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INTRODUCTION

In recent years, the field of artificial intelligence (AI) 
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Objective: Little is known about the effects of using different expert-determined reference standards when evaluating the 
performance of deep learning-based automatic detection (DLAD) models and their added value to radiologists. We assessed 
the concordance of expert-determined standards with a clinical gold standard (herein, pathological confirmation) and the 
effects of different expert-determined reference standards on the estimates of radiologists’ diagnostic performance to 
detect malignant pulmonary nodules on chest radiographs with and without the assistance of a DLAD model.
Materials and Methods: This study included chest radiographs from 50 patients with pathologically proven lung cancer and 
50 controls. Five expert-determined standards were constructed using the interpretations of 10 experts: individual judgment 
by the most experienced expert, majority vote, consensus judgments of two and three experts, and a latent class analysis 
(LCA) model. In separate reader tests, additional 10 radiologists independently interpreted the radiographs and then assisted 
with the DLAD model. Their diagnostic performance was estimated using the clinical gold standard and various expert-
determined standards as the reference standard, and the results were compared using the t test with Bonferroni correction.
Results: The LCA model (sensitivity, 72.6%; specificity, 100%) was most similar to the clinical gold standard. When expert-
determined standards were used, the sensitivities of radiologists and DLAD model alone were overestimated, and their specificities 
were underestimated (all p-values < 0.05). DLAD assistance diminished the overestimation of sensitivity but exaggerated the 
underestimation of specificity (all p-values < 0.001). The DLAD model improved sensitivity and specificity to a greater extent when 
using the clinical gold standard than when using the expert-determined standards (all p-values < 0.001), except for sensitivity 
with the LCA model (p = 0.094).
Conclusion: The LCA model was most similar to the clinical gold standard for malignant pulmonary nodule detection on chest 
radiographs. Expert-determined standards caused bias in measuring the diagnostic performance of the artificial intelligence model.
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for medical applications has rapidly advanced and radically 
reshaped medicine [1,2]. Automated diagnosis using AI 
algorithms from medical images, especially deep learning 
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Review Board of Seoul National University Hospital (IRB 
No. H-2112-014-1279), which waived the requirement of 
written informed consent. The study sample has not been 
previously reported.

Study Samples and Clinical Gold Standard
For the study dataset, one author (J.H.L., with 10 years 

of experience in thoracic radiology) randomly selected 50 
lung cancers from 50 patients (26 males and 24 females; 
mean age, 67.4 ± 11.7 years) with pathologically confirmed 
lung cancers in a tertiary referral hospital (Seoul National 
University Hospital, Seoul, Korea) between December 2015 
and February 2021. The last computed tomography (CT) 
and chest radiographs of the patients before pathological 
diagnosis were collected. For the normal control group, 50 
normal chest radiographs of 50 individuals (30 males and 20 
females; mean age, 56 ± 9.1 years) without any abnormal 
findings on chest CT examination during the same period 
were independently selected. The median interval between 
chest radiographs and CT examination was 16.5 days 
(interquartile range [IQR]: 4, 31.75 days) and 0 days (IQR: 
0, 0 days) for the 50 lung cancer radiographs and normal 
radiographs, respectively. Therefore, 100 chest radiographs 
from 100 individuals were included in this study. Detailed 
information on the study dataset is provided in Table 1.

Using a customized web-based tool (AVIEW, Coreline Soft), 
the areas of lung cancer on the 50 chest radiographs were 
marked by two authors (J.H.L. and C.M.P. with 24 years of 
experience in thoracic radiology) in consensus, according 
to the lung cancer areas on the corresponding chest CT 
examinations. These annotated marks served as clinical gold 
standards. The tool, which was used to construct the clinical 
gold standard and expert-determined standards and to 
perform the reader tests, provides the function of an image 
viewer, annotations of potential lesions, and localization 
information for the annotation boxes.

