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Soil contamination by geogenic contaminants (GCs) represents an imperative environmental 
problem. Various soil remediation methods have been successfully employed to ameliorate 
the health risks associated with GCs. Phytoremediation is considered as an eco-friendly 
and economical approach to revegetate GC-contaminated soils. However, it is a very 
slow process, as plants take a considerable amount of time to gain biomass. Also, the 
process is limited only to the depth and surface area of the root. Inoculation of arbuscular 
mycorrhizal fungi (AMF) with remediating plants has been found to accelerate the 
phytoremediation process by enhancing plant biomass and their metal accumulation 
potential while improving the soil physicochemical and biological characteristics. Progress 
in the field application is hindered by a lack of understanding of complex interactions 
between host plant and AMF that contribute to metal detoxification/(im)mobilization/
accumulation/translocation. Thus, this review is an attempt to reveal the underlying 
mechanisms of plant-AMF interactions in phytoremediation.

Keywords: phytoremediation, arbuscular mycorrhizal fungi, metal contaminated soils, metal transporters, genes

INTRODUCTION

As a result of rampant industrial activities, geogenic contaminants (GCs) have intruded in almost 
all spheres of the environment, including soil, water, air, and plants (Sandeep et  al., 2019). Globally, 
the soils of >20 million hectares of land in 10 million sites are contaminated, and more than 50% 
of them are polluted with GCs (He et  al., 2015). The root cause of this recurring problem of GC 
pollution seems to be  the increased rate of industrialization, urbanization, mining, milling, fossil 
fuel burning, agrochemicals that release a wide range of GCs, and metalloids into the environment 
(Sandeep et  al., 2019; Zhang et  al., 2019). Leachates of municipal solid waste landfills in poor 
waste disposal systems contain elevated concentrations of GCs and metalloids, which are also 
responsible for contaminating soil soil-crop systems (Vongdala et  al., 2019). The concentrations of 
GCs in soils may also be  enhanced by applying inorganic and organic fertilizers, organic manure, 
pesticides, and herbicides (Dharma-Wardana, 2018; Reboredo et  al., 2019). Several studies reported 
toxic metals accumulations in plant food samples harvested from contaminated soils, indicating 
that contaminated soils become the pathway of GCs to crops (Emurotu and Onianwa, 2017; Chaou 
et  al., 2019; Kibet et  al., 2019; Liang et  al., 2019; Afonne and Ifediba, 2020). These released GCs 
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are biomagnified in living beings of the higher trophic levels 
once they enter the food chain via the ingestion of food and vegetable.

Removal of GCs from the contaminated sites may be attained 
by various traditional techniques, such as detonation, incineration, 
soil excavation, soil washing, chemical precipitation, etc., which 
are very costly and adversely affect ecosystem functioning 
(Dermont et al., 2008). Recently, a widely used phytoremediation 
technique, the use of plants to extract, sequester, and detoxify 
pollutants, has been reported to be  effective, non-intrusive, 
inexpensive, aesthetically pleasing, and socially accepted 
technology to remediate polluted soils (Kachout et  al., 2009; 
Pandey and Bauddh, 2018). Soil amendment by using 
microorganisms, especially arbuscular mycorrhizal fungi (AMF) 
are efficient in accelerating the phytoremediation process (Ma 
et  al., 2016). AMF inoculation is regarded as a promising tool 
in biotechnology for the sustainable remediation of hazardous 
contaminants (Schneider et  al., 2017). Certain aspects in AMF 
associated phytoremediation, such as the response of plant and 
AMF species, the role of different soil parameters on their 
association, etc., needs to be well explored. Providing an in-depth 
literature review on the mechanisms responsible for plant-
mycorrhizal fungi interactions in a lucid manner separates it 
from previous related work. Therefore, this paper expounds on 
the feasibility of a cost-effective and green method of AMF-assisted 
GC phytoremediation. Further, the mechanisms of action involved 
in plant-mycorrhizal fungi association for GC remediation from 
the contaminated sites have also been discussed.

Methodology
The literature cited in this review ranged from 1904 to 2021. 
However, the majority of the articles targeted were from journal 
articles, book chapters, and books published between 2011 and 
2021. The relevant literature surveyed were studied employing 
Google, Google Scholar, Web of Science, Research Gate, and 
Scopus using various keywords such as phytoremediation, 
arbuscular mycorrhizal fungi, metal contaminated soils, metal 
transporters, genes. Further, especially focused journals were 
Annual review of plant biology, Frontiers in Microbiology, Current 
Opinion in Toxicology, Journal of Plant Physiology, Plant 
Physiology, etc., were browsed for digging deeper into the relevant 
literature until 2021. Subsequently, we  have examined the 
publication individually and eliminated the quotative and duplicate 
papers. Out of the total literature documents yielded, we  have 
selected and referred to 168 articles. Out of which, total journal 
articles were 161 followed by six book chapters and one book. 
Around 51% of the cited documents were of the years 2011–2021. 
To the best of our knowledge, this article is an updated review 
article that focused and covered all dimensions of plant-
mycorrhizal fungi interactions in metal phytoremediation.

ESTABLISHMENT OF MUTUALISTIC 
SYMBIOSIS

Soil can facilitate a conducive environment for interaction 
among diverse and highly complex microbial communities and 
is considered as a “safe haven” for them. Hiltner (1904) was 

the first soil biologist who defined the rhizosphere as a hyperactive 
“zone of contact” around the plant root system in the soil 
where microbes live and contribute to plant health. The findings 
of various studies suggested that rhizosphere processes are 
affected by exudates of plant roots and rhizosphere 
microorganisms (Kamilova et  al., 2006; Kumar et  al., 2007). 
Root exudates are involved in important functions, such as 
inducing plant defense response against pathogenic 
microorganisms (Abbott and Murphy, 2003) and providing a 
basis for chemotaxis to attract and repel microbial species and 
populations (Kumar et  al., 2007), keeping the soil wet and 
moist, altering the chemical properties of the soils, mobilizing 
the nutrients, inhibiting the growth of competitor plants, and 
stabilizing soil aggregates around the roots. Root exudates 
mainly consist of carbon-based compounds (Bais et  al., 2006), 
including low molecular weight compounds (e.g., amino acids, 
organic acids, sugars, phenolic, and several secondary 
metabolites), and high molecular weight compounds (e.g., 
mucilaginous substances and proteins; Badri and Vivanco, 2009).

