cross-validation.

Precision, recall, and F1-score are popularly used for
measuring the performance of a classifier. In theory, precision
measures the number of correct positive predictions, and recall
measures the number of correct positive predictions made out
of all positive predictions that could have been made by the
classifier. For a multi-class classifier, these two are defined for
every target class in terms of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN), across all classes
in one vs. all method:

precision =
TP

TP + FP
recall =

TP

TP + FN
(10)

F1-score is a method of measuring the classification accuracy
based on the combined effect of precision and recall.
Mathematically, it measures the harmonic mean of precision and
recall as follows:

F1 = 2
(precision ∗ recall)

precison+ recall
(11)

As mentioned in Section 2.1, both our target datasets are largely
imbalanced. Among the 3 different classes (VT, VF, and other),

the instances corresponding to the other conditions occupy the
major portion of both CUDB and VFDB datasets, whereas the
number of instances related to VT is the least in number. It can
be observed from Table 2 that the overall F1-score of detecting
various classes tends to improve with the increased window-
length and the optimum performance is achieved at a window-
length of 8 s. It is to note that the overall signal quality of the
CUDB datasets is better than the VFDB dataset, which contains
many noisy instances where the classifier does not yield reliable
performance. Hence, the proposed classifier produces a better
classification accuracy on the CUDB dataset compared to VFDB.

Table 2 summarizes the classification performance of our
proposed approach on the CUDB and the VFDB databases.
Similar to the existing approaches in the literature, the
classification approach is evaluated by applying cross-validation
on the entire dataset and the accuracy is reported against a
fixed window length. However, this approach does not reveal the
utility of the classifier in detecting the onset of a VT or a VF
event on a long data stream recorded from a subject. Hence,
in the second part of our experiment, we perform a detailed
subject-wise analysis.

Typically, a shock is applied within 32 s of detecting a VT or
a VF event. Hence, in this stage we evaluate our classification
performance on every 32 s long data segment. The decision
window is fixed at 8 s and a final decision corresponding to a 32
s data stream is made based on majority voting on the prediction
labels on the continuous 8 s long windows within the 32 s
long data stream. For the subject-wise analysis, we completely
separate the train and test subjects on both datasets considered
in this article. About 80% of all subjects form the training set
and the remaining 20% of the subjects form the test set. The

TABLE 2 | Classification performance of the proposed deep learning classifier on CUDB and VFDB dataset (P = precision, R = recall, F1 = F1 score).

2 s 4 s 6 s 8 s

Target label P R F1 P R F1 P R F1 P R F1

VF (CUDB) 0.96 0.92 0.94 0.94 0.99 0.97 0.97 0.96 0.96 0.97 0.98 0.98

VT (CUDB) 0.89 0.66 0.76 0.67 0.47 0.55 0.50 0.83 0.62 1.00 0.69 0.82

Others (CUDB) 0.98 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 1.00

VF (VFDB) 0.73 0.81 0.77 0.75 0.85 0.80 0.85 0.70 0.77 0.82 0.78 0.80

VT (VFDB) 0.80 0.69 0.74 0.78 0.70 0.74 0.70 0.83 0.76 0.74 0.81 0.77

Others (VFDB) 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99 1.00

TABLE 3 | Subject-Wise classification performance overlapping windows of 8 s on CUDB and VFDB dataset (P = precision, R = recall, F1 = F1 score).

Overlappingwindow 0% 25% 50% 75%

Target label P R F1 P R F1 P R F1 P R F1

VF (CUDB) 0.93 0.96 0.94 0.98 0.98 0.98 0.98 1.00 0.99 0.99 0.99 0.99

VT (CUDB) 0.95 0.60 0.74 0.98 0.75 0.85 0.98 0.90 0.94 0.97 0.92 0.90

Others (CUDB) 0.98 0.98 0.98 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