Construction of Expert-Determined Standards
Ten experts (board-certified thoracic radiologists) from 

seven institutions across the country were recruited to 
construct expert-determined standards (five males and five 
females; median years of experience in thoracic radiology 
was 12 years [range: 9–18 years]). The 10 experts did not 
participate in selecting the study sample and determining 
the clinical gold standard. They independently evaluated 
100 chest radiographs, blinded to clinical and radiological 
information. If they detected a potentially malignant lung 

(DL)-driven models, is a field that has experienced 
remarkable progress and has shown excellent diagnostic 
performance, comparable to or even surpassing human 
experts or existing diagnostic tests [3,4]. Prime examples 
include DL models for classifying skin cancers, detecting 
diabetic retinopathy on retinal fundus photographs and 
breast cancer on whole-slide pathology images, and 
detecting and classifying major thoracic diseases on chest 
radiographs [5-8].

An essential prerequisite to evaluate the performance 
and clinical applicability of DL models is the rigor of 
reference standards [2,9]. The clinical gold standard 
is widely accepted as the best available method of 
establishing the presence or absence of the target 
condition [2,9-11]. Therefore, the clinical gold standard 
is considered the ground truth in most AI research (e.g., 
pathological confirmation in a malignant lung nodule 
detection task) [9]. However, expert-determined standards 
can often be used as proxies in clinical settings due to the 
unavailability of clinical gold standards (e.g., pathology is 
not always affordable in clinical practice). The problem is 
that the performance measurements of the AI model may 
be substantially affected by expert-determined standards 
and biased by variability between interpretations of experts 
[2,12]. Furthermore, the medical imaging field is highly 
dependent on human interpretation, with significant intra- 
or inter-observer variability, which biases the evaluation 
of AI performance [2,12]. In this regard, the consequences 
of using expert-determined standards, not clinical gold 
standards, to evaluate the diagnostic performance of AI 
models and whether they can be used in clinical settings 
remain an important question [10,11].

Although the impact of imperfect standards on the 
evaluation of a diagnostic test is a well-known source of bias 
[13], its impact on radiologists has not been investigated in 
the AI field. Therefore, we aimed to assess the concordance 
of various expert-determined standards with the clinical 
gold standard and to investigate how the diagnostic 
performance of radiologists alone, radiologists assisted by 
DL-based automatic detection (DLAD) and DLAD alone for 
the detection of malignant pulmonary nodules on chest 
radiographs might change when different standards are used 
as a reference standard for performance evaluation [14-16].

MATERIALS AND METHODS

This retrospective study was approved by the Institutional 
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lesion, they were instructed to use the same web-based tool 
to mark the lesion with a box annotation to fit the size of 
the lesion as closely as possible while including the lesion 
sufficiently. Multiple box annotations were allowed for a 
single chest radiograph.

Expert-Determined Standard Construction
Using the reading results of 10 experts, we constructed 

five image-based expert-determined standards for each 
chest radiograph: 1) as an individual judgment, the 
judgment of the most experienced expert (with 18 years 
of experience in thoracic radiology) was selected and for 
joint judgment, we combined the initial judgments of the 

10 experts in four different ways; 2) majority vote (four 
combinations of panels composed of three, five, seven, and 
nine experts); 3) consensus of two experts; 4) consensus of 
three experts; and 5) latent class analysis (LCA) judgments 
(Fig. 1A).

Expert-determined standards were defined in binary 
form (i.e., normal or abnormal radiographs), where an 
abnormality was defined as an area that contains at least 
one potential lesion. A radiograph was considered to 
contain lung cancer based on the majority vote criterion 
when it received majority agreement from the judgments 
of the selected experts. To determine the optimal number 
of experts for majority voting, we conducted 502 majority 
votes, differing in the composition of the odd number of 
experts. The following panel combinations were compared: 
panels composed of 9 (n = 10), 7 (n = 120), 5 (n = 252), 
and 3 (n = 120) of the 10 experts (Supplementary Material 
1). For consensus reading, consensus meetings were 
organized at two institutions with which two and three 
experts were affiliated. The experts from each institution 
were asked to harmonize their initial individual judgments 
into consensus judgments. Through these consensus 
meetings at each institution, single expert-determined 
standards were generated from each of the two institutions. 
For an advanced summary of the judgments of the 10 
experts. The LCA model observes inherent interactive 
patterns within experts’ judgments to statistically estimate 
the tendencies of individual judgments and conclude 
which latent class (in our case, considered to imply 
negativity and positivity in lesion detection) each chest 
radiograph belongs to [17,18]. Among the various LCA 
models, we fitted a two-discrete-latent-class model to the 
collected experts’ judgments of the study sample. Detailed 
information on the LCA model is provided in Supplementary 
Material 2 and Supplementary Table 1. In addition to image-
based analysis, we also constructed lesion-based expert-
determined standards (Supplementary Material 3).

