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Abstract
Here, we present evidence of a novel microtubule-disrupting agent, N-deacetyl-N-(chro-

mone-2-carbonyl)-thiocolchicine (TCD), exhibiting potent antitumor activity (with IC50 val-

ues in the nanomolar range) against hepatocellular carcinoma cell lines. Cell cycle analysis

revealed that TCD induced G2/M cell-cycle arrest in a dose- and time-dependent manner in

both Hep-J5 and Mahlavu HCC cell lines. TCD also induced a decrease in mitochondrial

membrane potential (ΔΨm) and caused DNA damage. Mechanistically, TCD activated pro-

tein kinase RNA-like endoplasmic reticular kinase and several transcription factors, includ-

ing activating transcription factor (ATF) 6, ATF4, ATF3, and the CCAAT-enhancer binding

protein homologous protein. These data clearly demonstrate that the antitumor activity of

TCD is mechanistically linked to its capacity to trigger both intrinsic and extrinsic apoptotic

cell death via endoplasmic reticular stress pathway. The potent antitumor activity of TCD

was similarly demonstrated in a hepatocellular carcinoma xenograft model, where 5 and

10 mg/kg doses of TCD significantly arrested Hep-J5 and Mahlavu tumor growth. Our find-

ing suggests that TCD is a promising therapeutic agent against hepatocellular carcinoma;

further translational assessment of its clinical usage is warranted.

Introduction
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second
most common cause of cancer-related deaths annually [1]. HCC is predominantly found in
developing countries within Asia and Africa, and it also has a high occurrence rate in Japan,
Western Europe, and the United States [2]. Current curative treatments, such as surgical resec-
tion and liver transplantation, are not highly effective and can only be applied to early-stage
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HCCs [3,4]. Only 10–15% of patients receive curative surgery. The majority of HCC patients
undergo systemic chemotherapies or supportive therapies, and most chemotherapeutic agents
show poor effectiveness with limited improvement in patient survival rates. The multi-kinase
inhibitor, sorafenib, was approved as a first-line therapy for patients with unresectable HCCs
[4, 5]. In a randomized phase III study, overall median survival rates slightly increased from
4.2 months in the placebo group to 6.5 months in the sorafenib treatment group [5]. However,
adverse side effects have limited the drug’s overall usefulness, and there remains a critical need
to find more effective therapeutic alternatives.

Microtubules are filamentous polymers that are formed by α-tubulin and β-tubulin hetero-
dimers. The dynamic microtubule structure maintains cell polarity and motility, provides a
scaffold for cellular protein and organelle trafficking, and plays a critical role in mitosis [6, 7].
Thus, microtubules act as cell-shape regulators, conveying intracellular signals from growth
factors, the extracellular matrix, and cell-cell interactions [6]. Therefore, microtubules are an
important target for inducing mitotic arrest and cell death in cancer treatment [8–10].

Three distinct classes of microtubule-targeting agents (MTAs), Vinca alkaloids, taxanes,
and colchicines, are well studied [11, 12]. Vinca alkaloids, including vinblastine and vinorel-
bine, form a group of microtubule-destabilizing agents used to treat hematological malignan-
cies as well as some solid cancers [12, 13]. Taxanes, such as paclitaxel and docetaxel, are
microtubule-stabilizing agents that are clinically useful in treating solid cancers, like breast,
lung, ovarian, liver, head, and neck carcinomas [11, 14]. The third group of microtubule-dis-
rupting compounds comprises colchicine and colchicine derivatives, such as thiocolchicine
[15]. These compounds are similar to Vinca alkaloids, but their binding site and microtubule
depolymerization mechanism are different [8, 16].

