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Loss of Pten in Renal Tubular Cells Leads 
to Water Retention by Upregulating AQP2
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Abstract
Introduction: Phosphatase and tensin (PTEN) is a multifunc-
tional gene associated with the normal development and 
physiological function of various tissues including the kid-
ney. However, its role in renal tubular reabsorption function 
has not been well elucidated. Methods: We generated a re-
nal tubule-specific Pten knockout mouse model by crossing 
Ptenfl/fl mice with Ksp-Cre transgenic mice, evaluated the ef-
fect of Pten loss on renal tubular function, and investigated 
the underlying mechanisms. Results: Pten loss resulted in 
abnormal renal structure and function and water retention 
in multiple organs. Our results also demonstrated that aqua-
porin-2 (AQP2), an important water channel protein, was up-
regulated and concentrated on the apical plasma mem-
brane of collecting duct cells, which could be responsible for 
the impaired water balance in Pten loss mice. The regulation 
of Pten loss on AQP2 was mediated by protein kinase B (AKT) 
activation. Conclusions: Our results reveal a connection be-
tween PTEN gene inactivation and water retention, suggest-
ing the importance of PTEN in normal kidney development 
and function. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

The kidney is the main organ for filtering blood and 
removing waste and excess water. The glomeruli filter flu-
ids and small waste substances out of the blood, whereas 
the renal tubules reabsorb the needed substances includ-
ing water back into the blood. Waste products and excess 
fluid are finally excreted as urine [1]. During this process, 
the collecting ducts are the main parts of the kidney and 
are responsible for water reabsorption. The collecting 
ducts reabsorb sodium and water from the primary urine 
and excrete potassium into the urine through the sodi-
um-potassium channel and vasopressin-sensitive water 
channel aquaporin-2 (AQP2), respectively [2, 3].

AQP2 is a member of the aquaporin (AQP) family that 
plays a pivotal role in urine concentration and body water 
balance. Impaired AQP2 expression or localization led to 
various water balance disorders such as nephrogenic dia-
betes insipidus (NDI) [4], cirrhosis [5], severe congestive 
heart failure [6, 7], and syndrome of inappropriate an-
tidiuretic hormone secretion (SIADH) [8]. AQP2 is 
mainly expressed in collecting duct principal cells, where 
it is usually localized in Rab11-positive intracellular vesi-
cles in the basal state. In the presence of external stimuli, 
AQP2 is transported to the apical cell membrane and 
forms water channels to facilitate water influx [9, 10]. 
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AQP2 translocation could be regulated by posttransla-
tional modifications. Among them, the phosphorylation 
of serine 256 residue is necessary for membrane accumu-
lation of AQP2 [11–14]. Several protein kinases have 
been proved to be involved in this process, such as protein 
kinase A (PKA) [15–17], protein kinase G (PKG) [18], 
Golgi apparatus casein kinase (G-CK) [19], Ca2+/calmod-
ulin-dependent protein kinase II (CAMK2), protein ki-
nase C-δ (PKCδ), and protein kinase B (AKT) [20].

Phosphatase and tensin (PTEN) homolog gene deleted 
on chromosome 10 is a dual-specificity phosphatase that 
can negatively regulate AKT activation by blocking its 
phosphorylation [21]. PTEN is generally expressed in all 
renal structures, especially in renal tubular cells [22]. 
PTEN loss or mutation is associated with various kidney 
diseases, such as clear cell renal cell carcinoma [23], acute 
kidney injury [24], renal fibrosis [25], and diabetic kidney 
disease [26]. However, the effect of PTEN loss on renal 
tubular reabsorption has not been well elucidated.

Based on previous studies, we speculate that PTEN 
may regulate AQP2 by AKT dephosphorylation and par-
ticipate in maintaining water balance. To verify this, we 
established a kidney-specific Pten knockout mouse mod-
el and found that Pten loss resulted in abnormal renal 
structure and function and water retention. We demon-
strated that AKT hyperactivation caused by PTEN loss 
upregulated AQP2 phosphorylation and enhanced water 
reabsorption in the kidney. Our data revealed the novel 
function of PTEN in regulating water balance and pro-
vided valuable targets for therapeutic intervention of wa-
ter balance disorders.

Materials and Methods

Mice Breeding
PtenΔ/Δ mice (Ptenfl/fl; Ksp-cre) were generated by crossing 

Ptenfl/fl mice (C57BL/6J background, Jackson laboratory) and Ksp-
Cre mice (C57BL/6J background, the State Key Laboratory of Nat-
ural and Biomimetic Drugs, Peking University). Controls were 
Ptenfl/fl littermates without Ksp-Cre expression. All animals were 
fed with standard diet and drinking water freely and were kept un-
der fixed ambient conditions (23 ± 1°C, 12/12 h light/dark cycle).