Reader Tests
Reader tests were performed to investigate diagnostic 

performance according to various standards (Fig. 1B). 
For each reader test, 10 radiologists (five males and five 
females; median years of experience in reading thoracic 
imaging, 9 years [range: 5–17 years]) who did not 
participate in the construction of the clinical gold standard 
or expert-determined standards were recruited. The reader 
test consisted of two sessions with a 1-month washout 

Table 1. Baseline Clinical, Radiological, and Pathological 
Characteristics of the Study Sample

Patients with malignant pulmonary nodules (n = 50)
Age, year 67.4 ± 11.7
Sex, male 26 (52)
Nodule location

Right upper lobe 13 (26)
Right middle lobe 2 (4)
Right lower lobe 16 (32)
Left upper lobe 9 (18)
Left lower lobe 10 (20)

Nodule size
≤ 1 cm 8 (16)
> 1 to ≤ 2 cm 23 (46)
> 2 to ≤ 3 cm 9 (18)
> 3 cm 10 (20)

Nodule type
Solid nodule 38 (76)
Part-solid nodule 12 (24)

Nodule visibility on chest radiographs
Visible 42 (84)
Non-visible 8 (16)

Obscuration by the adjacent structure* 23 (46)
Pathologic diagnosis

Adenocarcinoma 41 (82)
Squamous cell carcinoma 6 (12)
Small cell carcinoma 1 (2)
Mixed squamous cell and small cell carcinoma 1 (2)
Sarcomatoid carcinoma 1 (2)

Individuals with normal chest radiographs (n = 50)
Age, year 56 ± 9.1
Sex, male 30 (60)

Data are mean ± standard deviation or number of patients with % 
in parentheses. *Pulmonary malignant nodules were obscured by 
the following structures: bone (n = 12), heart (n = 5), diaphragm 
(n = 3), bone and mediastinum (n = 1), bone and diaphragm (n = 
1), and heart and hilum (n = 1)
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period between sessions. In the first session, 10 radiologists 
consecutively and independently reviewed 100 chest 
radiographs. In the second session, they reviewed the chest 
radiographs supplied with the nodule detection results of 
the commercially available DLAD model (Lunit INSIGHT CXR, 
version 4.7.2, Lunit) using the toggle function between the 
chest radiograph alone and the radiograph overlaid with 
the heatmap. If they detected potential lung cancer, they 
annotated the lesion with box annotations in the same way 

used for constructing expert-determined standards.

Statistical Analysis
We assessed the concordance of the above-described five 

expert-determined standards with the clinical gold standard 
and compared their sensitivity, specificity, and accuracy. 
In subsequent reader tests, the diagnostic performance of 
the 10 radiologists alone or assisted by the DLAD model 
and the DLAD model alone was calculated. The following 

Most experienced individual judgmentIndividual judgments (n = 10)

Majority vote of 9 graders (n = 10)

Majority vote of 7 graders (n = 120)

Majority vote of 5 graders (n = 252)

Majority vote of 3 graders (n = 120)

Consensus judgment of 2 graders (n = 1)

Consensus judgment of 3 graders (n = 1)

Latent class analysis model (n = 1)

10 
graders

50 
normal 

chest radiographs 

50 
chest radiographs 
with lung cancers

Representative majority vote of 7 graders

Consensus judgment of 2 graders

Consensus judgment of 3 graders

2-discrete-LCA

Constructed 
Expert-determined 

Reference standardsA

B

Fig. 1. Construction of expert-determined reference standards and reader tests in this study.
A. Using a study sample consisting of 100 chest radiographs (50 chest radiographs with lung cancer and 50 normal chest radiographs), 10 
experts constructed five final expert-determined reference standards: individual judgment of the most experienced expert, the majority vote of 
seven experts, the consensus of two and three experts, and latent class analysis judgments. The numbers in parentheses indicate the number 
of combinations that can be made by 10 experts. B. Ten radiologists participated in the reader tests, which consisted of two reading sessions. 
In the first session, they independently reviewed the study sample without a commercially available deep learning-automated detection (DLAD) 
model. In the second session, they reviewed the chest radiographs and supplied with results of the DLAD model.