The fungus-plant association fosters plant growth and boosts 
root development (Janeeshma and Puthur, 2020; Tiwari et  al., 
2020). Based on the basis of morphological characteristics, 
mycorrhiza is classified into five groups such as ecto-, ericoid, 
arbutoid, arbuscular, orchid, and monotropoid (Wang and Qiu, 
2006). Among them, AMF is considered as most effective in 
promoting plant growth and development in the ecosystem 
by speeding up the processes of nutrient absorption. AMF 
starts symbiosis before they reach the host plant roots. During 
this pre-infection stage, plant roots release signal molecules 
(e.g., branching factors), which are responsible for the fast 
growth and branching of hyphae, followed by the differentiation 
of fungal adhesion structures. In reciprocation of branching 
factors, AMF may release signal molecules (e.g., Myc factors) 
that can induce both molecular and cellular responses and 
thus ensure successful AMF root colonization (Maillet et  al., 
2011). Positive results of this symbiosis are attributed to 
physiological changes of host plants, including hormonal 
equilibrium, transcriptional profile, primary, and secondary 
metabolism (López-Ráez et  al., 2010).

PERFORMANCE OF MUTUALISTIC 
SYMBIOSIS

Amongst several mutualistic symbioses, the arbuscular mycorrhizal 
symbiosis is considered as one of the significant determinants 
for plant health and soil fertility in terrestrial ecosystems (Jeffries 
et al., 2003). The fine hyphae that spread into the soil and absorb 
minerals more effectively than plant roots alone, and the presence 
of the fungi constantly decreases soil-borne fungi and nematode 
root attacks (Smith and Read, 2008). AMF may play important 
role in plant growth in metal contaminated soils (Hildebrandt 
et al., 2007) by acting as bioalleviator and/or biofertilizer (Figure 1). 
In addition, the large and dense mycelial network established by 
AMF improves the stability of soil particles through the excretion 
of glomalin (an insoluble and hydrophobic protein material) and 
soil proteins associated with glomalin, thus inhibiting disaggregation 
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of soil organic carbon and water (Bedini et  al., 2009; Hallett 
et al., 2009). AMF colonization can affect vegetative (Miller et al., 
1987) and sexual reproduction of plants by influencing the number 
of inflorescences, production of seeds and fruits, and offspring 
vigor (Nuortila et  al., 2004). These different attributes of AMF 
may contribute to protect endangered plants (Bothe et  al., 2010). 
Following are some of the attributes that have been briefly discussed.

Bioalleviator
The reactive oxygen species (ROS) formation accelerates under 
biotic and abiotic stresses (Hasanuzzaman et al., 2013; Bauddh 
and Singh, 2015; Jajic et  al., 2015; Sachdev et  al., 2021). ROS 
generation in plants has been reported as long-distance signals 
in response to various stresses (Mittler, 2017). To minimize 
the toxic effects of ROS, plants possess effective ROS-scavenging 
systems involving both enzymatic (e.g., ascorbate peroxidase 
and superoxide dismutase) and non-enzymatic (e.g., glutathione 
and ascorbic acid) ROS actions (Hasanuzzaman et  al., 2013; 
Sachdev et  al., 2021). Few researchers have reported that 
ROS generation occurs during early symbiotic interactions 
between AMF and host plant roots (Fester and Hause, 2005; 
Kiirika et  al., 2014). To mitigate its potentially toxic effects, 
there must be a balance between ROS generation and scavenging. 
In plants, redox homeostasis, antioxidant signaling, and 
continuous production or removal of ROS at the cellular 
level are considered as stress signals (Jajic et  al., 2015).

The plant-microbe symbiotic associations play a crucial role 
in alleviating biotic and abiotic stresses such as heat, salinity, 
drought, metals, and extreme temperatures (Goh et  al., 2013; 

Schouteden et  al., 2015). Studies on AMF mediated stress 
tolerance and increased growth of host plants have been the 
pivotal research on plant stress responses (Tahat and Sijam, 
2012). Plant-AMF interactions can improve plant growth and 
health by controlling the generation and scavenging of ROS 
(e.g., H2O2, superoxide radicals, alkoxy radicals, singlet oxygen, 
perhydroxyl radicals, etc.) under biotic and abiotic stresses 
(Goh et al., 2013; Nath et al., 2016). For instance, a significantly 
higher amount of ROS is generated due to GC stress, therefore 
causing oxidative damage to the cellular structures of plants 
(Yang et  al., 2015b). In response to such oxidative stress, 
plant-AMF associations can activate numerous antioxidant 
enzymes (e.g., thioredoxin, superoxide dismutase, glutathione 
peroxidases, and catalase) for scavenging the generated ROS 
to protect against cell damage (Hashem et  al., 2018).