Colchicine, isolated from Colchicum autumnale and Gloriosa superba, is a well-known natu-
ral product [17]. Colchicine is used as an antitumor agent, and is also used to treat gout. How-
ever, owing to their high toxicities, colchicine and thiocolchicine are still in preclinical trials to
determine their potential anti-tumor activity. To reduce the toxicity without reducing anti-can-
cer effects, colchicine analogs were developed [18, 19]. Some colchicine derivatives were shown
to inhibit endothelial cell proliferation, which would arrest existing tumor vasculature [19].
Another study has shown that perioperative administration of colchicine inhibited the surgical
activation of malignant cells, thus enhancing tumor-free survival in vivo [20]. However, it is
necessary to further define the effects of colchicine derivatives in different cancer types and
their underlying mechanisms.

MTAs cause mitotic arrest that leads to cell apoptosis, but this mechanism may not be appli-
cable in patients whose tumor cells divide every 30−60 days [21]. Therefore, aside from pri-
mary anti-mitotic toxicity, evidence that MTAs induce cell death through other signaling
mechanisms may have clinical implications in cancer therapy. Previous studies showed that
both the construction and assembly of the endoplasmic reticular (ER) network [22] and stress-
induced misfolded protein aggregation [23] are related to the microtubule network. This
implied that MTAs might be involved in cell stress and ER stress signaling. Thus, their crucial
involvement in mitosis and the disturbance of stress-related signal transduction make these
signaling proteins targets for MTAs [24, 25]. However, the mechanism underlying this associa-
tion is unclear.

Here, we report a new thiocolchicine derivative, N-deacetyl-N-(chromone-2-carbonyl)-
thiocolchicine (TCD) (S1 Fig), as an anticancer agent that acts in a manner different from
that of classical tubulin inhibitors. Because colchicine was shown to have therapeutic efficacy
in HCC [26], TCD was applied to different HCC cell lines to evaluate its potency as an antican-
cer agent. Our results showed that TCD arrested mitotic cells in the G2/M phase by depolymer-
izing microtubules in the HCC cell lines Mahlavu and Hep-J5. TCDmediated HCC cell
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apoptosis through caspases-dependent pathway and the induction of ER stress. These antitu-
mor activities were also extended to an in vivo animal study, where TCD administration signif-
icantly inhibited HCC growth.

Materials and Methods

Cell lines and reagents
TCD (C30H27NO7S), an odorless, yellow crystal powder, is a novel colchicine derivative; it was
purchased from PUMC Pharmaceutical Co., Ltd. (Bejing, China) for this study. This water-
insoluble compound was dissolved in DMSO (Sigma-Aldrich, St. Louis, MO, USA) to be used
as a stock solution for further in vitro studies. Three human hepatoma cell lines, Hep-J5, Mah-
lavu, and SK-Hep-1, were kindly provided by Professor Kwang-Huei Lin [26, 27], among
which SK-Hep-1 was originally purchased from the American Type Culture Collection, VA,
USA [26], and J5 and Mahlavu were originally obtained from Dr. C.S Yang [28], National
Taiwan University, and Dr. C. P. Hu [27], Veterans General Hospital, Taiwan, respectively.
Mahlavu was originally established from a female hepatoma patient in 1972 and has been in
continuous culture since then [29]. Huh7 was purchased from the Japanese Collection of
Research Bioresources Cell Bank, Osaka, Japan. Hep-G2 and Hep-3B were purchased from the
Bioresource Collection and Research Center, Hsinchu, Taiwan. Dulbecco’s modified Eagle
medium (DMEM) and fetal bovine serum (FBS) were obtained from Sigma-Aldrich and
Biological Industries (South Logan, UT, USA), respectively. All other chemicals were pur-
chased from Sigma-Aldrich.

Cell culture and treatment
All cells were cultured in DMEM containing 10% FBS, and were incubated under a humidified
atmosphere with 5% CO2 at 37°C. To treat hepatoma cells, different concentrations of TCD or
colchicine were prepared in culture medium. Control cells were incubated with DMSO, at a
concentration equivalent to that for cells receiving the test compound solution. For dose-
dependent TCD treatments, 2×106 cells were plated in 10-cm dishes. After cells adhered to the
culture dish, the medium was removed, and cells were treated with 5, 10, or 20 nM TCD for
24 h. For time-dependent treatment, 5×105 cells were seeded on 10-cm dishes and were allowed
to adhere. The cells were then treated with 10 nM TCD for 9–72 h.