100 chest radiographs
- 50 normal chest radiographs defined by CT exmination
- 50 chest radiographs with pathology-confirmed lung cancers

Performance assessments by
a clinical gold standard & expert-determined standards

Thoracic
radiologists

(n = 10)

Without
deep learning

model

1 month
washout
period

With
deep learning

model

1st session 2nd session
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comparisons were performed: 1) the diagnostic performance 
of radiologists between the clinical gold standard and 
expert-determined standards, 2) when radiologists were 
assisted by the DLAD model, the change in diagnostic 
performance between the clinical gold standard and expert-
determined standards, and 3) the added value of the DLAD 
model to the radiologists between the clinical gold standard 
and expert-determined standards. To increase general 
validity, bootstrapping was performed with sample sizes of 
50 and 100 iterations. All comparisons were performed using 
the t test with Bonferroni correction.

All statistical analyses were performed using R version 
4.1.0 (R Project for Statistical Computing) and Mplus 
version 8.7 (Muthén & Muthén). A p-value of < 0.05 was 
considered statistically significant, and significant p-values 
were determined by Bonferroni correction in each multiple 
comparison.

RESULTS

Concordance of the Expert-Determined Standards to the 
Clinical Gold Standard

For the majority vote, seven experts had a sensitivity 
of 67.3% (95% confidence interval [CI]: 66.9–67.8) and 
specificity of 100% (95% CI: 100–100) that were equivalent 
to those of nine experts (sensitivity, 68.0% [95% CI: 66.4–
69.6], p = 0.403; specificity, 100% [95% CI: 100–100], p > 
0.999) and significantly higher than those of five experts 
(sensitivity, 66.3% [95% CI: 65.8–66.8], p = 0.002; specificity, 
99.5% [95% CI: 99.4–99.6], p < 0.001) and three experts 
(sensitivity, 65.3% [95% CI: 64.3–66.4], p < 0.001 [not 
shown]; specificity 98.4% [95% CI: 97.9–98.8], p < 0.001 [not 
shown]) (Supplementary Table 2). Therefore, a majority vote 
by seven experts was considered the representative expert-
determined standard for the majority vote (unless otherwise 
noted, hereafter, “majority vote” refers to a majority vote 
by seven experts). The diagnostic performance of each 
expert, the consensus judgments of two and three experts, 
and the LCA model are described in Supplementary Tables 3, 
4, and 5, respectively.

The LCA model had a sensitivity of 72.6% (95% CI: 70.9–
74.3), which was equivalent to that of individual judgment 
(70.2% [95% CI: 68.6–71.9], p = 0.049) and higher than 
that of majority vote (68.8% [95% CI: 67.0–70.6], p = 
0.002) and consensus judgments (two experts: 62.2% [95% 
CI: 60.3–64.1], p < 0.001; three experts: 60.4% [95% CI: 
58.5–62.2], p < 0.001). The LCA model had a specificity of 

100% (95% CI: 100–100), which was significantly higher 
than that of individual judgment (94.2% [95% CI: 93.4– 
95.0], p < 0.001) and the consensus of three experts (98.2% 
[95% CI: 97.7–98.7], p < 0.001) but equivalent to that 
of the majority vote and the consensus of two experts (all 
specificities, 100%, 95% CI: 100–100, p > 0.999) (Table 2). 
The results of the lesion-based analyses are presented in 
Supplementary Table 6.

