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Brain connectivity analysis has shown great promise in understanding how aging affects
functional connectivity; however, an explanatory framework to study healthy aging in
terms of network efficiency is still missing. Here, we study network robustness, i.e.,
resilience to perturbations, in resting-state functional connectivity networks (rs-fMRI)
in young and elder subjects. We apply analytic measures of network communication
efficiency in the human brain to investigate the compensatory mechanisms elicited in
aging. Specifically, we quantify the effect of “lesioning” (node canceling) of either single
regions of interest (ROI) or whole networks on global connectivity metrics (i.e., efficiency).
We find that young individuals are more resilient than old ones to random “lesioning” of
brain areas; global network efficiency is over 3 times lower in older subjects relative to
younger subjects. On the other hand, the “lesioning” of central and limbic structures
in young subjects yield a larger efficiency loss than in older individuals. Overall, our
study shows a more idiosyncratic response to specific brain network “lesioning” in elder
compared to young subjects, and that young adults are more resilient to random deletion
of single nodes compared to old adults.

Keywords: normal aging, resting-state fMRI, network robustness, network efficiency, network degeneration
hypothesis

1. INTRODUCTION

The concept of brain reserve has its origins in the experimental observation of the mismatch
between disease-related changes in the brain and the clinical manifestation of those changes. For
example, postmortem analysis of people with Alzheimer’s disease showed a non-negligible number
of individuals with fewer clinical symptoms than the pathological features suggested (Katzman et al.,
1988). These individuals have heavier brains containing more neurons or a greater “reserve” that
could help fight cognitive decline associated with brain damage, e.g., neuronal loss (Crystal et al.,
1988; Guo et al., 2013). According to the brain reserve hypothesis, clinical expression of pathologies
and aging effects can be effectively attenuated or delayed in time in those individuals with more
resilient or larger reserve brains (Mortimer, 1997). Cognitive reserve refers to the ability to alter brain
reserve through several means, including diet, education, and lifestyle (Whalley et al., 2004; Stern,
2012; Mora, 2013; Bozzali et al., 2015; Freret et al., 2015). The concept of reserve or resilience can
help to explain the neuroprotective effects triggered by brain changes and is supported by structural
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(Solé-Padullés et al., 2009; Bartrés-Faz and Arenaza-Urquijo,
2011) and functional imaging studies (Stern et al., 2005; Jellinger
and Attems, 2013).

A theory of the mechanisms underlying the neuroprotective
effect of brain resilience in the face of brain changes, e.g., aging,
is still missing. Here, we try to understand quantitatively the
relationship between resilience and successful aging. Aging is a
complex physiological process with multiple temporal and spatial
scales, and it is unrealistic to expect any all encompassing pre-
dictive model of aging. Nevertheless, a common finding is that
the older subjects present reduced functional connectivity com-
pared to young adults (Andrews-Hanna et al., 2007; Sambataro
et al., 2010; St Jacques et al., 2010; Campbell et al., 2013). We
will try to replicate this finding and go beyond, identifying the
brain networks that when disconnected from the rest, result in
dramatic/mild efficiency loss in transmitting information.

We explore the hypothesis that normal aging is associated with
changes in network efficiency. Transport network efficiency mea-
sures have been used to study the relationship between structural
and resting-state functional connectivity (Goni et al., 2014). The
effects of lesioning in white matter connections can be studied
via the simulation of the removal of individual connections from
the connectome. Irimia and Van Horn (2014)’s report using this
technique has been able to delineate “a core scaffold” or white
matter network connections that when disrupted trigger dramatic
changes in the overall organization of the human connectome.
However, a systematic study of the effects of simulated lesioning
in rs-fMRI is still missing. In this paper, we try to fill this gap, pro-
viding efficiency and robustness measures to quantify the impact
of simulated lesioning.We investigate the hemispheric asymmetry
reduction hypothesis (Cabeza et al., 2002), studying the effects
of lesioning hemispheres separately in older compared to young
adults.