VF (VFDB) 0.82 0.78 0.80 0.90 0.82 0.86 0.97 0.90 0.93 0.99 0.90 0.93

VT (VFDB) 0.71 0.80 0.75 0.77 0.89 0.83 0.88 0.94 0.91 0.80 0.94 0.85

Others (VFDB) 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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FIGURE 7 | Hemodynamic parameter variations tuned with sample ECG signal from CUDB database: (A) ECG signal with ground truth label and classifier derived

labels, (B) Variation in Heart Rate, (C) left-ventricular functional metrics (Ejection fraction, Cardiac output, and Mean arterial pressure).
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deep learning model is retrained on the new training set and is
individually applied on every test subject for prediction. Different
hyper-parameters of the neural networks are kept unchanged.
To analyze the detection accuracy of the onset of an event, we
applied overlapping on the successive 8 s-long windows, in a 32
s long data-stream. Table 3 shows the impact of overlapping in
classification performance based on non-overlapping, 25, 50, and
75% overlapping. Depending upon the amount of overlapping, a
32 s long data stream contains 4, 5, 7, and 13 data windows.

3.2. Hemodynamic Parameter Variations
The hemodynamic module takes ECG signal as the driving
parameter and based on the morphological variation, apparent
during VF/VT, adjusts the left ventricular compliance, as
explained in Section 2.3.1. Figure 7A shows particular instances
of ECG waveform variation along with the ground truth label
and the performance of our proposed classifier. Heart rate
(Figure 7B), calculated from the ECG signal is also displayed.
Based on the detected VF/VT regions, compliance is modulated.
Left ventricle compliance, as shown in Equation (2), dictates
the pressure-flow dynamics of the systemic circulation. As
Clv, heart rate, and flow parameters vary due to change in
cardiac contractility, there is a marked effect on inherent cardiac
parameters like ejection fraction (EF), cardiac output (CO), mean
arterial pressure (MAP), etc. (Figure 7C). These parameters are
of paramount medical importance in analyzing cardiac function.
LVEF is the most important factor in stratifying SCD. EF,
as captured from the computational model, shows a marked
reduction during VF/VT period, which if left uncorrected will
lead to SCD. In the dataset used, the VF episodes were occurring
randomly for a short duration along with normal sinus rhythm.
The hemodynamicmodule adapts to these changes in conduction
dynamics and computes left ventricle information in real-
time, without any additional delay. Along with EF, CO and
MAP also follow pathological trends observed during VF/VT
episodes. MAP calculated takes into account the change in

cardiac contractility, heart rate variation, and also change in
systemic resistance, regulated through a baroreflex mechanism.
Hence, these observations are not just reflections of the initiation
of pathological conditions, some level of modulation offered
by the Central nervous system in an attempt to regularize the
hemodynamic turbulence is also encoded in it. This trend is
especially evident in post-VF episodes, where the ground truth
label is normal but there are fluctuations in MAP trying to
maintain the homeostasis.

3.3. Defibrillation Metrics
The results provided for defibrillation efficacy computation are
an extension of our previously published work (Mazumder and
Sinha, 2021), where we compared four different shock electrode
configurations, naming Apex-Anterior, Apex-Posterior, Side-
Side, and Front-Back, and found that the unconventional Front-
Back configuration yielded better defibrillation efficacy compared
to the other configurations. In this work, we extend the concept
of varying the electrode location in a sub-plane around the
Apex-Posterior and Front-Back configuration to analyze the
effect of inter-electrode distance and effect of electrode location
in overall defibrillation efficacy. Table 4 tabulates 4 different
distance metric vectors along defibrillation efficacy metrics in
terms of WKLD and Energy for 13 locations in Apex-Posterior
and 13 Front-Back configurations. The configurations are shown
in Figures 6B,C. It is interesting to note that apart from the
original standard location, there are other locations that reports
even lower WKLD and energy value, pointing to location where
fibrillation is more efficient. For Apex-Posterior configuration,
locations 2, 5 coinciding with the upper right quadrant, and
for Front-Back, locations 3, 4, and 8, coinciding with the upper
left quadrant shows the most decreased WKLD and DFT energy
trend. Similarly, electrodes lying in lower torso quadrants show
increased defibrillation energy. For defibrillation, an optimal
position is defined as the position of anode and cathodes that
allow maximum current path. Current conduction, apart from

TABLE 4 | Defibrillation efficacy analysis on varying electrode location (loc-location, O-original, E-Energy, J-Joule, the units of D1,D2, and D3 are meter (m) and A1 is m2).