Reader Tests
The results of the reader tests are listed in Table 3. When 

assessed by expert-determined standards, all sensitivities of 
radiologists alone, radiologists assisted by the DLAD model, 
and the DLAD model alone were overestimated compared 
to when the clinical gold standard was applied (range of 
overestimation: 10.9% to 18.4% for radiologists alone; 
7.9% to 15.7% for radiologists assisted by the DLAD model; 
4.0% to 14.9% for the DLAD model alone; all p-values < 
0.05) (Fig. 2A). However, specificities were underestimated 
when assessed by expert-determined standards (range of 
underestimation: 4.6% to 9.5% for radiologists alone; 6.9% 
to 12.7% for radiologists assisted by the DLAD model; 10.0% 
to 17.9% for the DLAD model alone; all p-values < 0.05) 
(Fig. 2B). The representative cases are shown in Figure 3.

When radiologists were assisted by the DLAD model, 
the overestimation of sensitivity decreased (individual 
judgment: 10.9% to 7.9%; majority vote: 17.4% to 13.8%; 
consensus of two experts: 18.2% to 15.7%; consensus of 
three experts: 18.4% to 15.7%; LCA model: 16.8% to 15.5%; 
all p-values < 0.001); however, the underestimation of 
specificity was exaggerated (individual judgment: -6.0% to 
-8.9%; majority vote: -6.3% to -10.4%; consensus of two 
experts: -9.5% to -12.7%; consensus of three experts: -9.3% 
to -12.5%; LCA model: -4.6% to -6.9%; all p-values < 0.001).

Using each standard, the added value of the DLAD model 
was verified for sensitivity (reference standard: 66.4% to 
72.8%; individual judgment: 77.3% to 80.7%; majority vote: 
83.8% to 86.6%; consensus of two experts: 84.6% to 88.5%; 
consensus of three experts: 84.8% to 88.5%; LCA model: 
83.2% to 88.3%; all p-values < 0.001), but the increment 
was significantly greater with the clinical gold standard 
than with the expert-determined standards (clinical gold 
standard: 6.4%; individual judgment: 3.4%; majority 
vote: 2.8%; consensus of two experts: 3.9%; consensus of 
three experts: 3.7%; all p-values < 0.001), except for the 
LCA model (5.1%, p = 0.094). Although the specificity of 
radiologists with the clinical gold standard (94.2% to 97.7%, 
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p < 0.001) and LCA model (89.6% to 90.8%, p = 0.001) 
increased significantly with the DLAD model, the other 
four expert-determined standards did not show significant 
changes in specificity with the DLAD model (individual 
judgment: 88.2% to 88.8%, p = 0.094; majority vote: 
87.9% to 87.3%, p = 0.134; consensus of two experts: 
84.7% to 85%, p = 0.459; and consensus of three experts: 
84.9% to 85.2%, p = 0.465). The specificity increment was 
significantly greater with the clinical gold standard than 
with the expert-determined standards (clinical gold standard: 
3.5%; individual judgment: 0.6%; majority vote: -0.6%; 
consensus of two experts: 0.3%; consensus of three experts: 
0.3%; LCA model: 1.2%; all p-values < 0.001). The results 
of the lesion-based reader tests using expert-determined 
standards are presented in Supplementary Material 4, 
Supplementary Table 7, and Supplementary Figure 1. The 
correlations between the concordance of expert-determined 

standards with the clinical gold standard and reader test 
results are described in Supplementary Material 5.

DISCUSSION

In this study, we assessed the concordance of various 
expert-determined standards with the clinical gold standard 
for detecting malignant pulmonary nodules on chest 
radiographs. Considering both sensitivity and specificity, 
the LCA model was the most similar to the clinical gold 
standard (sensitivity, 72.6%; specificity, 100%). In reader 
tests, the radiologists alone or assisted by the DLAD model 
tended to show overestimated sensitivity but underestimated 
specificity when expert-determined standards were applied 
as ground truth (all p-values < 0.05). These tendencies 
were diminished for sensitivity but exaggerated for 
specificity with DLAD assistance (all p-values < 0.001). The 

Table 2. Concordance of Expert-Determined Standards to the Clinical Gold Standard (Pathologic Confirmation) in Terms of 
Sensitivity, Specificity, and Accuracy and Their Comparison between Different Expert-Determined Standards