Genotyping
Genomic DNA was extracted from the mouse tail for poly-

merase chain reaction (PCR) genotyping analysis. TransGen 
PCR SuperMix (AS111-11, TransGen) was used for PCR follow-
ing the manufacturer’s protocol. PCR primers used for genotyp-
ing were Pten-F: 5′-CAAGCACTCTGCGAACTGAG-3′; Pten-R: 
5′-AAGTTTTTGAAGGCAAGATGC-3′ to detect Pten-floxed al-
lele; Ksp-cre-F: 5′-GCAGATCTGGCTCTCCAAAG-3′; Ksp-cre-R: 
5′-AGGCAAATTTTGGTGTACGG-3′ to detect Ksp-Cre allele.

Brain Water Content Determination
After mice were euthanized, brains were removed and weighed 

immediately (wet weight). Then, brains were dried in a desiccation 
oven for 48 h at 80°C and weighed again (dry weight). Brain water 
content (%) was calculated as follows: (wet weight-dry weight)/wet 
weight × 100%.

Immunohistochemistry
Tissues harvested from mice were fixed in formalin solution 

and embedded in paraffin. Tissues were then cut into 5 μm slices 
and incubated with primary antibodies after antigen retrieval. An-
ti-mouse/rabbit immunohistochemistry detection kit (PK10006, 
Proteintech) was used for color development. After counterstained 
with hematoxylin, slides were mounted with neutral gum and eval-
uated under a microscope. The primary antibodies included anti-
PTEN (9188L, CST, 1:150) and anti-AQP2 (AQP-002, Alomone, 
1:200).

Immunofluorescence
Tissues were embedded with optimum cutting temperature 

compound (4583, Sakura) and cut into 5 μm slices. The slides 
were fixed in 4% paraformaldehyde for 10 min and blocked with 
10% goat serum. After incubation with primary antibody at 4°C 
overnight, fluorescent secondary antibody (Alexa Fluor 488, In-
vitrogen, 1:500) was used for 2 h at room temperature. Then, the 
cryosections were mounted with DAPI-containing medium 
(KGA215-10, KeyGen) and observed under a fluorescence mi-
croscope. The primary antibody included anti-AQP2 (AQP-002, 
Alomone, 1:200).

Cell Culture
The mouse inner-medullary collecting duct (IMCD3) cells 

were obtained from Shanghai Jihe Biotechnology and cultured in 
DMEM/F12 medium containing 10% fetal bovine serum at 37°C 
in a humidified incubator with 5% CO2. After reaching 80% con-
fluency, cells were treated with 20 mM LY294002 (GC15485, Glp-
Bio) for 24 h and then subjected to immunoblot analysis.

Short Hairpin RNA Transfection
The cells were plated into 24-well plates 1 day before trans-

fection. 25 µL short hairpin RNA (shRNA)-containing lentivi-
rus was then added to medium with 5 μg/mL polybrene. After 
24 h incubation, virus-containing medium was removed, and 
cells were cultured for another 48 h before they were finally col-
lected for subsequent experiments. PTEN-targeted shRNA 
(5′-GACAAAGCCAACCGATACTTT-3′) and control shRNA 
(5′-TTCTCCGAACGTGTCACGT-3′) were obtained from  
GenePharma.

Western Blotting
Tissues and cells were lysed in RIPA buffer for total protein. 

Membrane protein was obtained by membrane and cytosol pro-
tein extraction kit (P0033, Beyotime) according to manufactur-
er’s procedures. Proteins were separated by sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis on 8–10% gel and then 
transferred to polyvinylidene fluoride membrane. After blocked 
in 5% skim milk, the membranes were incubated with primary an-
tibodies: anti-PTEN (9188L, CST, 1:2,000), anti-AQP2 (AQP-002, 
Alomone, 1:2,000), anti-pSer256-AQP2 (bs-12507R, Bioss, 1:500), 
anti-AKT (4691S, CST, 1:2,000), anti-pSer473-AKT (4060S, CST, 
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1:2,000), and anti-GAPDH (60004-1-Ig, Proteintech, 1:5,000) at 
4°C overnight. HRP-conjugated secondary antibodies were in-
cubated at room temperature for 2 h. Finally, proteins were vi-
sualized by enhanced chemiluminescence detection kit (E412, 
Vazyme).