Apex-Posterior Front-Back

loc D1 D2 D3 A1 WKLD E(J) D1 D2 D3 A1 WKLD E(J)

O 0.096 0.099 0.053 0.009 11.085 6.735 0.052 0.030 0.057 0.009 4.854 2.483

1 0.084 0.050 0.062 0.007 24.256 5.283 0.083 0.103 0.069 0.010 5.982 11.906

2 0.066 0.053 0.056 0.009 7.578 5.847 0.077 0.053 0.068 0.010 5.827 5.595

3 0.088 0.053 0.064 0.007 19.168 4.800 0.040 0.053 0.023 0.008 4.664 2.471

4 0.137 0.103 0.060 0.008 29.414 13.121 0.052 0.103 0.033 0.009 4.443 4.882

5 0.098 0.103 0.054 0.010 8.274 9.399 0.083 0.103 0.069 0.010 6.583 9.615

6 0.098 0.103 0.054 0.010 46.953 25.437 0.083 0.103 0.069 0.010 5.982 11.906

7 0.137 0.103 0.060 0.008 126.765 43.836 0.052 0.103 0.033 0.009 20.696 11.143

8 0.137 0.103 0.060 0.008 55.518 16.087 0.052 0.103 0.033 0.009 3.597 3.530

9 0.098 0.103 0.054 0.010 57.113 36.115 0.083 0.103 0.069 0.010 15.478 18.736

10 0.066 0.053 0.056 0.009 60.734 29.313 0.077 0.053 0.068 0.010 16.600 14.800

11 0.088 0.053 0.064 0.007 85.297 33.501 0.040 0.053 0.023 0.008 20.777 13.214

12 0.137 0.103 0.060 0.008 92.375 49.465 0.052 0.103 0.033 0.009 21.686 16.757
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TABLE 5 | Defibrillation efficacy analysis on upper torso concentrated sections,

M1 = %myo > 30V/cm, M2 = %myo > 45V/cm, M3 = %myo > 60V/cm,

(loc-location, O-original, E-Energy, J-Joule, the units of D1,D2, and D3 are meter

(m) and A1 is m2 ).

loc D1 D2 D3 A1 DFT(V) E(J) WKLD M1 M2 M3

p1 0.066 0.052 0.056 0.009 268.5 4.687 8.099 6.092 0.868 0.129

p2 0.042 0.030 0.067 0.008 269.9 4.734 10.535 6.568 1.007 0.138

p3 0.066 0.052 0.056 0.009 272.0 4.809 6.204 4.756 0.564 0.102

p4 0.083 0.075 0.053 0.009 326.9 6.944 5.340 4.584 0.576 0.111

p5 0.098 0.102 0.053 0.009 387.3 9.750 5.721 5.109 0.612 0.102

a1 0.040 0.052 0.022 0.008 159.0 1.642 3.260 1.556 0.252 0.0667

a2 0.046 0.075 0.029 0.008 205.3 2.740 4.792 3.177 0.646 0.182

a3 0.051 0.102 0.032 0.009 255.2 4.234 3.745 2.232 0.611 0.249

a4 0.046 0.075 0.029 0.008 184.4 2.209 4.095 2.643 0.405 0.118

a5 0.040 0.052 0.022 0.008 173.1 1.946 3.798 2.174 0.342 0.104

the geometry of electrodes and voltage applied, also largely
depends on the trans-thoracic Impedance (TTI) and intra-
thoracic impedance. TTI is dependent on numerous factors
like torso geometry, respiration rate and phase, electrode size,
etc. and varies from person to person while intra-thoracic
impedance, dictated by thoracic organs and tissue may remain
fairly constant in normal physiology but gets changed drastically
in cardiac conditions like heart failure (Wang, 2007). As we
are considering only a single subject scan data, TTI is assumed
to be constant. So the current conduction path is mostly a
function of a distance vector and tissue conductivity in the
thoracic chambers. Out of the four distance metrics defined,
D1 and D3 values are less in the Front-Back configuration
as compared to Apex-Posterior. Metric A1 and D2 do not
show much variations in changing the electrode locations. It
is interesting to note that as the electrodes are organized
throughout the torso in a geometric fashion, electrodes in
the upper and lower quadrants have fairly equivalent distance
metrics calculated from the center of the heart, yet, defibrillation
energy required in some quadrants is comparatively higher
than others. This is mainly due to the high conductivity
indices of tissues in the upper torso, decreasing the impedance
in the current pathway, and paving the way for efficient
defibrillation. In Table 5, a more concentrated torso area is
analyzed. Based on the deduction from Table 4 on the possible
optimal electrode location, 5 new electrode locations both for
Apex-Posterior and Front-Back configurations are analyzed. The
distance metrics, DFT voltage, defibrillation energy, WKLD
value, and Percentage of myocardial volume (%myo) above
critical gradient capable of causing myocardial damage are
shown.