2. MATERIALS AND METHODS

2.1. Data Acquisition
Forty-two healthy volunteers separated in two groups, twenty-
three healthy young volunteers (ages 21–32; mean 22.7; SD
2.48; male/female 23/0) and 19 healthy older volunteers (ages
60–78; mean 66.5; SD 4.93; male/female 16/3; MMSE score
29.5± 0.1) took part in the fMRI experiment. All subjects had
normal or corrected-to-normal vision, and all the participants
in both age groups have not been diagnosed with mild cognitive
impairment or psychiatric or neurological disorders. The
study was approved by the ethics committee of Okayama
University, and written informed consent was obtained before
the study. All subjects were imaged using a 1.5-T Philips
scanner vision whole-body MRI system (Okayama University
Hospital, Okayama, Japan), which was equipped with a head
coil. Functional MR images were acquired during rest when
subjects were instructed to keep their eyes closed and not to
think of anything in particular. The imaging area consisted of
32 functional gradient-echo planar imaging (EPI) axial slices
(voxel size= 3mm× 3mm× 4mm, TR= 3000ms, TE= 50ms,
FA= 90°, acquisition matrix= 80× 79, FOV= 240mm×
240mm, slice thickness= 4mm, gap= 0.5mm) that were used to

obtain T2*-weighted fMRI images in the axial plane. We obtained
176 functional volumes and excluded the first 4 scans from
analysis. After the EPI scan, a T1-weighted 3D magnetization-
prepared rapid acquisition gradient echo (MP-RAGE)
sequence was acquired (TR= 9.4ms, TE= 4.6ms, FA= 10°,
acquisition matrix= 240× 240, voxel size= 1mm× 1mm×
1mm, 200 contiguous axial slices).

2.2. Data Preprocessing
Data were preprocessed using Statistical Parametric Mapping
software SPM81 and REST v1.7.2 To correct for differences
in slice acquisition time, all images were synchronized to the
middle slice. Subsequently, images were spatially realigned to
the first volume due to head motion. None of the subjects
in both conditions had head movements exceeding 2.5mm on
any axis or rotations >2.5°. After the correction, the imag-
ing data were normalized to the Montreal Neurological Insti-
tute (MNI) EPI template supplied with SPM8 (resampled to
2mm× 2mm× 2mm voxels).3 In order to avoid introduc-
ing artificially local spatial correlation, the normalized images
were not smoothed. Finally, the resulting data were temporally
band-pass filtered (0.01–0.08Hz) to reduce the effects of low-
frequency drifts and high-frequency physiological noises (Jiao
et al., 2011).

2.3. Anatomical Parcellation
Before whole-brain parcellation, several sources of spurious vari-
ance including the estimated head motion parameters, the global
brain signal, and the average time series in the cerebrospinal fluid
andwhitematter regions were removed from the data through lin-
ear regression. It ought to be noted that Murphy et al. (2009) have
pointed out that global signal removal may artificially introduce
anticorrelated networks. The effect of the removal of the global
signal on resting-state correlation maps have been examined by
Fox et al. (2009), reaching to the conclusion that several charac-
teristics of anticorrelated networks are not attributable to global
signal removal and therefore suggesting a biological basis for those
anticorrelations.

The fMRI data were parcellated into 90 regions using the
automated anatomical labeling template (AAL) (Tzourio-Mazoyer
et al., 2002). For each subject, the mean time series of each region
was obtained by simply averaging the time series of all voxels
within that region.