Cell proliferation assay
Cell proliferation was measured using the sulforhodamine B (SRB) method. After incubation
with different concentrations of TCD, cells were fixed with trichloroacetic acid for 1 h at 4°C
and then stained with 50 μl SRB solution (0.4% in 1% acetic acid; w/v) for 10–20 min at room
temperature. After staining, the SRB solution was removed, and test wells were washed twice
with 1% acetic acid before air-drying. Subsequently, bound SRB was solubilized with 200 μl of
an unbuffered Tris-based solution (20 mM). The absorbance was measured by a spectropho-
tometer at 540 nm.

Immunocytochemistry
After TCD treatment, cells were washed with PBS and fixed in 3.7% formaldehyde. Cells were
then permeabilized for 30 min with phosphate-buffered saline with 0.5% Triton X-100 and
blocked with PBST (PBS with 0.1% Tween-20) containing 1% FBS for 30 min. Cells were incu-
bated with a primary monoclonal antibody against α-tubulin (1:1000 dilution in PBST; Sigma-
Aldrich) overnight at 4°C or 60 min at room temperature. After incubation, cells were washed
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three times with PBST and were incubated with a Cy3-conjugated secondary antibody (1:2000
dilution in PBST; Jackson ImmunoResearch, West Grove, PA, USA) in the dark. Cell nuclei
were stained with DAPI. Images were captured with a fluorescent microscope.

Cell-cycle analysis
After TCD treatment, cells were washed with PBS and fixed with a PBS-methanol solution
(1:2, v/v) overnight at 4°C. Fixed cells were washed twice with PBS solution and stained with
48 μg/mL propidium iodide (PI) containing DNase-free RNase-A (48 μg/mL) in the dark
for 20 min at room temperature. The DNA content was analyzed by flow cytometry (BD
FACSCalibur, BD Biosciences, San Jose, CA, USA). For each analysis, a minimum of 104 cells
were counted and gated, and the percentage of cells in each phase was calculated using ModFit
software.

Cell death analysis by TUNEL assay
Mahlavu and Hep-J5 cells were treated with 10 nM TCD for 24 or 48 h. After TCD treatment,
cells were washed with PBS and fixed with 2% paraformaldehyde overnight at 4°C. Apoptotic
cell death, characterized by DNA fragmentation, was analyzed using an Apo-BrdU in situ
DNA fragmentation assay kit (Promega, Madison, WI, USA). Briefly, fluorescein-12-dUTP
was incorporated into fragmented DNA within apoptotic cells at 30-OH ends using the termi-
nal deoxynucleotidyl transferase enzyme (TUNEL assay) and then quantitated by flowcytome-
try (BD FACSCalibur; BD Biosciences).

Mitochondrial membrane potential (MMP) assay
To measure the cellular MMP (Δψm), cells were incubated with 5 μM rhodamine 123 for
30 min after drug treatment. Cells were then washed twice with PBS and trypsinized. Detached
cells were centrifuged, re-suspended in PBS, and measured for fluorescence intensity. Changes
in the MMP were measured using a FACSCalibur flowcytometer (BD Biosciences) and ana-
lyzed using CellQuest software.

GRP78-knockdown HCC cell generation
GRP78-knockdown Hep-J5 cells were kindly provided by Dr. Yu-Jia Chang [27]. Briefly, small
interfering (si) RNA was used to knockdown human GRP78 mRNA. The target sequence for
human GRP78 was 50-AAGGTTACCCATGCAGTTGTT-30. The control, scrambled siRNA
sequence was 50-AAGGTGGTTGTTTTGTTCACT-30. GRP78 and scrambled siRNAs were
inserted into the pSUPERIOR vector and transfected into Hep-J5 cells. Successfully transfected
cells were selected by antibiotic resistance.