Sensitivity

Individual 
judgment*

Majority vote† Consensus of 
two experts

Consensus of 
three experts

LCA model‡

70.2% (68.6–71.9) 68.8% (67.0–70.6) 62.2% (60.3–64.1) 60.4% (58.5–62.2) 72.6% (70.9–74.3)
Individual judgment* - 0.233 < 0.001 < 0.001 0.049
Majority vote† 0.233 - < 0.001 < 0.001 0.002
Consensus of two experts < 0.001 < 0.001 - 0.163 < 0.001
Consensus of three experts < 0.001 < 0.001 0.163 - < 0.001
LCA model‡ 0.049 0.002 < 0.001 < 0.001 -

Specificity
Individual 
judgment*

Majority vote† Consensus of 
two experts

Consensus of 
three experts

LCA model‡

94.2% (93.4–95.0) 100% (100–100) 100% (100–100) 98.2% (97.7–98.7) 100% (100–100)
Individual judgment* - < 0.001 < 0.001 < 0.001 < 0.001
Majority vote† < 0.001 - > 0.999 < 0.001 > 0.999
Consensus of two experts < 0.001 > 0.999 - < 0.001 > 0.999
Consensus of three experts < 0.001 < 0.001 < 0.001 - < 0.001
LCA model‡ < 0.001 > 0.999 > 0.999 < 0.001 -

Accuracy
Individual 
judgment*

Majority vote† Consensus of 
two experts

Consensus of 
three experts

LCA model‡

82.1% (81.1–83.1) 84.3% (83.3–85.4) 81.1% (79.9–82.2) 79.2% (78.1–80.3) 86.3% (85.3–87.2)
Individual judgment* - 0.003 0.168 < 0.001 < 0.001
Majority vote† 0.003 - < 0.001 < 0.001 0.007
Consensus of two experts 0.168 < 0.001 - 0.022 < 0.001
Consensus of three experts < 0.001 < 0.001 0.022 - < 0.001
LCA model‡ < 0.001 0.007 < 0.001 < 0.001 -

A p-value < 0.005 was considered statistically significant for concordance, according to the Bonferroni correction. Parentheses are 95% 
confidence intervals. *Individual judgment of expert 5, who had the most experience in thoracic radiology, †The judgment of the majority 
vote was determined by seven experts, ‡2-D-class LCA. LCA = latent class analysis
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Table 3. Reader Test to Detect Malignant Pulmonary Nodules on Chest Radiographs according to Reference Standards

Session
Diagnostic 

Measure

Reference Standards

Clinical Gold 

Standard*

Individual 

Judgment† Majority Vote‡ Consensus of 

Two Experts

Consensus of 

Three Experts
LCA Model§

Reader test 

  without  

  DLAD

Sensitivity 66.4% (65.7–67.2) 77.3% (76.6–78.1) 83.8% (83.0–84.5) 84.6% (83.9–85.3) 84.8% (84.2–85.5) 83.2% (81.5–83.0)

Specificity 94.2% (93.7–94.7) 88.2% (87.6–88.8) 87.9% (87.3–88.5) 84.7% (84.1–85.3) 84.9% (84.2–85.5) 89.6% (89.4–90.6)

Accuracy 80.3% (79.9–80.7) 84.1% (83.7–84.6) 86.5% (86.0–86.9) 84.7% (84.3–85.1) 84.8% (84.4–85.3) 87.3% (86.7–87.6)

Reader test 

  with DLAD
Sensitivity 72.8% (71.9–73.7) 80.7% (79.9–81.5) 86.6% (85.7–87.4) 88.5% (87.7–89.3) 88.5% (87.7–89.2) 88.3% (87.5–89.2)

p-valueǁ < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Specificity 97.7% (97.5–98.0) 88.8% (88.4–89.3) 87.3% (86.8–87.8) 85.0% (84.5–85.6) 85.2% (84.7–85.7) 90.8% (90.4–91.3)

p-valueǁ < 0.001 0.094 0.134 0.459 0.465 0.001

Accuracy 84.9% (84.4–85.4) 85.6% (85.3–85.9) 87.0% (86.7–87.3) 86.1% (85.7–86.5) 86.2% (85.9–86.5) 89.9% (89.6–90.2)

p-valueǁ < 0.001 < 0.001 0.069 < 0.001 < 0.001 < 0.001

DLAD 

  standalone
Sensitivity 82.6% (81.9–83.3) 87.0% (86.4–87.7) 94.6% (93.9–95.3) 97.5% (96.8–98.2) 94.1% (93.4–94.8) 97.4% (96.7–98.1)