Real-Time PCR Analysis
RNA was extracted using total RNA extraction reagent (R401-

01, Vazyme) and reverse transcribed to cDNA using HiScript Q RT 
SuperMix (R222-01, Vazyme). According to manufacturer’s speci-
fications, Cham Q SYBR qPCR Master Mix (Q331-02, Vazyme) 
was used to perform three replicates of PCR in a 10 μL reaction 
volume. The mRNA expression of target genes was normalized to 
GAPDH and calculated using a comparative CT (2−ΔΔCt) method. 
The primers were AQP2-F: 5′-GGACCTGGCTGTCAATGCTC-3′ 
and AQP2-R: 5′-GCGGGCTGGATTCATGGAG-3′.

Renal Function Measurement
Mouse serum was collected by centrifugation after blood col-

lection from suborbital vein and was determined by Creatinine 
Assay Kit (C011-2-1, Nanjing Jiancheng). Urine samples were col-
lected by the metabolic cage for 24 h and then determined by Urea 
Assay Kit (C013-2-1, Nanjing Jiancheng). The urine sample os-
motic pressure was measured by freezing point osmometer 
(OM806, Loser).

Statistical Analysis
The significance between two groups was analyzed using Stu-

dent’s t test and statistical comparisons among multiple groups 
were analyzed using analysis of variance followed by Student-
Newman-Keul’s test for pairwise comparisons. All analyses were 
performed in SPSS 16.0. p < 0.05 was considered statistically sig-
nificant.

Results

Construction and Identification of Renal Tubule-
Specific Pten Knockout Mice
To investigate the physiological effect of PTEN on 

renal tubules, we generated a renal tubule-specific Pten 
knockout mouse model (herein, PtenΔ/Δ mice) by cross-
ing Ptenfl/fl mice with Ksp-Cre transgenic mice in which 
Cre recombinase was driven by the kidney-specific 
cadherin promoter and mainly expressed in distal tu-
bules, ascending and descending loops of Henle, and 
collecting ducts [27] (shown in Fig. 1a). Pten deletion 
and Ksp-Cre expression in the kidneys of the PtenΔ/Δ 
mice were verified by PCR analysis. PCR of the genomic 

DNA detected Cre recombinase only in PtenΔ/Δ mice 
but not in the wild-type littermate control (Ptenfl/fl) 
mice (shown in Fig. 1b), confirming that PtenΔ/Δ mice 
underwent Ksp-Cre-mediated recombination success-
fully. Western blot analysis of the whole kidney lysate 
also revealed a significant decrease in PTEN levels in 
PtenΔ/Δ mice (shown in Fig. 1c). We further examined 
the expression of PTEN protein in the kidney by im-
munohistochemistry (IHC) staining and found that 
PTEN was normally expressed in control mice but was 
absent in distal tubules and collecting ducts of PtenΔ/Δ 
mice (shown in Fig. 1d).

Renal Tubule-Specific Deletion of Pten Led to 
Abnormal Kidney Structure and Function
Cohorts of PtenΔ/Δ mice aged 10–12 months (n = 32) 

were analyzed. The external appearance and weight of 
these PtenΔ/Δ mice were indistinguishable from those of 
control mice (shown in Fig. 2a). However, their kidneys 
were of different size and weight (shown in Fig. 2b), and 
PtenΔ/Δ mice had enlarged and heavier kidneys than con-
trol mice. Results of the histological analysis showed re-
markable expansion of distal tubules and collecting ducts 
in PtenΔ/Δ mice (shown in Fig. 2c) in the cortex and me-
dulla. Moreover, histologic lesions included cell swelling 
and exfoliation of epithelial cells could be found (shown 
in online suppl. Fig. S1a; for all online suppl. material, see 
www.karger.com/doi/10.1159/000528010).

Some (8 of 32) of the PtenΔ/Δ mice displayed hydrone-
phrosis, which occurred in both females and males 
(shown in Fig. 2d). Urinary flow obstruction was a com-
mon contributing factor to hydronephrosis [28]. PtenΔ/Δ 
mice showed remarkable hyperproliferation of the uro-
thelium (shown in online suppl. Fig. S1b). However, they 
did not exhibit ureteral obstruction or stricture, suggest-
ing that urinary flow obstruction does not cause hydro-
nephrosis.

Moreover, two PtenΔ/Δ mice had renal tumors (shown 
in online suppl. Fig. S1c). The tumor compressed the sur-
rounding tissue and caused extensive renal fibrosis. Un-
der microscope observation, the tumor was composed of 
large cystic cells with significant atypia, pathologic mi-
totic figure, and infiltration of surrounding tissues (shown 
in online suppl. Fig. S1d).