Biofertilizer
AMF are considered natural biofertilizers, because they help 
the host plants to develop their root system for absorption of 
water and essential nutrients in exchange for photosynthetic 
products and to protect plants against harmful pathogens 
(Berruti et  al., 2016; Gao et  al., 2020; Basiru et  al., 2021). It 
is well documented that, the AMF-pant association has countless 
benefits in terms of healthy soil conditions and increased crop 
productivity (Berruti et al., 2016). Therefore, AMF are considered 
as the most important biotic soil components, the impoverished 
or missing AMF can lead to a less efficient ecosystem functioning 
(Berruti et  al., 2016). The roles of AMF as biofertilizer in 
several biochemical and physiological processes are as follows:

FIGURE 1 | Plant-arbuscular mycorrhizal fungi (AMF) mutualistic performance in the rhizosphere.
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Phosphorus Acquisition
The phosphorus (P) absorption in the mutualistic relationship 
formed between the host plant and AMF offers significant 
advantages, such as, providing an efficient pathway through 
which P is retrieved from the soils and directly transferred 
to the roots. The exchange of nutrients between host plants 
and microorganisms is a regulated process facilitated by 
membrane transporting proteins such as, phosphate transport 
and the P-type H+-ATPase (Bucher, 2007; Basu et  al., 2018).

Nitrogen Acquisition
Plant growth is often hampered by the loss of nitrogen from 
the soils. The mycorrhiza can facilitate nitrogen absorption 
from the soils to plants, and increase various types of nitrogen 
(Smith and Read, 2008; Veresoglou et al., 2011; Makarov, 2019). 
For instance, many studies demonstrated that plants associated 
with AMF have five times more affinity for NH4

+ uptake from 
the soils (Pérez-Tienda et al., 2012). In addition, many mycorrhizal 
plants can facilitate nitrogen uptake from the rhizosphere soil 
through nitrate and ammonium transporters (Breuillin-Sessoms 
et  al., 2015). Recently, few studies have also reported the 
increased content of 15N in host plants grown on AMF inoculated 
organic patches of soil (Hodge and Fitter, 2010; Tian et  al., 
2010; Nath et  al., 2018). When the hyphae are supplied with 
nitrate and ammonium ions, the nitrates are absorbed by active 
transport coupled with a protonated-symport system, whereas, 
NH4

+ is taken up through an antiport mechanism with an H+ 
efflux. If ammonium is the only source of N, its assimilation 
can lead to a deficient supply of carbon for the fungus because 
of its enhanced consumption in the roots (Basu et  al., 2018).

Phytohormones
The fungal colonization develops in the host plant through a 
complex process that includes well-structured alterations at the 
morphological and genetic level, thus eventually leading to changes 
in series of signals (Morrison et  al., 2015). Several studies have 
reported that AMF can produce phytohormones, e.g., auxins, 
cytokinins, and abscisic acid (ABA), which accelerated plant 
growth and development. Just as other plants, mycorrhizal fungi 
also follow the mevalonate pathway and use different precursors 
of ABA for their production (Nambara and Marion-Poll, 2005; 
Morrison et  al., 2015). The role of ABA in the production and 
growth of mycelium has been documented in the literature 
(Ludwig-Müller, 2010; Spence and Bais, 2015; Xu et  al., 2018). 
For instance, the exogenous application of ABA showed an 
insignificant increase in the growth of Ceratocystis fimbriata, while 
in Magnaporthe oryzae, ABA stimulated the production of 
appressoria and increased germination (Chanclud and Morel, 2016).

MECHANISMS UNDERLYING PLANT-AMF 
INTERACTIONS IN PHYTOREMEDIATION

Phytoremediation has been considered a more sustainable, 
cost-effective, and eco-friendly approach for the remediation 
of contaminated soils, due to its less expenditure and no 

unfavorable impact on soil fertility or structure (Jadia and 
Fulekar, 2009). However, phytoremediation cannot be performed 
alone by the plant itself, because plants and microorganisms 
in the rhizosphere always interact very closely so that ultimately 
leads to an enhanced activity associated with soil remediation 
(Compant et  al., 2010). Use of hyperaccumulators associated 
with efficient endophytic or rhizosphere microbial communities 
has been proposed as a promising low-cost cleaning technique 
for the removal of metals from several contaminated sites 
(Karimi et  al., 2011). In this context, AMF may be  a good 
candidate because they reside inside the roots of a large number 
(approximately 80%) of terrestrial plants from bryophytes and 
tracheophytes (Smith and Read, 2008). AMF can form a mutual 
symbiotic association with most terrestrial plants establishing 
a direct physical link between plant roots and soils (Bothe 
et  al., 2010).

AMF may promote plant metal extraction when metal 
concentrations are low in soils and also help plants to accumulate 
a major chunk of toxic metals in plant roots to prevent their 
transport to aerial parts when there is a high concentration 
of metals in soils. Singh et  al. (2019) studied the impact of 
the inoculation of four species of AMF (e.g., Rhizophagus 
fasciculatus, R. intraradices, Funneliformis mosseae, and Glomus 
aggregatum) with Zea mays on the removal of Cr, Cd, Ni, 
and Pb from the tannery sludge. They discovered that all four 
AMF species enhanced metal accumulation in the roots but 
decreased shoot metal accumulation. The metal translocation 
factor was significantly lower as compared to the non-inoculated 
control plants. These discoveries are important evidence of the 
capability of AMF to enhance metal phytostabilization. Similarly, 
Yang et al. (2015a) evaluated the impact of two AMF F. mosseae 
and R. intraradices on plant growth-related parameters, Pb 
accumulation, photosynthesis, and antioxidant enzymatic activity 
in Robinia pseudoacacia. The increased biomass, photosynthetic 
pigment, gas exchange capacity, and various enzymatic activities 
in inoculated plants suggests that both AMF species were 
capable of protecting plants against cellular damage by eliminating 
ROS under Pb stress. The decreased Pb concentration in the 
leaves of AMF-inoculated R. pseudoacica indicates that these 
two AMF species have the potential to increase 
metal phytostabilization.