Western blot analysis
After TCD treatment, adherent cells were scraped into 3 ml cold PBS and pelletized by centri-
fugation, and then proteins were extracted using Total Lysis Buffer (Bioman Scientific Co.,
Ltd., Taipei, Taiwan) containing protease and phosphatase inhibitors. Equal amounts of pro-
tein lysates were resolved using sodium dodecylsulfate–polyacrylamide gel electrophoresis
(SDS-PAGE) and electrophoretically transferred to polyvinylidene difluoride (PVDF) mem-
branes. The blots were probed with anti-human primary antibodies, including GRP78, GRP94,
activating transcription factor (ATF) 6, ATF4, ATF3, p-p38, CHOP (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), anti-PARP-1, anti-procaspase-9 (Epitomics, Burlingame, CA,
USA), anti-procaspase-8, anti-procaspase-3 (Millipore, Darmstadt, Germany), and anti-actin
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(Sigma-Aldrich). Detection was performed using enhanced chemiluminescence (ECL;
Millipore) after incubation with a horseradish peroxidase (HRP)-conjugated secondary
antibody. Actin was used as the loading control.

Animal models for the therapeutic study
BALB/c-nu mice (6–8 weeks old and weighing 17–20 g) were purchased from the National
Laboratory Animal Center (Taipei, Taiwan). On day 0, mice were subcutaneously injected with
1×106 Mahlavu or Hep-J5 tumor cells. The Mahlavu and Hep-J5 administered groups com-
prised 60 mice in total, which were divided into 6 groups (3 groups for each tumor cell type).
When the mean tumor diameter reached 5 mm, the 3 groups administered Mahlavu or Hep-J5
were further randomly subdivided into 10 mice per group to receive the respective treatment.
Experimental mice were treated with formulated TCD at a dose of 5 or 10 mg/kg by tail-vein
injection twice a week for 2 weeks. Control mice were treated with an equal volume of normal
saline. The tumor size was measured with calipers and calculated using the formula: a × b2/2,
where a is the length and b is the width in millimeters. Tumor size and body weight change
were monitored every 3 days after the first drug administration. Test mice were sacrificed after
the tumor size reached 3000 and 2500 mm3 for Hep-J5 and Mahlavu mice groups, respectively.
The animals were euthanized by carbon dioxide anesthesia. To assess treatment-related toxic-
ity, animals were also weighed twice weekly. This study was approved by the Institutional Ani-
mal Care and Use Committee (IACUC) of Taipei Medical University. All procedures were
performed according to guidelines of IACUC and all efforts were made to minimize animal
suffering and the number of animals used. Statistical analysis of tumor volumes between con-
trol and TCD-treated mice was performed using a Student’s t-test.

Statistical analysis
Data are expressed as the mean ± standard deviation (SD) from three independent experi-
ments. A paired Student’s t-test was used to determine differences between control and treat-
ment groups (Sigma plot 8.0 software). A p-value<0.05 was considered statistically significant.

Results

TCD exerts potent antiproliferative effects on HCC cells
The SRB assay was used to evaluate the antiproliferative activity of TCD in seven human HCC
cell lines (S2 Fig). Table 1 shows IC50 values of TCD in all HCC cell lines tested. All HCC cells
were sensitive to TCD treatment with IC50 values ranging from 2–50 nM. Remarkably, Hep-J5
and Mahlavu cells showed higher responses to TCD, with IC50 values of approximately 10 nM.
We also found that compared to TCD treatment (IC50<50 nM), higher IC50 values (of around
190 nM) of colchicine were obtained in the well-differentiated (Huh7) and p53-null (Hep-3B)
HCC cell lines. These results demonstrated that TCD had a potent antiproliferative effect on
HCC cells.