Fig. 1. Construction and identification of renal tubules-specific Pten 
knockout mice. a Ksp-Cre mice were crossed with Ptenfl/fl mice to 
generate PtenΔ/Δ mice. b Tail DNA extracted from different mice 
were analyzed by PCR to determine the genotypes. The positions of 
the bands representing floxed Pten (328bp), wild-type Pten (156bp), 

and Ksp-Cre (420bp) alleles were indicated. c PTEN was decreased 
in the kidney of PtenΔ/Δ mice versus Ptenfl/fl (control) mice as as-
sessed by Western blotting (***p ≤ 0.001). d PTEN IHC images cor-
responding to kidney cortex and medulla from mice. pt, proximal 
tubule; dt, distal tubule; cd, collecting duct. Bars = 100 μm.

(For figure see next page.)
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Fig. 2. Renal tubules-specific deletion of 
Pten led to abnormal kidney structure and 
function. a Macroscopic characteristics of 
Ptenfl/fl and PtenΔ/Δ mice. b Kidneys from 
PtenΔ/Δ mice were significantly bigger, and 
no apparent blockage of the ureter was 
detected. Kidney weight and length were 
measured in each group. c Comparison of 
histopathology of renal cortex and medul-
la from Ptenfl/fl and PtenΔ/Δ mice. Bars = 
100 μm. d Example of hydronephrosis in 
PtenΔ/Δ mice. e Analysis of BUN and SCr 
in Ptenfl/fl and PtenΔ/Δ mice. f Quantita-
tive plots showed less urine excretion and 
increased urine osmolality of PtenΔ/Δ 
mice in comparison with Ptenfl/fl mice (n ≥ 
8 per genotype). *p < 0.05, **p < 0.02, 
***p < 0.001.
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The aforementioned lesions in PtenΔ/Δ mice indicated 
that they might suffer renal insufficiency at this stage. To 
evaluate the influence of Pten knockout on renal function, 
we detected renal function indexes including blood urea 
nitrogen and serum creatinine in both groups. As shown 
in Figure 2e, blood urea nitrogen levels in PtenΔ/Δ mice 
were markedly higher, whereas serum creatinine levels 
were lower than those of the control mice, suggesting re-
nal function insufficiency in PtenΔ/Δ mice. Furthermore, 
PtenΔ/Δ mice had a decreased 24 h urine volume but in-
creased urine osmolality (shown in Fig. 2f), indicating an 
enhanced urine concentration function.

Pten Knockout in the Kidney Caused Water Retention 
in Various Organs
Histopathological assessment of other organs was also 

performed. The liver of PtenΔ/Δ mice had increased weight 
and was apparently lighter in color (shown in Fig. 3a). 
Hepatocytes were severely enlarged, and the cytoplasm 
was swelling and even vacuolated (shown in Fig. 3b). The 
brain of PtenΔ/Δ mice was also pale and slightly enlarged 
with swollen olfactory bulb. The brain water content of 
PtenΔ/Δ mice was higher than that of control mice (shown 
in Fig. 3c), suggesting cerebral edema. Moreover, the size 
and weight of the heart of PtenΔ/Δ mice increased, with 
pronounced thickening of the left ventricular wall (shown 
in Fig. 3d), indicating an increase in blood volume. To-
gether, these data revealed that Pten knockout in the 
kidney led to water retention in multiple organs and 
suggested impaired regulation of the body water balance 
in PtenΔ/Δ mice.

AQP2 Was Upregulated and Concentrated in the 
Apical Plasma Membrane of Collecting Duct Cells in 
the Kidneys of PtenΔ/Δ Mice
AQPs are a family of small transmembrane proteins 

that play a pivotal role in maintaining water balance. 
Thirteen species of AQPs have been found in mammals 
(AQP0-AQP12) [29, 30], among which AQP2 is a key 
regulator of body water homeostasis and is expressed in 
medullary collecting ducts [31]. Therefore, to determine 
whether the impaired water balance correlated with AQP2, 
we evaluated Aqp2 expression in the kidneys of PtenΔ/Δ 
mice by real-time PCR assay. As shown in Figure 4a, the 
expression of Aqp2 mRNA was significantly increased in 
PtenΔ/Δ mice. Western blot analysis also demonstrated 
that both total AQP2 and phosphorylated AQP2 (pS256-
AQP2) were upregulated in PtenΔ/Δ kidneys. The ratio of 
p-AQP2 to AQP2 increased in PtenΔ/Δ mice (shown in 
Fig. 4b).