AMF root colonization helps in increasing the volume and 
surface area of available soil that in turn helps in better metal 
translocation from roots to shoots. Similarly, Zimmer et  al. 
(2009) studied the impact of dual inoculation of ectomycorrhiza-
associated bacteria (EMAB; Sphingomonas sp. and Micrococcus 
luteus) and ectomycorrhizal fungi (Laccaria laccata and Hebeloma 
crustuliniforme) on the growth and metal accumulation in Salix 
viminalis cultivated in metal contaminated soils. Total Zn and 
Cd accumulations in shoots were increased up to 53% post-
inoculation with H. crustuliniforme in association with M. 
luteus, whereas up to 62% for Sphingomonas sp. They found 
that EMAB enhanced ectomycorrhiza formation, plant growth, 
and accumulation of Zn and Cd. The findings indicate that 
the bacterial community facilitates root colonization of plant 
growth-promoting ectomycorrhizal fungi, which may serve as 
a potential approach to increase the efficiency of phytoextraction. 
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Moreover, a field study conducted by Wu et al. (2011) assessed 
the effect of AMF on Zn and Pb accumulation in C. zizanioides 
grown in mine tailings. They found that the P and N 
concentrations in plant aerial parts were remarkably higher 
in mycorrhizal plants as compared to non-AMF treatments. 
The inoculation of AMF also resulted in a decrease in Zn 
and Pb concentrations in roots.

The majority of studies available in the literature on 
AMF-assisted phytoremediation were performed in pot 
experiments using artificial GCs-polluted soils. Aged-
contaminated soils are more complex than spiked soils, as 
they frequently contain different nature and concentrations of 
pollutants and their availability is generally lower than that 
in spiked soils. However, some studies have directly been 
performed at the contaminated site. It is a well-known fact 
that the nature of spiked soil used for pot experiments is 
different from those of naturally contaminated sites. Knowing 
about the behavior of plant species associated with AMF and 
the capability of such plants to grow in GC soils is imperative 
to phytoremediation (Schneider et  al., 2016). It can thus 
be  inferred that field studies depict the situation more closely. 
Therefore, there is a need to perform more and more field-
based studies.

For instance, in a field study, a total of 23 species belonging 
to the genus Acaulospora, Scutellospora, Racocetra, Glomus, 
Gigaspora, and Paraglomus were identified in As contaminated 
areas in Brazil. The most frequently occurring species in all 
areas were Paraglomus occultum, Acaulospora morrowiae, and 
Glomus clarum. The relatively high presence of these species 
demonstrates their tolerance to excess As. In spite of the 
fact that contamination owing to As decreased AMF species 
richness, the presence of host plants has the tendency to 
make up for the reduction (Schneider et al., 2013a). In another 
field study, 39 species of AMF belonging to 10 genera were 
identified in Pb contaminated sites in Brazil. The Acaulospora 
and Glomus genera had a high occurrence in the rhizosphere 
and bulk soil. The highest concentration of Pb was found 
in root and shoot. AMF diversity seems to be  correlated 
with the heterogeneity of area; AMF structure community 
was related to Pb concentration in soils, and the diversity 
of plants was significantly related to the diversity of AMF 
in soils with high Pb concentration. A clearer understanding 
of AMF communities in the presence of Pb stress may throw 
some more light on metal-fungal interactions in contaminated 
sites (Schneider et  al., 2016). In a different field study, a 
total of six species of AMF belonging to two genera Glomus 
and Scutellospora were studied. The richness of AMF species 
was more in the non-contaminated site as compared to sites 
with contamination of metals. Results are suggestive of the 
fact that continuously exposing the plant and AMF to GC 
may result in the tolerant species that may be  used for the 
purpose of phytoremediation (Khade and Adholeya, 2009). 
Metal transport followed by its distribution is imperative. 
Metal translocation from below ground to aerial parts is 
contingent upon the involved metals and plant species (Sarwar 
et  al., 2017). The mobility of different metals differs even 
inside a plant. For instance, the mobility of Zn and Cd is 

higher than Pb and Cu. During transportation via plant, 
metals are largely bound to the root cell wall, which leads 
to enhanced metal concentration in the plant roots. Chelation 
of metals with the ligands (e.g., thiols, amino acids, and 
organic acids) facilitates the metals to transport from roots 
to shoots (Zacchini et  al., 2009). Because of the high cation 
exchange capacity of xylem cells, the movement of metal is 
significantly retarded when metals are not chelated by ligands. 
There is an involvement of organic acids for Cd translocation 
in Brassica juncea (Salt et al., 1995), while histidine is involved 
in long-distance translocation of Ni in hyperaccumulator 
Alyssum lesbiacum (Solanki and Dhankhar, 2011). Since a 
larger number of GCs may be transported by forming organic 
compounds-metal complexes (Maser et  al., 2001), various 
types of organic ligands secreted by AMF may alter the 
existing forms of metal distribution by combining with different 
metals present in plants, thereby assisting metal translocation 
from subsurface to aerial parts and hence improving the 
phytoextraction efficiency (Sheng et  al., 2008). According to 
Ma et  al. (2013), the inoculation of metal resistant plant 
growth-promoting bacterium P. myrsinacearum RC6b may 
effectively mobilize metals such as Pb, Cd, and Zn in soils 
and notably increased Cd and Zn accumulation in the shoots 
of Sedum plumbizincicola. De Maria et al. (2011) also observed 
that after inoculating rhizobacteria Agromyces sp. and 
Streptomyces sp., and fungus Cadophora finlandica with Salix 
caprea, the shoot concentration of Cd and Zn increased, 
denoting increased translocation of metals from roots to shoots.

There are a number of mechanisms through which plant-AMF 
interacts during the process of phytoremediation; some of them 
have been discussed below.