2.4. Brain Network Construction
To measure the functional connectivity among regions, we cal-
culated the Pearson correlation coefficients between any possible
pair of regional time series and then obtained a temporal cor-
relation matrix (90× 90) for each subject. We applied Fisher’s
r-to-z transformation to improve the normality of the correla-
tion matrix. Then, two-tailed one-sample t-tests were performed
for all the possible 4005 = 90×89

2 pairwise correlations across

1http://www.fil.ion.ucl.ac.uk/spm/
2http://restfmri.net/forum/index.php
3http://imaging.mrc-cbu.cam.ac.uk/imaging/Templates
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A B

FIGURE 1 | (A) Adjacency matrix in young subjects. (B) Adjacency matrix in old subjects. The red dots represent connections between two nodes or brain regions.
An element i, j of the adjacency matrix is M(i, j)= 1 if there is a significant correlation between brain regions i and j and M(i, j)= 0, otherwise. The number of edges in
the young group is 718 and in the old group is 308; the average degree connectivity is 8.97 and 4.42, respectively.

subjects to examine whether each interregional correlation sig-
nificantly differed from zero. A Bonferroni–Holm correction for
multiple comparisons was further used to threshold the correla-
tion matrix into the adjacency matrix M as shown in Figure 1.
Finally, an undirected binary graph was acquired in which
nodes represent brain regions and edges represent links between
regions.

2.5. Information Efficiency
A quantitative understanding of network robustness, that is, func-
tional network invariance under perturbation, can shed light
on the properties that mediate in developmental, aging, and
pathological processes in the human brain. In essence, robust-
ness measures the capacity of the network to perform the
same function before and after a perturbation. Perturbations
are events, internal or external, that elicit a change in the net-
work configuration. Possible perturbations are the obliteration
of one or more nodes and changes in the connectivity between
nodes.

The efficiency of a network is a network centrality measure that
quantifies the network’s reliability in transmitting information.
Latora and Marchiori (2001) proposed a measure of network
efficiency, which is defined as the efficiency in transmitting infor-
mation between any two nodes (i, j) in a graph G as the inverse of
the shortest path that connects them.

εij =
1
dij

(1)

where dij is the shortest path length or the geodesic distance
between nodes i and j. Note that when there is no path that
connects the nodes i and j, dij =∞, and the efficiency in the
communication of the two nodes is zero, εij = 0.

The efficiency of the network G, Σ(G), is then calculated as the
average of the efficiency between any two nodes εij

Σ(G) =
∑

i ̸=j εij

N(N− 1) =
1

N(N− 1)
1∑

i̸=j dij
(2)

where N is the number of nodes.
We can calculate the information centrality C of any node i in

a network G as the variation in the network efficiency caused
by the removal of the edges incident in i. Thus, the information
centrality of a node i,Ci, is the difference between the efficiency of
the original network Gwith N nodes and E edges,G(N,E), and the
efficiency of the resulting graphG(N − i, E− ki) withN − i nodes
andE− ki edges, where ki denotes the set of edges incident to node
i. The centrality of a node is a normalized measure of the loss in
network efficiency, caused by the isolation of a node in G. Thus,
the centrality of node i or the efficiency loss after the disconnection
of node i is

Ci =
Σ(G(N,E))− Σ(G(N− i,E− ki))

Σ(G(N,E)) (3)

From equation (3), a network G is considered to be robust
to a perturbation if the network efficiency, Σ(G), stays close
to the original value after a perturbation. Ideally, Σ(G(N,
E))=Σ(G(N− i, E− ki)) with efficiency loss or centrality of node
i equals to 0.

By the same token, the information centrality of a set of nodes
S or the efficiency loss upon the removal of S can be calculated as
the normalized measure of the loss in network efficiency caused
by the isolation of a set of nodes S in G.

CS =
Σ(G(N,E))− Σ(G(N− S,E− kS))

Σ(G(N,E)) (4)

Frontiers in Aging Neuroscience | www.frontiersin.org February 2016 | Volume 7 | Article 2563

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Gomez-Ramirez et al. A Quantitative Study of Network Robustness in rs-fMRI

3. RESULTS

The global network efficiency for unperturbed networks as
defined in equation (2) is 0.3678 for young subjects and 0.1144
for elder subjects. Thus, young subjects’ connectivity network
is slightly more than three times more efficient in terms of the
shortest path distance between any two nodes as calculated in
equation (2).

In order to obtain the efficiency measures described in equa-
tions (3) and (4), we perturb the resting-state network in the
following three ways: first, using random single-node deletion
(Section 3.1); second, targeting specific networks of interest
(Section 3.2); and third, the efficiency loss after lesioning edges
(Section 3.3).