IHC staining further showed that AQP2 was positive-
ly expressed in collecting ducts, and the staining intensity 
in PtenΔ/Δ mice was much higher than that in control mice 
(shown in Fig. 4c). Moreover, AQP2 expression was more 
concentrated on the apical plasma membrane of collect-
ing duct cells in PtenΔ/Δ mice, whereas in Ptenfl/fl mice, 
AQP2 was diffusely distributed in tubular cells (shown in 
Fig. 4d, e). All these results suggested that Pten knockout 
affected both the expression and distribution of AQP2, 
which could then enhance water reabsorption in the kid-
ney and disrupt water balance.

PTEN Regulated AQP2 by Dephosphorylating p-AKT
To further investigate the underlying mechanism, we 

knocked down PTEN expression in IMCD3 cells and 
then detected AQP2 expression. As shown in Figure 5a, 
b, the mRNA and protein levels of AQP2 were significantly 
increased in PTEN knockdown IMCD3 cells (shPTEN), 
and p-AQP2 was also upregulated, which was consistent 
with our observation in PtenΔ/Δ mice.

Previous study [32] has reported the involvement of 
the PI3K/AKT pathway in regulating AQP2 expression 
and localization. Western blot analysis also showed up-
regulated AKT and phosphorylated AKT levels with an 
increased p-AKT/AKT ratio in the kidney medulla lysate 
of PtenΔ/Δ mice (shown in Fig. 5c), suggesting that AKT 
was activated after Pten deletion. Thus, we speculated that 
PTEN might regulate AQP2 by antagonizing the PI3K/
AKT pathway. To verify this, LY294002 (LY), a PI3K in-
hibitor that acts on the ATP binding site of the catalytic 
subunit, was added to an IMCD3-shPTEN cell medium 
to suppress AKT activation. After 24 h of treatment, 
Western blot analysis showed that AKT phosphorylation 
was significantly blocked by LY and upregulated AQP2 
and p-AQP2 in shPTEN cells were also reduced (shown 
in Fig. 5d). Moreover, increased membrane AQP2 and p-
AQP2 in shPTEN cells were reversed by LY treatment 
(shown in Fig.  5e). MK-2206 (MK), another AKT spe-
cific inhibitor, showed effects similar to that of LY (shown 
in Fig. 5f, g). These results confirmed our speculation that 
AKT was an important mediator between PTEN and 
AQP2.