4. DISCUSSION

In this article, we present a computational pipeline integrating
shockable rhythm detection and shock voltage field optimization
for evaluation, testing, and personalization of a WCD design
and operation.

In general, machine learning classifiers like an SVM or a
random forest can be successfully deployed to predict cardiac
events, where the clinical markers/ features are well-known
and are relatively simple to compute from the ECG signals
(Figuera et al., 2016). However, deep learning approaches are
typically preferred in large scale analysis where the disease-
specificmarkers are not very easy to compute in terms of numeric
features to train a classifier. A deep learning approach can also
deal with the internal noise present in the signal. Both CNN
and LSTM based deep architectures have been successfully used
in prior literature (Silva et al., 2019). Finding the optimum
window length for decision making is an important parameter in
biomedical classification problems. In general, a shorter window
is preferred due to low latency in inference. However, a small
window may not always contain the discriminating markers for
accurate decision making. On the other hand, a longer window
length may ensure the presence of a discriminating marker.
However, there remains a risk of latency in inference which may
delay in applying the shock. We evaluated classifier performance
on varying the window length from very small windows of 2 s to
larger windows of 8 s. As tabulated in Table 2, there is a trend of
improved precision, recall, and F1 score for VF, VT, and all other
rhythms were grouped as non-shockable with the increase in
window length. Our proposed CNN-LSTM architecture achieves
a sensitivity of 96.10%, specificity of 98.34% for shockable
rhythms (VF and VT) detection on a very small window size of 2
s for CUDB data and sensitivity of 94.68%, specificity of 92.77%
for the VFDB dataset. For 8-s window size, which is the standard
size reported in many prior arts, our algorithm attains sensitivity
of 99.21%, specificity of 99.68% for the CUDB dataset and
sensitivity of 98.56%, specificity of 99.08% for the VFDB dataset.
As per guidelines established by the American heart association
(AHA) (Kerber et al., 1997), a sensitivity (Se) higher than 90%
for shockable rhythms, and specificity (Sp) higher than 95% for
non-shockable rhythms is the benchmark for WCD detection
algorithms and our proposed method exceeds the benchmark
requirement. Also while comparing with the state-of-the-art, as
tabulated in Table 6, our sensitivity-specificity values are closely
comparable to the highest accuracy reported by Jeon et al.
(2020) for WCD applications. Although our reported accuracy
is fractionally lower, it is important to note that apart from 8 s
standard window-based classification, we have also implemented
an overlapping window-based detection that actually spans over
32 s long data that may contain up to 13 windows depending
upon the amount of overlapping.

Table 3 shows the classification performance on the ECG
data-stream obtained on individual test subjects. Here, the
training and the test data were created based on different
subjects. The decision was made by combining multiple 8 s long
windows in a 32 s time frame. Just like any other time signal,
an ECG data-stream is not entirely stationary. Breaking a 32 s
long block into multiple non-overlapping windows may cause
information loss at the junction of two consecutive windows.
Hence, we analyse the impact of overlapping windows by a
applying various percentage of overlapping starting with non-
overlapping to 25, 50, and 75% of overlapping. The number
of 8 s long windows increases with the increased overlapping
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TABLE 6 | Comparison of existing algorithms for detection of shockable rhythms.