AMF-Induced GC Detoxification
Accumulation of GCs in the plants is a critical problem in 
the environment, high mobility of GCs has made them an 
extended component of food chain that affects the health of 
humans. Vesicles present in mycorrhizal fungi are comparable 
to fungal vacuoles and they accumulate huge amount of GC 
in them (Dhalaria et  al., 2020). Immobilization of GC occurs 
in the fungal hyphae residing in symbiotic association with 
plants that decrease their availability to plants by retaining 
the GCs in the cytoplasm or vacuole, cell wall by chelation, 
thereby reducing metal toxicity in the plants (Punamiya et  al., 
2010). Metal detoxification induced by AMF has been considered 
as the key mechanism to help plants to alleviate metal toxicity 
(Table  1). By using scanning electron microscope equipped 
with energy dispersive spectroscopy (SEM-EDS), extended X-ray 
absorption fine structure (EXAFS), linear combination fitting 
results of X-ray absorption near-edge spectroscopy (LC-XANES), 
it has been demonstrated that Cr may be  immobilized by 
AMF via reduction of Cr (VI) to Cr (III), forming analogues 
of Cr (III)-phosphate, probably on the surface of fungi. Apart 
from this, it has also been unraveled that extra radical mycelium 
may take up Cr actively and transport it to mycorrhizal roots, 
but the majority of Cr is immobilized in fungal structures 
(Wu et  al., 2015). Ultra-structural changes were observed in 
roots and leaves of Leucaena leucocephala through a scanning 
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electron microscope (SEM), transmission electron microscope 
(TEM), and light microscopy (LS). Results revealed that plant 
tissues were colonized by AMF and damage was observed in 
all treatments of As (Schneider et  al., 2013b).

GCs may be  immobilized in the fungal hyphae (Ouziad 
et  al., 2004) that can fix GCs in the cell wall and store them 
in the vacuole or make a complex with other substances like 
glycoprotein-metal complex (Dhalaria et  al., 2020) in the 
cytoplasm to decrease plants metal toxicity (Punamiya et  al., 
2010). AMF can enhance plant biomass by changing plant 
physiological and morphological properties (e.g., enhanced 
secondary metabolite levels, increased leaf area, increased 
seedling weight, etc.) under severely stressful conditions and 
uptake of important immovable nutrients (such as phosphorus, 
copper, and zinc; Miransari, 2017).

Increased plant biomass in rhizosphere soil is the primary 
cause of metal dilution in plant tissues (Audet, 2014). AMF 
may restrict Zn and Cd uptake in the cell wall of mental 
hyphae and cortical cells, thereby improving plant yield and 
health (Garg and Chandel, 2012). Metal detoxification mediated 
by Rhizophagus phaseolina in Glycine max was studied by 
Spagnoletti et  al. (2016), where AMF boosted a defensive 
response by decreasing oxidative damage even in the presence 
of M. phaseolina and As.

Mycorrhizae may influence plant metal uptake from the 
rhizosphere and their translocation from the root zone to aerial 
parts (Li et  al., 2015). The mycelium of several AMF has a 
high cation exchange capacity, and it helps in metal uptake 
(Takács and Vörös, 2003). For instance, Hammer et  al. (2011) 
found an increase in the uptake of silicon in the hyphae and 
spores of Rhizophagus irregularis and its subsequent translocation 

to host roots. Cd toxicity and mobility can also be  alleviated 
through AMF by enhancing the soil pH (Shen et  al., 2006). 
AMF can restore Cd in the extraradical mycelium and bind 
Cd to glomalin (Janouškova and Pavlíková, 2010).

AMF colonization has been shown to reduce metal stress 
in a convincing way (Hall, 2002). For instance, AMF colonization 
considerably increased the glutamine synthetase activity, therefore 
enhancing Ni tolerance in Berkheya coddii (Sessitsch et  al., 
2013). To reduce metal toxicity, AMF resort to processes such 
as adsorption of GCs to the cell wall, immobilization of metallic 
compounds, chelation of GCs inside fungus, and precipitation 
of polyphosphate granules in soils (Meier et  al., 2012; Wu 
et al., 2015). Janousková et al. (2006) reported that inoculation 
of Glomus intraradices with Nicotiana tabacum cultivated in 
Cd contaminated soil decreased Cd toxicity to the plants due 
to Cd immobilization in soil. A study conducted by Wu et  al. 
(2015) investigated the mechanisms involved in Cr immobilization 
in Daucus carota inoculated with AMF and found that AMF 
can immobilize Cr via reduction of Cr(VI) to Cr(III) by forming 
Cr(III)–phosphate analogs.

Molecular Regulation of Genes
Molecular regulation of genes plays a crucial role in 
accumulating GCs and fungal cell detoxification, subsequently 
leading to the prevention of translocation of these GCs toward 
the host plant (Emamverdian et  al., 2015). Efflux of GCs is 
a strategy used by AMF to protect plants from metal toxicity 
(Latef et  al., 2016; Shi et  al., 2019). Several transcriptional 
genes take part in the efflux of GCs and the involved genes 
get activated by metal exposure (Dhalaria et  al., 2020). To 
provide plant tolerance against Cd and Cu, GmarMT1 that 
is a cDNA-encoding metallothionein-like functional 
polypeptide has been discovered from germinated Gigaspora 
margarita spores (Lanfranco et  al., 2002). Also, GC exposure 
upregulates GmarMT1 expression in the symbiotic mycelium 
(Lanfranco et  al., 2002). GintABC1 identified as a putative 
ATP-binding cassette (ABC) transporter from extra radical 
mycelium of Glomus intraradices is believed to be  involved 
in Cd and Cu mitigation (González-Guerrero et  al., 2010). 
A number of genes are responsible for maintaining cellular 
homeostasis against GCs, such as GintABC1, GmarMT1, 
RintZn, and GrosMT1 (Azcón et  al., 2013). To maintain the 
redox potential and safeguard the fungus from oxidative 
stress, GmarMT1 codes for metallothioneins have been 
found in G. margarita BEG 34 (González-Guerrero et  al., 
2007). GintABC1 assists in detoxifying Zn and Cu (González-
Guerrero et  al., 2007; Table  2). RintZnT1 isolated from 
Rhizophagus intraradices, helps in vacuolar sequestration of 
Zn (Gonzalez-Guerrero et  al., 2005). GintGRX1, the 
first characterized glomeromycotan glutaredoxin, is a 
multifunctional enzyme that expresses in response to oxidative 
stress (Benabdellah et  al., 2009).