Conclusion

PTEN is a multifunctional gene associated with the 
normal development and physiological function of 
various tissues such as the liver, neurons, thyroid, lung, 
and kidney [33–40]. In this study, we investigated the 
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Fig. 3. Pten knockout in kidney caused wa-
ter retention in multiple organs. a Gross 
appearance of liver and increased liver 
weight in PtenΔ/Δ mice (n = 8). b The cel-
lular swelling of hepatocyte was severe in 
PtenΔ/Δ mice. Bars = 100 μm (c) Gross ap-
pearance of brain and higher brain water 
content in PtenΔ/Δ mice (n = 6). d Com-
parison of heart size and left ventricular wall 
between Ptenfl/fl and PtenΔ/Δ mice (n = 8).  
*p < 0.05, **p < 0.02.
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Fig. 4. AQP2 was upregulated and concen-
trated in the apical plasma membrane of 
collecting ducts cells in the kidney of 
PtenΔ/Δ mice. a The expression of Aqp2 
mRNA in the kidneys of Ptenfl/fl and 
PtenΔ/Δ mice. b Western blots analysis of 
AQP2 and pS256-AQP2 levels in the kid-
ney medulla lysates of Ptenfl/fl and PtenΔ/Δ 
mice. c IHC staining of AQP2 in collecting 
ducts of Ptenfl/fl and PtenΔ/Δ mice. Bars = 
100 μm. d Higher magnification of IHC 
staining showed different distribution pat-
tern of AQP2 in the collecting ducts cells 
of Ptenfl/fl and PtenΔ/Δ mice. e Immuno-
fluorescence staining of AQP2 (green) in 
collecting ducts of Ptenfl/fl and PtenΔ/Δ 
mice. Higher magnifications of the select-
ed areas are shown on the right.
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Fig. 5. PTEN regulated AQP2 by dephos-
phorylating p-AKT. a IMCD cells were 
transfected with control shRNA (shCon-
trol) or Pten-specific shRNA (shPTEN), 
respectively. Relative expression level of 
Aqp2 genes in the shPTEN group is higher 
than that in the shControl group. b West-
ern blots analysis of PTEN, AQP2, and 
p-AQP2 protein levels in shControl and 
shPTEN groups. c Western blots analysis 
of AKT and p-AKT proteins in kidney 
medulla lysates of Ptenfl/fl and PtenΔ/Δ mice 
(n = 3 for each group). IMCD3-shPTEN 
cells were treated with LY (d) or MK (f) for 
24 h and cell lysates of different groups 
were subjected to immunoblotting to de-
tect the protein levels of AKT, p-AKT, 
AQP2, and p-AQP2 (n = 3-4 for each 
group). e, g Expression of membrane 
AQP2 (m-AQP2) and p-AQP2 (m-p-
AQP2) in different groups of cells (n = 3 
for each group). nsp > 0.05, *p < 0.05,  
**p < 0.02, ***p < 0.001.
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function of PTEN in renal tubules by generating a renal 
tubule-specific Pten knockout mouse model (PtenΔ/Δ). 
Renal structure and function were significantly impaired 
in PtenΔ/Δ mice. Water retention in multiple organs was 
also observed in PtenΔ/Δ mice, suggesting abnormal water 
reabsorption by renal tubules. Furthermore, AQP2, a wa-
ter channel protein that is a key for water reabsorption, 
was upregulated in PtenΔ/Δ mice and concentrated on the 
apical plasma membrane of collecting ducts. To further 
explore the underlying mechanism of PTEN in regulating 
AQP2, we used a cell culture system of m-IMCD3, a 
mouse inner medulla-collecting duct cell line, and knock-
down PTEN expression in IMCD3 cells (shPTEN). We 
found that PTEN knockdown activated AKT, which 
then phosphorylated AQP2 and facilitated its mem-
brane translocation, whereas AKT inhibition could re-
verse these effects, suggesting that AKT activation is an 
important player in AQP2 regulation. Our study provides 
a connection between PTEN gene inactivation and water 
retention and indicates that PTEN can regulate water re-
absorption function by AKT-mediated AQP2 phosphor-
ylation and membrane concentration.

PTEN is widely expressed in all renal structures, in-
cluding the glomeruli and renal tubules. Previous studies 
have reported that PTEN expressed in podocytes was as-
sociated with urinary albumin excretion and progression 
of diabetic kidney disease [41, 42]. However, the results 
were controversial for PTEN function in renal tubules. 
Zhou et al. [43] reported that Pten knockout in both prox-
imal tubules and distal convoluted tubules had little effect 
on renal structure and function. However, in the study by 
Chen et al.[44], Pten loss in renal proximal tubules in-
duced renal hypertrophy with markedly enlarged renal 
proximal tubules. Frew et al. [45] knocked out Pten in the 
distal convoluted tubules and collecting ducts and found 
that the kidney was almost normal, except for the devel-
opment of urothelial hyperplasia in the renal pelvis and 
ureter, which was similar to the findings of Zhou. In the 
present study, we generated a mouse model with Pten de-
leted in the distal convoluted tubules and collecting ducts 
and found not only hyperproliferation of the urothelium 
but also the expansion of distal tubules and collecting 
ducts, hydronephrosis, and impaired renal function. 
These differences among the aforementioned mouse 
models might be attributed to the different Cre strains we 
used (Zhou used Nse-Cre, Chen used Ggt1-Cre, and Frew 
and our work used Ksp-Cre) and different mouse genetic 
backgrounds (C57BL/6J in Zhou’s and our work and 
BALB/c background in Chen’s and Frew’s work). Al-
though Pten loss alone was not sufficient to induce renal 

lesions in Zhou’s and Frew’s work, it could still markedly 
aggravate the lesions caused by the loss of other function-
al genes (such as TSC1 and pVHL), which also suggested 
that PTEN helps in maintaining normal renal structure 
and function implicitly.

PTEN loss or mutation is frequently detected in RCC 
in humans [46, 47]. However, no renal tumors arose in 
the previous Pten knockout mouse model [41, 43–45], 
suggesting that Pten loss alone was insufficient to induce 
renal tumorigenesis. In this study, we first observed the 
renal tumors occurred in PtenΔ/Δ mice, although with a 
quite low probability (2 of 30). The tumors were both 
PAX8 (a specific marker for the kidney) positive and 
PTEN negative (data not shown), suggesting that they 
originated from the kidney and probably correlated 
with Pten loss. To confirm this, more renal tumor cases 
should be investigated, and further studies are needed in 
the future.