3.1. Efficiency after Single-Node Lesioning
Here, we build a population of networks created by the systematic
lesioning of single nodes. The population of perturbations P that
result from the systematic deletion of all nodes in all possible
combinations has as many networks as

|P| =
N∑
i=1

C(N, i) = N!
(i !)(N− i)!

For example, the population of networks that result from the
deletion of one single node has 90 networks

1∑
i=1

C(90, i) = 90!
(1!)(90 − 1)! = 90

Similarly, the number of perturbed networks obtained by delet-
ing two nodes in all possible ways contains 4005 networks

2∑
i=1

C(90, i) = 90!
(2!)(90 − 2)! = 4005

We build a distribution of the efficiency measures described
in Section 2 for both young and older subjects for the systematic
removal of one node. Thus, in the young group, we denote Py ,90
the distribution of networks with only one node removed, that is,
Py ,90 has 90 different networks where for each of them, one node
and its connections have been deleted. The mean of the efficiency
measure for Py ,90 is 0.358. The most significant loss in efficiency
occurs with the removal of node 74 (“Lenticular nucleus, puta-
men”) followed by node 31 (“Insula right”). The average efficiency
loss in the young condition is 2.44%with amaximum of 4.67% for
node 74 (“Lenticular nucleus, putamen”) and no efficiency loss
for node 89 (“temporal pole: middle temporal gyrus”) (Figure 2).
The rationale for the different impact in the efficiency caused by
the obliteration of certain nodes can be found in the connectivity
degree. In general, the nodes that, after their removal, trigger a low
efficiency loss have also low connectivity degree and those that
produce a more pronounced reduction of the network efficiency
tend to be more connected (Figures 3 and 4).

Similarly, for the elder condition, we denote Pe ,90 the distribu-
tion of networks with only one node removed. The mean of the

efficiency measure [equation (2)] for the 90 networks obtained
upon single-node deletion is 0.109. As it happened in the young
condition, the removal of node 89 (“Temporal pole: middle tem-
poral gyrus”) has no effect in the efficiency. Interestingly, the
removal of nodes with the lowest connectivity degree [equation
(2)] has also no quantifiable effect in the network efficiency
(Figure 2).

The most significant loss in efficiency occurs with the removal
of node 62 (“Inferior parietal, but supramarginal and angular
gyri”). After the removal of this node, the efficiency loss relative
to the original network is 32.87%. This is an interesting result
since node 62 is not a highly connected node and its connectiv-
ity degree is 6. Nodes 24 (“Superior frontal gyrus, medial”), 44
(“Calcarine fissure and surrounding cortex”), and 51 (“Middle
occipital gyrus”) have more connections, connectivity degree as
10, and upon their deletion, the efficiency loss is not as severe as
in the case of node 62. The mean efficiency loss in the elder group
after the removal of a single node is 4.61% (in the young group,
its 2.44%).

The connectivity degree alone is a much worse predictor of
efficiency loss for old than for young subjects (Figures 3 and 4).
This is in agreement with the literature of functional connectivity
in healthy aging. The process of aging underlies global reorgani-
zation of brain functional networks that reflect the topological
changes observed across the human lifespan (Cao et al., 2014;
Song et al., 2014). Furthermore, as shown in Geerligs et al. (2015),
brain networks in the elderly showed decreased modularity (less
distinct functional networks) and decreased local efficiency.

3.2. Efficiency after Target Networks
Lesioning
So far, we have quantified the efficiency loss due to the removal
of single nodes. In this section, we investigate how the efficiency
measure is affected by the removal of entire networks of interest.
In particular, we study the efficiency loss of the Default Mode
Network (DMN), temporal lobe, frontal lobe, insula and cingulate
gyrus, occipital lobe, parietal lobe, central structures, and limbic
structures. The numerical results are displayed in Table 1 and
brain connectivity is shown in Figure 5.