Specificity 100% (99.3–100) 86.6% (85.9–87.3) 85.5% (84.9–86.2) 83.5% (82.8–84.2) 82.1% (81.4–82.8) 90.0% (89.3–90.7)

Accuracy 91.0% (90.3–91.7) 86.7% (86.0–87.4) 88.6% (88.0–89.3) 87.9% (87.3–88.6) 85.9% (85.3–86.6) 92.7% (92.0–93.4)

Parentheses are 95% confidence intervals. The p-values of all comparisons between the clinical gold standard and each expert-determined standard 
were < 0.05. *Clinical gold standard: pathology-proven and CT-proven malignant pulmonary nodules, †Individual judgment of expert 5, who had 
the most experience in thoracic radiology, ‡The judgment of the majority vote was determined by seven experts, §2-D-class LCA, ǁComparison of 
diagnostic performance between radiologists alone and radiologists assisted by the DLAD model. LCA = latent class analysis, DLAD = deep learning-
based automatic detection

improvement in radiologists’ performance by DLAD assistance 
was confirmed in terms of sensitivity and specificity, even 
when expert-determined standards were used as the ground 
truth. However, the corresponding effects were estimated to 
be significantly lower than when the clinical gold standard 
was used as the ground truth (all p-values < 0.001), except 
for the sensitivity with the LCA model (p = 0.094).

As little is known about the implications of using 
expert-determined standards as the ground truth when 
evaluating the performance and usefulness of DL models, 
the research results should be cautiously interpreted in 
terms of which type of reference standard is used as the 
ground truth [2]. Indeed, while clinical gold standards for 
the disease have been set as the ground truth in many 
studies, several other studies have set experts’ opinions 
(e.g., radiological reports from radiologists) as the ground 
truth even for the same task. For example: 1) DL models 
detecting malignant pulmonary nodules, which were set 
based on pathologically proven lesions [16,19] or partially 
clinically diagnosed malignancies [14,15]; 2) DL models 
detecting clinically relevant diseases on chest radiographs 
based on the disease-specific gold standard [8] or expert 
interpretations [20-24]; and 3) DL models predicting lung 
nodule malignancy on chest CT based on pathology [25-
27] or expert interpretations [28-30]. Of course, clinical 
gold standards are not always affordable or attempted in 
real-world clinical settings [31,32]. For example, cancers 

can be clinically diagnosed and treated without pathological 
results because patients may have conditions that make 
them ineligible for biopsy or surgery or due to the potential 
risk of procedure-related complications [33]. This occasional 
unavailability of a clinical gold standard requires expert-
determined standards by clinical domain experts. In a previous 
study, lung metastasis was adjudicated by thoracic radiologists 
who used both clinical and pathological information [15]. 
Using experts’ opinions reflects the real-world clinical setting 
and is an easy way to set a clinical gold standard; however, the 
reliability remains questionable regarding whether this method 
yields a genuine assessment of a DL model’s performance. 
In contrast, another study used only pathologically proven 
lung cancer as their clinical gold standard; this strategy can 
avoid measurement bias but is prone to selection bias [16]. 
Therefore, knowledge of the implications of expert-determined 
standards for evaluating the diagnostic performance of DL 
models will strengthen the applicability of DL algorithms to 
real-world clinical settings.

It should be noted that the LCA model had the highest 
diagnostic performance among the five constructed expert-
determined standards. We suggest a high concordance with the 
LCA model derived from the model’s characteristics of learning 
the inherent propensities of each expert and automatically 
making an interactive decision on that basis [17,18]. This is 
because the LCA model rigorously identified the propensities 
of all 10 experts and then presented the results, so the model 
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could be free from the biased tendencies of a limited number 
of experts. We speculate that this might explain the high 
agreement between the LCA model and the 10 radiologists, 
leading to the high sensitivity of the reader tests.