Hydronephrosis is the swelling of kidney caused by the 
buildup of water. A previous study has indicated that Pten 
loss in addition to pVHL ablation in the collecting ducts 
resulted in hydronephrosis [45], whereas in the present 
study, we observed that Pten loss alone was sufficient to 
cause hydronephrosis (although with a small probability, 
8/30). Hydronephrosis is usually caused by urinary block-
age or obstruction [48]. However, in our study, no severe 
obstruction was found in the renal pelvis and ureter of 
Pten knockout mice (shown in online suppl. Fig. S1b), 
which was similar to that observed by Frew [45]. In addi-
tion, we found increased AQP2 accompanied by de-
creased urine, which further led to water retention in the 
body. Thus, we thought that the hydronephrosis in the 
present study was not caused by urinary flow blockage 
but by impaired water balance.

Water homeostasis is critical for normal cell function 
and cellular processes, and the key event is water reab-
sorption mediated by water channel proteins in the renal 
collecting ducts. Water channel proteins, also called 
AQPs, are a family of small transmembrane proteins that 
play a pivotal role in transferring small molecules and wa-
ter through biological membranes. Many AQPs are ex-
pressed in the kidney [29, 30], among which AQP2-4 are 
the major AQPs expressed in the medullary collecting 
ducts and related to water handling [49–51]. We detected 
the mRNA expressions of all three AQPs and found 
marked upregulation of AQP2, whereas slight downregu-
lation of AQP3 and unaltered AQP4 in PtenΔ/Δ mice (data 
not shown), suggesting that PTEN loss has a more pro-
nounced effect on AQP2 instead of AQP3 or AQP4. In 
addition, functional AQP2 is localized in the apical plasma 
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membrane of collecting duct primary cells to facilitate 
water influx [29, 49], which is the most critical process for 
water reabsorption in the kidney. Considering these, we 
mainly focused on AQP2. As for AQP3 and AQP4, we did 
not observe marked changes in their mRNA expressions. 
However, whether PTEN loss affected their protein level 
or subcellular localization and whether they contributed 
to impaired water balance found in PtenΔ/Δ mice are still 
unclear. Further investigations are needed to determine 
the exact role of AQP3 and AQP4 in PtenΔ/Δ mice.

AQP2 is usually localized in intracellular transport 
vesicles in the basal state. In the presence of external stim-
uli, such as dehydration or hypovolemia, arginine vaso-
pressin is secreted and binds to V2 receptor (V2R) in the 
collecting ducts to activate the cAMP/PKA signaling 
pathway. Activated PKA then phosphorylates AQP2 at 
Ser256 and induces trafficking of AQP2 to the apical plas-
ma membrane, which is critical for water reabsorption in 
the kidney. In this process, AQP2 phosphorylation at 
Ser256 is thought to be a pivotal step. Many kinases, in-
cluding PKA [15–17], G-CK [19], CAMK2, AKT [20], 
and adenosine monophosphate kinase [52], have been re-
ported to be involved in Ser256 phosphorylation. Among 
these kinases, PKA is considered the principal one. How-
ever, in the present study, the protein level of PKA C-α 
and phosphorylated PKA substrates slightly changed af-
ter PTEN deletion in either PtenΔ/Δ mice or IMCD3 cells 
(without significant difference, shown in online suppl. 
Fig. S2), suggesting that PTEN loss has a small effect on 
PKA activity and AQP2 phosphorylation in this study is 
probably attributed to other kinases.

AKT is another kinase involved in AQP2 regulation. A 
previous study showed that AKT activation played an im-
portant role in vasopressin-dependent AQP2 expression 
by increasing its mRNA level [53]. In addition, the PI3K/
AKT pathway has been reported to be involved in AQP2 
phosphorylation [54]. Mass spectrometry analysis fur-
ther confirmed that AKT could phosphorylate AQP2 at 
Ser256 in vitro, suggesting that AKT activation may in-
duce AQP2 trafficking [55]. Consistent with these previ-
ous studies, our data showed that AKT phosphorylation 
was upregulated and accompanied by enhanced AQP2 
phosphorylation and trafficking to the apical membrane 
in PTEN-deficient renal collecting ducts and IMCD3 
cells. Moreover, the suppression of AKT activation also 
reduced AQP2 phosphorylation and membrane concen-
tration. These findings directly connected AKT activa-
tion with AQP2 phosphorylation and provided the first 
in vivo evidence that AKT activation played an impor-
tant role in AQP2 regulation. Moreover, the underlying 

mechanism is still unclear. How AKT regulates AQP2 ex-
pression and phosphorylation and whether they bind to 
each other still need further investigation.