Reference Brief approach Dataset used Accuracy reported

Figuera et al. (2016) An ML-algorithms with built-in feature

selection capabilities were used to

determine the optimal feature subsets

for classification. Patient-wise

bootstrap techniques were used to

evaluate algorithm performance on

public database

Validated on the VFDB and the CUDB

datasets

Sensitivity = 96.6%, Specificity = 98.8%

Kwon et al. (2018) The authors proposed an embedded

microcontroller where an ECG sensor

is used to capture, filter and process

data, run a real-time VF detection

algorithms developed a VF detection

algorithm, via Time Delay (TD), based

on phase space reconstruction.

Open access MIT-BIH dataset Sensitivity = 96.56%, Specificity = 81.53%

Krasteva et al. (2020) A deep convolutional network was

proposed and studied on Holter ECG

recordings for detection of shockable

and non-shockable rhythms. The

impact of various network

hyper-parameter tuning was reported

The data used in the study contains a

wide variety of non-shockable and

shockable rhythms from two sources:

public Holter ECG databases from

continuously monitored patients with

ventricular arrhythmias, and OHCA

databases recorded by AEDs from

patients in cardiac arrest.

For analysis on short windows (2 s): Sensitivity 97.6% =,

Specificity = 98.7%. For analysis on long windows (5 s) :

Sensitivity = 99.6 % Specificity = 99.4 %

Jeon et al. (2020) A deep architecture comprising

convolutional layers and recurrent

networks for classification of ECG

beats. Furthermore, a lightweight

model is proposed with fused RNN

for speeding up the prediction time

on central processing units (CPUs)

The authors used 48 ECGs from the

open access MIT-BIH Arrhythmia

Database, and 76 ECGs were

collected with S-Patch devices

developed by Samsung SDS

For the baseline model: Sensitivity = 99.86%, Specificity

= 98.31% for the light-weight model: Sensitivity =

99.92%, Specificity = 99.11%

Our proposed

approach

A CNN-LSTM architecture is

proposed for classification of VF, VT

and other rhythms from ECG

The approach is evaluated on CUDB

and VFDB datasets

Detection rate of shockable rhythms (VF and VT) on

CUDB: very small windows (2 s) Sensitivity = 96.10%,

Specificity = 98.34% for large windows (8 s) Sensitivity

= 99.21%, Specificity = 99.68%

Detection rate of shockable rhythms (VF and VT) on

VFDB: very small windows (2 s) Sensitivity = 94.68%,

Specificity = 92.77% for large windows (8 s) Sensitivity

= 98.56%, Specificity = 99.08%

percentage which is able to capture more detailed features
from the data stream. Table 3 clearly indicates that there is a
positive impact on classifier accuracy due to overlapping. Overall
classification performance in terms of precision, recall, and F1-
score significantly improves over the non-overlapping scenario
and reaches the optimum performance when a 50% overlapping
is applied between successive windows.

A completely novel aspect of our proposed computational
pipeline is the capability of generating hemodynamic parameters
during VA. SCD though initiated by different causes is
ultimately governed by the left ventricle EF (Sun et al.,
2014). ICD/WCD requirement stratification is also modulated
based on left ventricle functions (Arts et al., 2005). As
such, only understanding the electrical aspects of cardiac
functioning through arrhythmia propagation, without giving
due importance to its mechanical functioning, results in a
partial understanding of the disease etiology and defibrillation
response. The proposed in-silico cardiac model captures the flow-
pressure-volume relationship for each cardiac chamber and for
all cardiac phases, thus providing a holistic understanding of

the pathophysiological changes occurring as VF/VT initiates,
propagates, and subsequently gets terminated naturally or
through the application of shock. As the hemodynamic module
is controlled via ECG signals (either simulated or captured
in real-time or used from database), real-time phase matched
comparative hemodynamic metrics like cardiac output, mean
arterial pressure, cardiac compliance, ejection fraction, etc. can
be studied with ECG signal variations due to arrhythmia or
any other cardiac disease that changes the ECG morphology,
like myocardial ischemia. Another important rationale for
introducing the hemodynamic module is evident in Figure 7.
The ECG signals may be misclassified at several small window
locations, however, this has no impact on the outcome of
hemodynamic variables as the hemodynamic parameters are
not dependent on the classified signal annotations but reflect
the true physiological changes during arrhythmic events. The
cardiac compliance value gets modulated through heart rate
extracted after ECG processing along with physiologically
matched mathematical derivations of systemic and pulmonary
resistance, aortic and chamber compliance etc. So even if the
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classification algorithm fails for any particular window, by
judging the hemodynamic parameter variations, initiation of VA
can be well speculated and analyzed offline.