In the reader study, we verified the tendency to 
overestimate sensitivity and underestimate specificity when 
expert-determined standards were applied as ground truth 
compared to the clinical gold standard. We speculate that 
since the expert-determined standards had the inherent 
characteristics of low sensitivity (60.4%–72.6%) and high 
specificity (94.2%–100%) in the concordance analyses, 

they more easily yielded negative results. Readers often 
misgrade true-positive cases as false positives and false 
negatives as true-negative cases, leading to these tendencies. 
Another explanation is that the 10 experts and 10 radiologists 
participating in the reader tests had common characteristics 
in reading chest radiographs as human beings (e.g., only 
detecting clearly visible lung nodules). Interestingly, this 
tendency was also observed in the DLAD model because it was 
trained using datasets of chest radiographs with visible lung 
cancer, as determined by experts [8,14].

This study had several limitations. First, the small 
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Fig. 2. Plots for the diagnostic performance of radiologists alone, radiologists assisted by a deep learning-based automatic 
detection (DLAD) model, and the DLAD model alone.
A. Plot for sensitivity. Each color represents each standard. Compared to the clinical gold standard by pathological confirmation (red circle), the 
sensitivities are overestimated when expert-determined standards are applied. These biases in the sensitivities assessed by the expert-determined 
standards are diminished when the DLAD model assists radiologists. The added value of the DLAD model is significantly lower when assessed by 
expert-determined standards than when using the clinical gold standard. B. Plot for specificity. Each color represents each standard. Compared 
to the clinical gold standard by pathological confirmation (red circle), the specificities are underestimated when expert-determined standards are 
applied. These biases in the specificities assessed by the expert-determined standards are exaggerated when the DLAD model assists radiologists. 
The added value of the DLAD model is significantly lower when assessed by expert-determined standards than when using the clinical gold standard.
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sample size could have limited the results of this 
study. Second, although 10 radiologists with sufficient 
experience in chest imaging participated in the reader 
tests, their performance might not represent radiologists 
in general, including radiologists with other specialties 
or less experienced radiologists (residents or fellows). As 
less experienced radiologists tend to be more strongly 
influenced by the DLAD model [8,34], more studies that 
include these groups are warranted. Third, we only used 
the malignant pulmonary nodule detection task on chest 
radiographs as a representative task to simulate a setting 
in which expert-determined standards were used as the 
ground truth. However, task characteristics, sample size, 
disease prevalence, independency and superiority between 
the reference standard and index test, correction methods 
(e.g., LCA model), and their interaction terms can affect the 
results of imperfect reference standards [13]. Therefore, the 
results of this study should not be interpreted directly in the 
context of other tasks or other AI algorithms. Further studies 
investigating the impact of expert-determined standards 
on various tasks, considering the above influencing factors, 

are warranted. Finally, we did not use various correction 
methods other than the LCA model to compensate for 
expert-determined standards, such as the method of Staquet 
et al. [13].

In conclusion, the LCA model was most similar to the 
clinical gold standard for detecting malignant pulmonary 
nodules on chest radiographs. Expert-determined standards 
led to a bias in measuring the diagnostic performance of 
the AI model, highlighting the importance of high-quality 
reference standards to evaluate the performance of AI.
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request.

A B

Fig. 3. Representative figures of biased diagnostic performance when expert-determined standards are applied as ground truth in 
the reader study.
A. Representative cases of overestimating sensitivity. A chest radiograph with lung cancer in the right lower lobe (pathologically proven 
adenocarcinoma). In both image-based and lesion-based analyses, the radiologist’s answer that the radiograph is normal is considered a false 
negative with the clinical gold standard by pathological confirmation (red box), but a true negative when any expert-determined standard is 
included. This can lead to an overestimation of sensitivity. B. Representative case of underestimating specificity. Another radiograph shows 
lung cancer in the right lower lobe (pathologically proven adenocarcinoma). In the image-based and lesion-based analyses, the radiologist’s 
answer (yellow box) is a true positive with the clinical gold standard by pathological confirmation (red box) but a false positive with any expert-
determined standard. This can lead to an underestimation of specificity.
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