AMF resorts to several molecular mechanisms to protect them 
from GC stress. One of mechanisms is the upregulation of 
several transcriptional factors that activate glutathione-S-
transferase and Zn transporter in intra- and extra- mycelia of 
AMF Glomus intraradices against metal stress (Hildebrandt 

TABLE 1 | GC detoxification induced by AMF.

Possible mechanisms References

Immobilizing geogenic contaminants 
(GCs) by secreting chelating substances, 
such as, siderophores (ferrichrome and 
ferricrocin) into the soil.

Ernst et al., 1992; Manoj et al., 2020

Metal-binding to several biopolymers 
present in cell walls such as glomalin and 
chitin. Glomalins are amphiphilic 
peptides that act as a surfactant.

Gonzalez-Chavez et al., 2004; Rillig 
and Mummey, 2006

Superficial immobilization of GCs in the 
plasma membrane upon crossing the 
cell wall.

Ernst et al., 1992

Intracellular chelation by metallothionein, 
organic acids, and amino acids.

Clemens, 2001

Arresting metals inside the vacuoles. Gonzalez-Guerrero et al., 2008; 
Dhalaria et al., 2020

An exclusive mechanism of AMF involves 
metal transport with the help of fungal 
coenocytic hyphe.

Gonzalez-Chavez et al., 2002; Gupta 
et al., 2019

Membrane transporters present in 
arbuscules of AMF may transport metals 
to interfacial matrix and their 
incorporation in the plant.

Ebbs and Kochian, 1998

There is also a possibility that fungi may 
store metals in some assigned structures 
(such as vesicles, hyphe, etc.).

Ferrol et al., 2009
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et  al., 2007). GC stress also leads to expression of numerous 
genes. These genes encoding proteins are involved in 
detoxification/tolerance against GCs (Rivera-Becerril et al., 2005).

Based on molecular understanding, scientists have reported 
an upregulation in metallothionein gene expression of Gigaspora 
margarita BEG34 in the symbiotic mycelia due to Cu (Lanfranco 
et  al., 2002) and also an enhanced level of transcription of a 
putative transporter gene for Zn (GintZnT1) that belongs to 
cation diffusion facilitator family. These genes have been found 
in the G. intraradices mycelium under short and long-term 
Zn exposure indicating that this enzyme protects plants against 
Zn stress (Gonzalez-Guerrero et  al., 2005). The role of some 
AMF in phytoremediation of some GCs (Bundschuh et  al., 
2017) has been discussed in Table  3.

Metal-binding proteins called metallothioneins are generated 
in a diverse range of organisms when they are exposed to 
toxic metals (e.g., Cd, Zn, and Cu). Cu predominantly induces 
the production of metallothionein in non-AMF (Kumar et  al., 
2005). Cu-induced stress distinctly upregulates the 
metallothionein gene BI451899 in extraradical mycelium of G. 
intraradices. However, a certain concentration of Zn can also 
upregulate the metallothionein gene, but such a response is 
not observed due to Cd. This upregulation establishes and 

supports the primary function of fungal metallothioneins in 
detoxifying Cu (Lanfranco et  al., 2002).

Metal Mobilization
Strong binding of metals to soil particles or precipitation results 
in insolubilization of the significant fraction of metals in soils 
ultimately causing their unavailability for plant uptake. Metal 
solubilization and mobility have been considered as critical 
factors that affect phytoextraction efficiency (Ma et  al., 2013). 
In this regard, microbes that can mobilize metals may be  used 
to amend the habitat of rhizosphere in soils affecting metal 
element speciation as well as mobility inside soil by way of 
biogeochemical cycling processes of GCs that primarily include 
protonation, chelation, and acidification (Ma et  al., 2011; 
Rajkumar et  al., 2012; Sessitsch et  al., 2013).

Protonation
AMF may also acidify their environment through exporting 
protons to replace GC cations at the site of sorption (Rajkumar 
et  al., 2012). Extensive studies have been performed to 
characterize them using attenuated total reflection-Fourier 
transforms infrared (ATR-FTIR) spectroscopy and thereafter 
to understand the interaction between fungal cells, protons, 
and metal ions. Results suggest that the carboxylate moieties 
present on the bacterial surface play a vital role in the extracellular 
biosorption of Ni2+, which establishes a comparatively weaker 
bond with the metal ion.

Chelation
Natural organic chelators are metal-binding compounds that 
comprise siderophores, organic acid anions, metallophores, and 
biosurfactants (Sessitsch et  al., 2013). Both fungi and plants 
can release these compounds that scavenge metal ions from 
sorption sites (Gadd, 2004) and ROS (Leitenmaier and Küpper, 
2013). Metal chelation through metal-binding peptides such 
as metallothioneins and phytochelatins (PC) may eliminate the 
harmful effect of free metallic ions, thereby facilitating metal 
uptake and their sequestration, followed by compartmentation, 
loading in xylem tissues, and finally their transport (Cai and 
Ma, 2002). Phytochelatins are the GC binding peptides that 
are produced by tripeptide glutathione and/or by an enzyme-
catalyzed reaction through PC synthase (Solanki and Dhankhar, 
2011). Metallothioneins may also be  found in AMF and genes 
that encode numerous enzymes for PC synthesis may be activated 
in the root of mycorrhiza. These enzymes assist in enhancing 
photosynthesis in mycorrhizal plants subjected to stress caused 
by metals (Rivera-Becerril et  al., 2005).