We have tabulated some common hemodynamic parameters
like CO, EF, MAP, end-systolic pressure volume ratio (ESPVR),
and end-diastolic pressure volume ratio (EDPVR) for shockable
and non-shockable rhythms utilizing labels and ECG signals
from CUDB and VFDB datasets. As indicated in Table 7, there
is a marked difference between VA hemodynamic parameters
compared to other non fatal group. ‘Other’class compiled from
VFDB and CUDB datasets are not healthy but agglomeration of
different supra-ventricular, normal, atrial fibrillation type rhythm
grouped as non-shockable. CO, indicative of the volume of
blood pumped by the heart in a cardiac cycle, gets heavily
reduced during VA, indicating LV failure. EF also gets lowered
to a dangerous level indicating impaired LV functionality and
subsequent heart failure, if left untreated. The MAP also drops
significantly due to low CO. ESPVR is commonly used as a
marker for cardiac contractility (Yaxin et al., 2017) and the
tabulated value clearly shows the reduction in LV contractility
under VA conditions. Similarly, EDPVR is a marker for chamber
compliance (reciprocal relation) and is used to judge ventricular
stiffness (Yaxin et al., 2017), which during our simulation,
also followed a medically correlated trend. The hemodynamic
insights not only provides a better understanding of the
disease progression but also provide an idea about the operable
timeline, to take necessary corrective action in case of heart
failure trends. In real time operation of WCD, implementing
such a hemodynamic module might not be practical in the
embedded circuit used for arrhythmia detection. However,
a cloud based implementation of such modules could aid
physicians better, in assessing overall cardiac functionality during
VF/VT episodes and/or other arrhythmic episodes and may help
in generating revised treatment plans with amore subject-specific
personalized focus.

In Table 4, where we tabulate the variations in electrode
location and corresponding defibrillation metric, apart from the
trend established in terms of optimized electrode positioning,
additional important insights can be inferred. For both Front-
Back and Apex-Posterior configuration in various sub spacing,
the minimum energy requiring location is not the location that
reports the minimum WKLD value. As WKLD integrates both
DFT voltage and myocardial damage probability, it becomes
quite evident that lower defibrillation energy does not necessarily
suffice to minimum cardiac tissue damage. Overall, in all possible
location variations, the Front-Back configuration results in better

TABLE 7 | Hemodynamic parameter variation for shockable and non-shockable

pathological conditions.

Parameters Shockable (VF/VT) Non-shockable

CO (lt/min) 2 ± 0.5 4.5 ± 1.2

EF (%) 25 ± 7.5 60 ± 5

MAP (mmHG) 60 ± 15 118.9 ± 20

ESPVR 0.36 ± 0.32 2.5 ± 0.5

EDPVR 0.4 ± 0.29 0.16 ± 0.04

efficacy. Judging by the WKLD value, the most optimal location
is “location 8” in Front-Back (FB) configuration and location 2
in Apex-Posterior (AP) configuration, while the least effective
location is location 12 and location 7 for Front-Back and Apex-
Posterior, respectively. The DFT voltage and % myocardium >

45V/cm and >60V/cm for location 8 (in FB) and 2 (in AP) are
233V, 0.46, 0.191 and 299.9V, 0.72, 0.12, respectively, while for
location 12 (in FB) and 7 (in AP), the respective metric values
are 507.7V, 1.884, 0.5189 and 821.2, 19.60, 12.67. As observed,
the far-away electrode locations require excessive DFT voltage,
associated with a greater extent of myocardial damage. The
observations from these metrics can indicate locations to avoid
while placing electrodes and then can guide areas where optimal
defibrillation efficacy can be expected.