The DMN is commonly considered to consist of medial pre-
frontal cortex (AAL 23, 24, 25, and 26), posterior cingulate cor-
tex/precuneus (AAL 35, 36/67, and 68) and bilateral inferior
parietal lobule (AAL 61 and 62). The removal of the DMN in
young adults triggers an efficiency loss of the 19.6%. In the elder
condition, the same procedure yields an efficiency reduction of
61.66%. It is remarkable that in the elder condition, the lesioning
of theDMNnetwork,which represents the 11%of the total regions
90 regions, brings down the efficiency of the network to 61.66%.
The strong efficiency reduction associated with the lesioning of
the DMN in old subjects is coherent with the hypothesis that
there is a decrease in activity in the DMN in aging (Koch et al.,
2010). This age-based reduction in DMN activity can trigger
mechanisms that compensate the loss in DMN activity with an
increase in connectivity between the DMN and other networks
(Damoiseaux et al., 2008). According to this hypothesis, the DMN
becomes a more central network and upon the lesioning of the
DMN, a dramatic efficiency loss is produced.
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The removal of the frontal lobe, the parietal lobe, and the
temporal lobe has a larger impact in the elder group than in
the young group. Interestingly, we have identified three brain
structures in which the lesioning in young individuals has a larger
impact compared to old subjects. The lesioning of the occipital
lobe triggers a slightly lower efficiency loss value in the old group
compared to the young group. More interesting is the lesioning
of the limbic structures and the central structures. The efficiency
loss for these structures shows a distinct difference between young
and old individuals with larger values for the former. The minor
impact of the lesioning of central and limbic structures in the old

condition is conformingwith the literature that shows degradation
of frontostratial network in aging (Salami et al., 2014) and the
breakdown between the hippocampal regions and the DMN (Fjell
et al., 2015). A plausible explanation is that in old subjects, the
external lesioning in the simulation have been already discounted
by the aging process, for example, in the form of age-related
decline in the use of hippocampal relational binding networks
(Rondina et al., 2015), while in the young brain, these structure are
more integrated, and therefore, an external injury registers a larger
efficiency loss. Furthermore, memory and attention studies show
that older adults overrecruit some brain areas in an attempt to
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FIGURE 2 | (A) Boxplot of network efficiency after random lesion of individual nodes in young subjects. Only a very few nodes fall outside the box whose edges are
the 25th and 75th percentiles. (B) Boxplot of network efficiency after random lesion of individual nodes in old subjects. More nodes fall outside below the 25th
percentile than in the young group. The distribution in the older group is more skewed than in the young group. (C) Degree distribution (x-axis) and efficiency loss or
node centrality (y-axis) after single-node connectivity removal in the young condition. (D) Degree distribution (x-axis) and efficiency loss node centrality (y-axis) after
single-node connectivity removal in the elder condition. Each dot in charts (C,D) represents a node with connectivity degree equals to x that upon its removal
produces a variation in the network efficiency equals to y, normalized between 0 (no efficiency loss) and 1 (maximum efficiency loss). The linear regression in the
young group is 0.755 and in the old group is 0.4002.
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Efficiency loss in young (blue) and old (red) for single node

removal

A B

Frequency bars for efficiency loss in young (green) and old

(blue) upon single node removal

FIGURE 3 | (A) Efficiency loss normalized (0,1) due to the removal of single nodes in both age groups. While in the young condition, there are no nodes that upon its
removal, the efficiency of the resulting network deteriorates drastically; in the elder condition, there are 6 nodes that upon their removal trigger a 20% or more
reduction in the network efficiency. The efficiency loss of node 8 (“Middle frontal gyrus”), 29.7%, node 24 (“Superior frontal gyrus, medial”), 28.9%, node 34 (“Median
cingulate and paracingulate gyri”), 27.1%, node 56 (“Fusiform gyrus”), 21.2%, node 62 (“Inferior parietal, but supramarginal and angular gyri”), 32.8%, and node 64
(“Supramarginal gyrus”), 26.5%. (B) Distribution of efficiency loss after node removal in both young (green histogram) and elder groups (blue histogram). The
efficiency loss in the young subjects is narrow. On the other hand, the elder subjects have a more spread distribution of efficiency values. The spread or difference
between maximum and minimum efficiency loss in efficiency loss among nodes is 4.67% for young subjects and 32.87% for old subjects.