TCD induced microtubule network disruption and G2/M cell cycle arrest
Because TCD is a novel thiocolchicine derivative, we investigated the effect of TCD on cellular
microtubule networks by immunofluorescence staining. Within 24 h of 10 nM TCD treatment,
disruption of microtubule networks in Hep-J5 cells was apparent (Fig 1E). Microtubule
disruptions increased in a time-dependent manner, with more severe effects observed at
48 and 72 h.
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We next analyzed the effects of TCD on the cell cycle to clarify the mechanism of TCD-
induced cytotoxicity, as microtubule depolymerization is commonly associated with cell
cell-cycle arrest (Fig 1E). A flowcytometric analysis revealed an increase in the G2/M cell popu-
lation in both Hep-J5 and Mahlavu cells after 24 h of TCD treatment (Fig 1A and 1B and S2
Table). When higher concentrations of TCD were applied, the G2/M cell population further
increased, suggesting that TCD exhibited a dose-dependent effect. In addition, G2/M arrest in
TCD-treated cells was also time-dependent. Upon administration of 10 nM TCD, significant
G2/M accumulation was detected when the treatment time increased from 12 to 48 h (Fig 1C
and 1D and S2 Table). The flowcytometric profile also revealed an increase in hypodiploid cells
(the sub-G1 fraction), indicating that apoptosis had occurred.

TCD induced the ER stress signaling cascade
Mahlavu and Hep-J5cell lines both overexpress Grp78. Their high sensitivity to TCD treatment
implied that the microtubule network disruption detected after TCD treatment might be asso-
ciated with Grp78 expression (Fig 2A). However, TCD treatment did not affect the expression
patterns of ER chaperone proteins, such as Grp94 and Grp78, in either a dose- or time-depen-
dent manner (Fig 2B and 2C). Similarly, Grp78 knockdown mildly reduced the sensitivity of
Hep-J5 cells to TCD (Fig 2D). Since Grp78 is a critical ER chaperone protein that mediates ER
stress signals [28–30], we also investigated the effect of TCD on ER stress signaling. Interest-
ingly, Grp78 downstream signaling factors, ATF6 and PERK, were activated after TCD treat-
ment (Fig 3A and 3B), and these effects may lead to activation of ATF4, ATF3, p-p38, and
CHOP (Fig 3C). These data implied that disruption of microtubule networks by TCD caused
ER stress.

TCD induced MMP loss, caspase activation, and apoptosis
Chemical-induced apoptosis is often associated with MMP collapse as well as caspase activa-
tion. We examined the effect of TCD on the MMP of HCC cell lines using rhodamine 123
labeling. As shown in Fig 4A and 4B, 10 nM of TCD induced a time-dependent MMP loss in
both Mahlavu and Hep-J5 cells. After 48 h of treatment, ΔCmwas reduced 40% and 60% for
Mahlavu and Hep-J5 cells, respectively.

In addition to MMP collapse, the cellular levels of apoptosis-associated caspase proteins
also changed after TCD treatment. As shown in Fig 4C and 4D, procaspase-3, procaspase-8,
and procaspase-9 proteins significantly decreased in both HCC cell lines after TCD treatment
for 24 h. A subsequent analysis also detected an increase in the cleavage-form of PARP, a well-
known substrate for caspase-3, between 12 and 48 h of TCD treatment.

PARP dysfunction could aggravate cellular DNA damage and promote apoptotic DNA frag-
mentation. Therefore, we used the TUNEL assay to evaluate DNA damage. Consistent with the

Table 1. Half-maximal inhibitory concentration (IC50) values of TCD and colchicine, indicating their cytotoxic effects in hepatocellular carcinoma
(HCC) cell lines.