In Table 5, the myocardial voltage gradient values are also
generated to provide an indication of the relation between DFT
voltage, energy, and distance metric in the specific torso area
where optimal defibrillation pattern is expected, as deduced
from Table 4. Location p4 in Apex-Posterior and a1 in Front-
Back provided the least WKLD value and negligible probability
of myocardial damage. Judging 18 locations each for both the
configuration, Location 2 and a1 provide the best outcome
in Apex-Posterior and Front-Back configurations, respectively.
Figure 8 represents the myocardial voltage gradient histogram
for location a1 (in FB), 2 (in AP) and 12 (in FB), 7 (in AP)
as two best and two least desired electrode configurations,
respectively. In the concentrated areas, situated in the upper
thorax, the intra-thoracic conductivity parameters for both Apex-
Posterior configuration as well as Front-Back configurations
are fairly constant, the current path has to navigate mostly
through the skin, skeletal structure, and lungs region. However,
due to variation in the anode location, metric D1 and D3
are relatively shorter in Front-Back as compared to Apex-
Posterior configurations, yielding a better current pathway and
effective defibrillation.

Use of computational pipeline for shock distribution analysis
and deriving metrics that can be incorporated in WCD vest and
shock generating circuit for optimized defibrillation is a unique
solution aimed at providing WCD shock efficacy validation
and personalization. Such concepts have not been proposed
earlier for WCD and have the potential to enhance conventional
WCD functioning.

In this article, we have integrated two different aspects of
WCD working in a biophysical computational framework for
better understanding and validation of WCD performance both
in terms of arrhythmia detection and shock efficacy computation
through the DFT principle. While the hemodynamic module
of the cardiac in-silico model provides additional insights
into pathophysiological changes in cardiac functionality
during arrhythmic episodes, the 3D volume conductor
cardiac model and FE analysis with changeable electrode
configuration provided an understanding of the defibrillator
efficacy parameter variation with change in shocking electrode
configuration and location. This is particularly useful for
obese patients or pediatric users where the use of standard
configuration may provide successful defibrillation but at
the cost of higher myocardial damage. As our proposed
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FIGURE 8 | Histogram distribution of myocardial potential gradient for location

(A) a1-FB, (B) 2-AP, (C) 12-FB, and (D) 7-AP. The red zones indicate a

potential gradient harmful enough to create permanent myocardial damage.

model incorporates a monodomain modeling approach rather
than a bi-domain, the realistic myocardial tissue behavior
during defibrillation is not captured. However, as we do
not intend to calculate absolute defibrillation response in
myocardial tissue but aim to use the platform to provide
an estimate by which the intra-thoracic field strength over
the myocardium can be compared given differing electrode
configurations, the computationally less extensive monodomain
model is suitable. A particular drawback of this study is
that the defibrillation efficacy simulation is based on single
subject data and MRI data for multiple subjects with varying
torso geometry would help to consolidate the electrode
location variations observed. In future, for the classification
of shockable rhythm, we would integrate the proposed
algorithm in an embedded platform to make it suitable for
real-time applications.

5. CONCLUSION

In this article, we present a computational pipeline for WCD
performance validation, both in terms of shockable arrhythmia
classification and optimal electrotherapy generation. We also
derived some useful insights regarding the physiological
changes in cardiac hemodynamics during Ventricular
arrhythmic patterns leading to compromised LV functions.
In the classification domain, our proposed CNN-LSTM
architecture detection accuracy surpassed AHA recommended
accuracy. The inclusion of the novel overlapping window
approach guarantees a minimum loss of vital information
in between detection windows, increasing the reliability
of detection.

Cardiac defibrillators are lifesaving therapeutic devices with
potentially harmful capacity if not tuned properly. With the
growing demand for WCD, the creation of a personalized
energy distribution model based on a patient’s anatomy,
rather than a ‘one size fits all’ approach, is the need of the
hour. Our proposed optimal electrotherapy assessment using
biophysical modeling compares the efficiency of standard
(Apex-Posterior) and non-standard (Front-Back) WCD
electrode placement along with different plausible electrode
locations variation throughout the torso, demonstrating
significant differences in defibrillation efficacy associated
with different strategies. The proposed approach of tuning
defibrillation parameters coupled to a physical cardiac model
that provides insights regarding the hemodynamic and
electrophysiological changes at initiation or after the termination
of an arrhythmic event could enable therapeutic device
validation and testing, better patient stratification for ICD
or similar invasive procedures, and creating subject-specific
treatment plan providing a personalized approach toward
cardiac care.
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