Acidification
Soil pH is one of the most important factors that affect metal 
content and its bioavailability. For several metals (e.g., Cu and 
Zn), a rise in soil pH caused a fall in their mobility (Richards 
et  al., 2000). Generally, soil pH is affected by the action of 
both microorganisms and plants. Rhizosphere gets acidified 
due to H+ ions excreted by roots that may displace GC cations 
adsorbed on soil particles. Root exudates may decrease the 

TABLE 2 | The function of some receptor genes.

Receptor gene with 
their signaling 
component

Function References

BEG34/GintZnT1 Enhanced transcription levels of 
putative Zn transporter gene and 
protection against Zn stress.

Gonzalez-Guerrero 
et al., 2005

Sy167 Alleviation of oxidative stress due 
to GCs.

Hildebrandt et al., 
2007

GintABC1 Cd and Cu detoxification in the 
extra radical mycelium of Glomus 
intraradices.

Gonzalez-Guerrero 
et al., 2005

MtCbf1 and MtCbf2 Root tissue reprogramming 
during the establishment of 
AM symbiosis.

Hogekamp et al., 
2011

Kinase SymRK Involved in transduction of signals 
to the cytoplasm after perception 
of signals from Nod and Myc 
factors.

Gherbi et al., 2008; 
Genre and Russo, 
2016

NUP 85/NUP133 Involved in transporting 
macromolecules through nuclear 
envelope.

Parniske, 2008

CYCLOPS Serves as phosphorylation target 
of calcium/calmodulin-dependent 
protein kinase (CCaMK) gene and 
is supposed to be the diverging 
point of common symbiosis 
(SYM) pathway.

Kistner et al., 2005

CASTOR/POLLUX Specific channel of cations 
important for perinuclear Ca 
spiking right after reception of 
Myc or Nod factors.

Kistner et al., 2005

CCaMK Calmodulin and Ca dependent 
protein kinase, which acts as a 
sensor of Ca and is supposed to 
be involved in phosphorylation of 
CYCLOPS.

Kistner et al., 2005
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pH of the rhizosphere (Sheoran et  al., 2011), causing 
increased metal mobility and bioavailability in soil solution 
(Kim et  al., 2010).

Metal Immobilization
Phytostabilization is GC immobilization in the plant root system 
by precipitation, reduction, and absorption without its 
accumulation in the shoot (Radziemska et  al., 2017). There is 
an extensive root system for immobilizing metals in 
hyperaccumulators (Mendez and Maier, 2008). In addition to 
some common mechanisms of tolerance, increase biosynthesis 
of the cell wall, metal inactivation in the rhizosphere and its 
accumulation in roots are very specific to phytostabilizers 
(Janeeshma and Puthur, 2020). An association with AMF 
increases the properties of metal stabilization of plants (Zhang 
et  al., 2019). For instance, the association of Trifolium pratense 
with mycorrhizae enhanced Zn retention in the roots, thereby 
preventing its translocation in the aerial plant parts (Chen 
et  al., 2003).

The glomalins released by AMF enhance toxic metal 
immobilization. Metallothionein protein, released by some AMF, 
is also known to reduce the toxicity caused by GCs. Besides, 
the synthesis of a 90 kD heat shock protein and glutathione-
S-transferase as a response to GC stress suggest that these 

proteins are involved in immobilizing GCs in the rhizosphere 
of Lycopersicon esculentum plant (Bano and Ashfaq, 2013). 
Glomalins are known to sequester several metals such as Zn, 
Pb, Fe, Cd, Cr, and Cu and decrease their bioavailability 
(Gil-Cardeza et  al., 2014). Glomalins may extract Pb, Cd, and 
Cu from polluted soil.

Several GCs get immobilized because of the binding capacity 
of fungal hyphae to metals. As a result of this binding capacity, 
there is a decreased translocation of GCs to plant tissues 
(Wasserman et  al., 1987). A slight increase in the 
mycorrhizosphere pH may also cause immobilization of some 
GCs (e.g., Zn) due to mycorrhizal association (Bano and Ashfaq, 
2013). Inoculation of Glomus species resulted in reduced mobility 
of metals in Zea mays (Kaldorf et  al., 1999). Other studies 
demonstrated a notable absorption of Zn in the mycelium of 
AMF by using different glomus species in association with 
Lolium perenne or Trifolium sp. (Joner et  al., 2000).

Metal immobilized in fungal hyphae that are symbiotically 
associated with the plants decreases their availability to host 
plants by holding the metals in the cytoplasm, vacuole, or 
cell wall, thereby reducing metal toxicity in plants (Punamiya 
et al., 2010). They also immobilize the GCs in the root cortical 
region by binding with them and prevent the translocation of 
metals to shoot, thus preventing leaf tissue damage (Schubler, 
2001). Some AMF may decrease plant metal uptake or its 

TABLE 3 | Role of AMF in phytoremediation of geogenic contaminated soils.

Plant Types of mycorrhizae GCs Remarks References

Helianthus annus Claroideoglomus claroideum 
(BEG210)

Ni AMF Claroideoglomus claroideum (BEG210) 
enhanced Ni accumulation in H. annus by 
38%.

Ma et al., 2019

Solanum nigrum Rhizophagus irregularis Cd Rhizophagus irregularis increased Cd 
accumulation in roots.

Wang et al., 2020

Zea mays Glomus aggregatum Pb, Cd, and Zn AMF along with moderate amount of 
phosphorous may decrease GC uptake and 
increase plant growth.

Nafady and Elgharably, 2018

Medicago sativa Rhizophagus irregularis Cd and Ni AMF inoculation enhanced the uptake of both 
metals.

Mnasri et al., 2017

Taraxacum platypecidum Rhizophagus irregularis Cr Immobilized Cr in roots and prevents Cr 
phytotoxicity.

Wu et al., 2016

Zea mays Funneliformis mosseae and 
Diversispora spurcum

Cd, Zn, Pb, and As The transfer of GC was restricted by both 
fungi.