Differentiation HCC cell line TCD IC50 (nM) Colchicine IC50 (nM)

Good Huh7 14.7 ± 11.3 ~190

Hep G2 27.0 ± 3.1 ~12

Hep 3B (p53 mutant) 17.9 ± 13.0 ~190

Hep J5 7.7 ± 4.9 ~10

Mahlavu (p53 mutant) 7.1 ± 1.5 ~15

Poor SK-Hep-1 10.8 ± 1.6 ~16

doi:10.1371/journal.pone.0136340.t001
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Fig 1. TCD induces G2/M phase arrest and disrupts the cellular microtubule network in hepatocellular carcinoma (HCC). (A) The dose effect of TCD
on cell-cycle progression was evaluated in Mahlavu and Hep-J5 cells. Cells were treated with TCD for 24 h and analyzed for PI-stained DNA content by
flowcytometry. (B) The G2/M and subG1 populations were analyzed by ModFit software and showed increase in the 10 or 20 nM TCD-treated group
(*p < 0.05; **p < 0.01; **p < 0.001). (C) The time effect of TCD (10 nM) on cell-cycle progression was evaluated in Mahlavu and Hep-J5 cells. The G2/M and
subG1 populations showed increase in 24 and 48 h in the TCD-treated group (D). Apoptotic cell death is represented by the sub-G1 population. (E)
Microtubule network disruption of Hep-J5 cells were after treating with 10 nM TCD. Cells were stained with an antibody against α-tubulin (red) and with DAPI
(blue for nuclei).

doi:10.1371/journal.pone.0136340.g001
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PARP result, TCD had a time-dependent effect on cellular DNA damage (Fig 4E and 4F). After
24 h drug treatment, dead cells gradually increased in the TCD-treated group compared to
controls. These results suggested that TCD could inhibit cancer cell growth via arresting cells
in the G2/M phase, followed by activation of the apoptotic pathway.

Fig 2. Expression of endoplasmic reticular (ER) chaperon proteins in TCD-treated Mahlavu and Hep-
J5 cells. (A) Mahlavu and Hep-J5 cells are GRP78-overexpressing cell lines. (B) The dose effect and (C)
time course of TCD treatment had no effect on GRP78 expression. GRP78 expression in HCC cells was
assessed by western blotting. Forty micrograms of protein was loaded onto an 8% SDS-polyacrylamide gel.
(D) Grp78 knockdown mildly enhanced the cytotoxic effects of TCD in Hep-J5 cells. Cells were seeded on
96-well plates at 5000 cells/well and treated with TCD for 72 h. Cell viability was detected using an SRB
assay, and IC50 values were determined. Experiments were repeated at least two times, and results are
expressed as the mean±SD.

doi:10.1371/journal.pone.0136340.g002
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TCD exhibits potent antitumor activity against HCC cells in vivo
To examine the therapeutic efficacy of TCD on hepatomas, we used Hep-J5 and Mahlavu cells
in a xenograft tumor model (Fig 5A and 5B). TCD treatment resulted in marked tumor inhibi-
tion in both animal models. The percent change in Hep-J5 tumor volume for treated vs. control
groups (% T/C) at the end point of the study (day 32) was 77.5% and 53% for 5 and 10 mg/kg
TCD treatments, respectively (S2 Table). The efficacy of the 10 mg/kg over that of the 5 mg/kg
dose in this animal study was also demonstrated in the Mahlavu model, where the % T/C val-
ues at the endpoint of the study (day 53) were 68.9% and 50.1% for 5 and 10 mg/kg, respec-
tively (S2 Table).

Discussion
Microtubules are a well-established drug target for treating rapidly dividing cancer cells, for
which microtubule-targeting agents (MTAs) interfere with the dynamics of spindle microtu-
bules during mitotic progression. Previous studies reported the use of anti-microtubule agents

Fig 3. Dose effect and time course of activation of endoplasmic reticular (ER) stress effectors by TCD.
(A) PERK phosphorylation and ATF6 cleavage increased in 10 or 20 nMTCD-treated groups. (B) This
increased effect was also present in the 24 h TCD-treated group. (C) The downstream effectors, ATF4, ATF3,
phospho-p38, and CHOP, showed increased expression in TCD-treatedMahlavu and Hep-J5 cells at 24 and
48 h. After treatment, protein expression in total protein extracts was assessed by western blotting. Experiments
were repeated at least two times; a representative experiment is presented.