AKT is activated by sequential phosphorylation steps 
initiated by PI3K activation. After being activated by 
various signals, such as growth factors and G-protein-
coupled receptors [56], PI3K phosphorylates the phospha-
tidylinositol-4,5-biphosphate to form phosphatidylinosi-
tol-3,4,5-triphosphate (PIP3) [57]. PIP3 is a lipid-derived 
secondary messenger that recruits phosphoinositide-
dependent kinase 1 (PDK1) and AKT to the membrane 
through its PH domain [58, 59]. Then, the PI3K complex 
activates PDK1, and activated PDK1 further phosphory-
lates AKT at Thr308, causing a conformational change to 
expose the Ser473 residue [60–62]. After the conforma-
tional change, AKT can be phosphorylated at Ser473 by 
either autophosphorylation [63, 64] or several other ki-
nases (PKD2 and others) to achieve its full activation [65–
67]. PTEN is the most important negative regulator in 
this pathway. It can dephosphorylate PIP3 to phosphati-
dylinositol-4,5-biphosphate, thus antagonizing PI3K-in-
duced activating signal and ultimately preventing AKT 
phosphorylation. PTEN loss or inactivation leads to PIP3 
accumulation, which then drives AKT activation. In the 
present study, AKT phosphorylation at Ser473 was sig-
nificantly enhanced in PTEN-deficient kidney tissues and 
IMCD3 cells, suggesting its full activation. To verify the 
important role of AKT activation in AQP2 regulation, we 
used two AKT inhibitors, LY and MK, to block the PI3K/
AKT pathway. These two inhibitors target two steps in 
AKT activation. LY inhibits AKT activation by targeting 
PI3K and preventing PIP3 formation, which is similar to 
the function of PTEN, whereas MK inhibits AKT activa-
tion by directly targeting AKT and blocking its phosphor-
ylation. Both inhibitors significantly diminished AKT 
phosphorylation and further attenuated AQP2 phos-
phorylation and membrane concentration induced by 
PTEN loss, confirming that AKT is an important media-
tor between PTEN and AQP2.

AQP2 impairment or dysregulation leads to various 
water balance disorders. For example, AQP2 impairment 
causes NDI, which is characterized by altered urine con-
centration and polyuria, whereas AQP2 dysregulation, 
including increased AQP2 expression and trafficking to 
the apical membrane, leads to water retention and hypo-
natremia in SIADH, glucocorticoid deficiency, cirrhosis, 
congestive heart failure, and pregnancy. In this study, 
PTEN loss led to AQP2 dysregulation and water retention 
in PtenΔ/Δ mice, which was similar to the aforementioned 
water balance disorders caused by AQP2 dysregulation. 
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These findings suggest that our PtenΔ/Δ mouse model a 
possible animal model for future research on these related 
diseases. AQP2 is pivotal for water homeostasis, which 
makes it a promising target for drug development of such 
water balance disorders. For example, Tolvaptan, a selec-
tive antagonist of V2R that can reduce AQP2 expression 
and membrane concentration via the arginine vasopres-
sin/V2R/AQP2 pathway, has been applied to relieve wa-
ter retention and hyponatremia in patients with heart 
failure, cirrhosis, and SIADH and shown promising clin-
ical results. Sildenafil, a selective phosphodiesterase type 
5 inhibitor that can activate the NO-cGMP signaling 
pathway and thus promote AQP2 shuttling, has been 
used in clinical trials of NDI, and shown a beneficial effect 
in decreasing urine volume and increasing urine osmolal-
ity [68]. In this study, we confirmed a new AQP2 regula-
tion pathway, i.e., the PTEN/AKT/AQP2 pathway, which 
could be a possible target for further drug development. 
AKT inhibitors can be applied to reduce AQP2 expres-
sion and membrane concentration to relieve water reten-
tion, and PTEN inhibitors can be used to enhance AQP2 
expression and membrane concentration to restore im-
paired urine concentration ability in NDI. However, 
there are also some limitations in our study. First, we did 
not validate the effectiveness of AKT inhibitors in the 
PtenΔ/Δ mouse model yet, which will be our future work. 
Second, high AKT activation should be the prerequisite 
for the effectiveness of AKT inhibitors, which partly lim-
ited its clinical application. Third, more studies are still 
needed to evaluate the efficacy and safety of these drugs, 
especially PTEN inhibitors, before they could be used in 
clinical practice.
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