Zhan et al., 2018

Solanum nigrum Glomus intraradices Cd Inoculation with AMF resulted in decreased Cd 
uptake in roots and shoots, thereby facilitating 
metal phytostabilization.

Khan et al., 2017

Triticum aestivum Rhizoglomus intraradices As AMF inoculation assisted the host plant to 
ameliorate As-induced phosphorous deficiency 
and also strengthened thiol metabolism and 
antioxidant defence mechanism.

Sharma et al., 2017

Cynodon dactylon Funneliformis mosseae Sb AMF inoculation inhibited Sb (V) to Sb (III) 
reduction, thereby decreasing Sb toxicity.

Wei et al., 2016

Oryza sativa Rhizophagus intraradices Cd AMF decreased Cd uptake in O. sativa by 
altering the expression of Cd transporters.

Chen et al., 2019

Zea mays Glomus intraradices Hg AMF increased Hg uptake in roots. Debeljak et al., 2018
Lactuca sativa Funneliformis mosseae and 

Rhizophagus intraradices
Zn AMF inoculation at increased Zn 

concentrations AMF has the capability of 
decreasing Zn uptake.

Konieczny and Kowalska, 
2017

Cynodon dactylon Diversispora spurcum Pb, Zn AMF inoculation increased the uptake of Pb 
and Zn.

Zhan et al., 2019

Sorghum bicolor Claroideoglomus etunicat Mo AMF inoculated plants accumulated up to four 
times higher Mo than non-mycorrhizal plants.

Shi et al., 2020
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translocation factor by reducing metal bioavailability in soils 
through several processes such as alkalinization, precipitation, 
and complexation (Ma et  al., 2016).

Alkalinization
A few AMF exhibit the capability to adsorb metals by substratum 
alkalinization activity, hence affecting the stability of metals 
in soils (Büdel et al., 2004). The effect of alkalinization induced 
by AMF via release of OH−, may result in active uptake of 
nitrate by microbes and reduction in metal bioavailability in 
the rhizosphere by secreting glomalin (Giasson et  al., 2008). 
AMF may act as a sink of metals to reduce the available and 
mobile metal cations in soils, resulting in the creation of a 
more conducive environment for plants growing in metal 
contaminated soils (Gohre and Paszkowski, 2006). Inoculation 
of G. mosseae and G. caledonium with Lolium perenne and 
Sedum alfredi notably reduced soil DTPA-extractable Cd by 
21%–38% through the alkalinization process, hence facilitating 
in stabilization and extraction of Cd in-situ from Cd infected 
soils (Hu et  al., 2013).

Precipitation
Some plant-associated microorganisms can promote enzyme-
catalyzed precipitation of toxic metals [e.g., chromium (Cr) 
and selenium] and radionuclides (e.g., technetium and uranium) 
via microbial reduction process, which is promising for 
phytoremediation of metal-polluted soils (Payne and DiChristina, 
2006). Some studies suggest that fungi can protect the host 
plant from the inhibitory effects of an excess concentration 
of Cr6+ by reducing toxic and mobile Cr6+ to immobile and 
non-toxic Cr3+ in soils. Besides, some insoluble forms of minerals, 
metals, and radionuclides may also be  immobilized either 
indirectly through bacterial oxidation of Fe (Zhou et  al., 2013) 
or directly via enzymatic actions (such as microbial reduction 
process; Pagnanelli et  al., 2010).

Complexation
Extracellular polymeric substances (EPS) excreted by AMF are 
of immense importance, making a protective hindrance against 
the adverse effects of metal biosorption (Hou et  al., 2013). 
The mechanisms involved in metal biosorption onto EPS include 
the complexation with negatively charged functional groups, 
precipitation, metal ion exchange, and adsorption (Zhang et al., 
2006). In this regard, AMF may produce insoluble metal-
absorbing glycoprotein named glomalin that decreases the metal 
mobility or sequesters them, which may be  taken into account 
for metal stabilization in soils (Vodnik et  al., 2008). In an 
in-situ field experiment, the glomalin-related soil protein was 
used to estimate AMF derived from glomalin in soils in 
sequestrating Pb and Cd (Wu et  al., 2014).

CONCLUSION

In this review, the interactions between plant and mycorrhizal 
fungi in metal phytoremediation were unraveled through (1) 

an in-depth establishment of mutualistic symbiosis; (2) gaining 
insight into the role of AMF in phytoremediation; and (3) 
understanding the mechanisms including alleviation of metal 
toxicity by AMF, plant-AMF signaling and perception, metal 
bioaccumulation of plant-AMF association, metal mobilization 
and immobilization, metal transport, and distribution, which 
could add to the existing application knowledge of 
phytoremediation technologies. Associations with mycorrhiza 
increase the available surface area for absorption beyond 
the zone of root hair that in turn increases the uptake of 
water and minerals. It results in the high production of 
biomass that is imperative for successful phytoremediation. 
This review combined all the existing information available 
on AMF in a coherent way for better understanding. The 
primary focus of upcoming research should be  on (1) 
identification of new genes as well as gene products that 
are crucial in plant-mycorrhizae fungal interactions and (2) 
optimizing applied theory, including mobilization, 
immobilization, and perfecting the gene control mechanisms. 
The application of mycorrhizal techniques has fewer 
disadvantages and more advantages. Various factors such as 
redox potential, pH, inorganic and organic ligands (e.g., root 
exudates, fulvic acid, and humic acid) can regulate metal 
sorption or desorption and its bioavailability. The impact of 
the dynamics of these factors on phytostabilization, 
phytotransformation, or phytoextraction in association with 
AMF are still unclear and require more attention and detailed 
studies for additional application of phytoremediation 
processes. The review also advocates more and more field-
based studies for further exploring the potential of AMF. 
Furthermore, applying it to practice, to enhance the utility 
and efficiency of mycorrhizal remediation of GCs are some 
practical problems that needs to be solved on an urgent basis.
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