doi:10.1371/journal.pone.0136340.g003
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Fig 4. Reduction of the mitochondrial membrane potential (MMP) and activation of apoptotic proteins are involved in TCD-induced DNA
fragmentation and apoptosis.Mahlavu (A) and Hep-J5 (B) cells showed increased rhodamine 123 fluorescence and reduced MMP in the 24–48 h TCD
treatment group. Cells were treated with 10 nM TCD for different time periods. After incubation with TCD, cells were incubated with rhodamine 123 and
analyzed by flow cytometry. The percentage reduction in the MMP is indicated. Apoptotic protein levels and DNA fragmentation were measured in cells.
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as a therapeutic strategy for HCC treatment [30, 31]. However, similar to most chemothera-
peutic agents, MTAs show limited response and survival benefits in HCC patients. Here, we
report that a new colchicine derivative, TCD, exhibited highly potent antitumor activity. Like
most MTAs, TCD treatment depolymerized microtubules and led to cell cycle arrest at the G2/
M phase. Further, TCD treatment contributed to induction of the caspase-dependent apoptotic
pathway. In addition, this study showed that TCD triggered the ER stress-signaling pathway in
both Mahlavu and Hep-J5 cells. Our finding is in accordance with several earlier reports that

Mahlavu (C) and Hep-J5 cells (D) were treated with 10 nM TCD for the indicated times and procaspase-3, procaspase-8, procaspase-9, and cleaved PARP
expression levels were analyzed. A TUNEL analysis of Mahlavu (E) and Hep-J5 (F) cells showed increased DNA fragmentation in apoptotic cells after
treatment with 10 nM TCD for 24 and 48 h. The percent DNA damage increased over the time course of TCD administration in both Mahlavu (E) and Hep-J5
(F) cells. Experiments were repeated at least two times, and results are expressed as the mean±SD (*p < 0.05; **p < 0.01; **p < 0.001).

doi:10.1371/journal.pone.0136340.g004

Fig 5. Therapeutic efficacy of formulated TCD against (A) Hep-J5 and (B) Mahlavu human hepatoma
xenografts. Hepatoma cells were subcutaneously injected into mice. Mice were treated with saline, or 5 or
10 mg/kg TCD when the mean tumor diameter reached 5 mm. The difference in the mean tumor volume was
statistically significant between saline- and TCD drug-treated mice (*p<0.05; **p<0.01).

doi:10.1371/journal.pone.0136340.g005
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processes involving microtubule-based action and cytoskeletal organization are important bio-
logical functions in HCC [32, 33].

Colchicine is a natural antimitotic agent derived from a Colchicum alkaloid. Colchicine
causes cell arrest in the mitotic phase by interfering with microtubule depolymerization both
in vitro and in vivo [34]. However, the therapeutic effects of colchicine only occur at toxic and/
or subtoxic dosages, which limits its clinical application [30, 35]. In this study, as a reference
group, colchicine exhibited potent activity on different HCC cell lines. Compared to colchicine,
TCD exhibited enhanced antitumor activity (IC50<50 nM) in different human HCC cell lines
(Table 1), specifically the p53-null Hep-3B line, which is infected with the hepatitis B virus
(HBV) [36], and the well-differentiated Huh7 cell line [37]. Although TCD showed increased
antitumor activity in vitro, the in vivo toxicity of TCD is still a key issue regarding its clinical
application. However, in a preliminary study, we found that the maximum tolerated doses of
TCD and colchicine administered via intraperitoneal (IP) injections at day 40 (MTD40) were
150 and 1.6 mg/kg, respectively. Therefore, TCD has potential to be further developed as a
therapeutic agent against HCC.

Previously, studies on the mechanisms underlying the effects of colchicines focused on its
ability to block cell division by disrupting mitotic spindles, causing cell cycle arrest in the G2/M
phase [38, 39]. As a colchicine derivative, TCD also disrupted microtubules and induced G2/M
arrest in Hep-J5 cells (Fig 1A, 1B and 1E and S1 Table). Similarly, a low dosage of TCD
(10 nM) induced drastic DNA damage, MMP loss, and an increased subG1 population in both
Mahlavu and Hep-J5 cells (Fig 1B, 1C and Fig 4). Additionally, TCD presented a unique
mechanism of action in this study where it was found to induce ER stress. TCD-induced ER
stress minimized the protective effects of GRP78 and triggered activation of PERK and the
ATF4-ATF3-CHOP axis (Fig 2 and Fig 3).

Interestingly, several reports show that inducers of ER stress caused synergistic effects with
clinical drugs, such as MIRA-1 with doxorubicin [40] or vorinostat with sorafenib [41]. Specific
clinical applications maybe realized using drug combinations [40, 41]. Moreover, cytochrome
P450 (CYP) is a large protein family localized in ER membranes, and it plays a pathological
role in liver disease and diabetes [42, 43]. Our results show that CHOP promotes mitochon-
drial dysfunction [44], and the TCD-mediated increase in CHOP expression was consistent
with a reduction in the MMP (Figs 3C and 4A) and contributed to TCD-induced apoptosis.

Apoptotic agents are candidates for cancer therapy. Based on their site of action, extrinsic
and intrinsic pathways are two mechanisms induced by anticancer agents [45]. Interaction
with the death pathway triggers autoproteolytic cleavage of caspase-8, converting it to its active
form, which then activates other procaspases, such as procaspase-3. Initiation of the intrinsic
machinery results in the loss of MMP, which then activates caspase-9, an initiator caspase that
leads to activation of caspase-3 [45, 46]. In the present data, we demonstrated that TCD
induced both intrinsic and extrinsic apoptotic pathways in Hep-J5 and Mahlavu HCC cell lines
(Fig 4B). Furthermore, proteolytic degradation of PARP was also involved in TCD-induced
apoptosis (Fig 4B). Here, we suggest that caspase-3, caspase-8, and caspase-9 were activated in
TCD-treated HCC cells.

Microtubule-disrupting drugs, such as paclitaxel [47] and docetaxel [48], aggravate cell
growth arrest and trigger apoptotic cell death in the G2/M phase. However, drug resistance
occurs through stress-related mechanisms that prevent cell-cycle arrest. The mechanism of cell
cycle modification through signal transduction, like that involving ROS/HIF-1 alpha [49], has
been proven to increase cross-resistance to multiple antineoplastic agents. Our data showed
that TCD had highly potent antitumor activity with a low IC50 level after treatment with 10
nM TCD in more highly malignant Hep-J5 and Mahlavu HCC cell lines [50] (Table 1, S2 Fig).
Results of the cell-cycle progression experiment demonstrated that TCD effectively induced
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cell-cycle arrest at the G2/M phase after 12 h of treatment (Fig 1C and 1D and S1 Table). We
also observed that TCD disrupted microtubule networks and triggered ER stress signaling in
HCC cells in a time-dependent manner (Figs 1E, 3B and 3C). These results are summarized in
Fig 6 and demonstrate the enhanced anticancer effects of TCD through a dual mechanism.

Conclusions
Here, we demonstrated that TCD, a novel microtubule inhibitor, has potent antitumor activity
in most human HCC cell lines. The anti-cancer activity of TCD is mediated by activation of
both apoptotic and ER stress pathways (Fig 6). Using two HCC xenograft models, we further
demonstrated that formulated TCD exhibits potent antitumor activity in vivo.

Supporting Information
S1 Fig. Chemical structures of TCD and colchicine.
(TIF)

S2 Fig. Cytotoxic effects of TCD and colchicine in HCC cell lines.
(TIF)

S1 Table. Effect of TCD on G2/M phase arrest and apoptosis.
(PPTX)

S2 Table. Antitumor activity of formulated TCD in a human hepatoma xenograft model.
(PPTX)
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