Efficiency loss in young subjects Efficiency loss in old subjects

A B

FIGURE 4 | Efficiency loss in (A) young and (B) elder condition for single-node removal. The larger the dot size, the larger is the efficiency loss upon its
removal.

compensate for the altered function in other brain regions (Grady,
2008, 2012).

3.3. Efficiency after Target Networks
Lesioning of Edges
To test the hypothesis that the relationship between the hip-
pocampus and the DMN tends to break down with age, we
need to lesion the edges that connect these brain structures
rather than the nodes, as we have done in the previous sections.

Salami et al. (2014) show that elevated hippocampal activity at rest
may lower the degree to which the hippocampus interacts with
other regions during memory tasks and thus results in memory
deficits. However, this view is not uncontested, and in Damoi-
seaux et al. (2015), it is suggested that connectivity between left
and right hippocampus is negatively related to age. In our study,
the efficiency loss produced by the disconnection of the left and
the right sides of hippocampal and parahippocampal areas does
not yield a reduction of efficiency loss since these areas are not
connected in the old subjects (Table 2).
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TABLE 1 | The table shows the efficiency loss after the disconnection of different brain structures in both conditions.

Target brain structure AAL regions Eff. loss young (%) Eff. loss old (%)

DMN 3, 24, 25, 26, 35, 36, 37, 68, 61, 62 19.66 61.66

Frontal lobe 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 51, 52

42.83 67.07

Temporal lobe 37, 38, 39, 40, 41, 42, 55, 56, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90

33.56 41

Occipital lobe 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 31.71 30.79

Parietal lobe 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68 26.65 45.64

Insula and cingulate gyrus 3, 24, 25, 26, 35, 36, 37, 68, 61, 62 18.72 36.91

Central structures (caudate nucleus, putamen, pallidum, and thalamus) 71, 72, 73, 74, 75, 76, 77, 78 23.01 3.16

Limbic structures (hippocampus, parahippocampus, and amygdala) 37, 38, 39, 40, 41, 42 9.30 1.40

Interestingly, the reduction in efficiency is not always more pronounced in the elder condition. For example, the disconnection of the central structures (caudate nucleus, putamen,
pallidum, and thalamus) triggers a larger efficiency disruption in young than in old individuals. A similar situation, larger efficiency loss in young compared old condition, also occurs with
the disconnection of the limbic structures (hippocampus, parahippocampus, and amygdala) and the occipital lobe areas. The table shows the efficiency loss in both young and old
groups when target networks are lesioned. The lesion consists of the obliteration of the nodes defined in the second column. The efficiency loss is larger in old adults with the exception
of the occipital lobe, the central structures, and the limbic structures. The reduction of efficiency in the central structures is particularly interesting since in the old condition, it yields only
a 3.16% reduction in efficiency, while in the young condition, the efficiency loss for the same lesioning yields a reduction of 23.01%.

We test the asymmetry hypothesis by which brain activity
shows a more balance activity among the two hemispheres with
age, that is, the hypothesis predicts that in young individuals,
brain activity is more asymmetric than in old individuals. The
asymmetry hypothesis summons that in young individuals, the
difference in efficiency loss for disconnecting the twohemispheres
is expected to be larger than in the old condition. The rationale
behind the hypothesis is that during aging, the brain tries to
compensate the reduction of activity level, for example, in the
DMN, by balancing activity across the brain. In young adults,
we find that if one of the two hemispheres is entirely lesioned
(all areas of one hemisphere are unreachable from the opposed
hemisphere), the efficiency loss is very similar. Precisely, the effi-
ciency loss when the left side is lesioned is 75.32%, and when the
lesioning occurs in the right side, the efficiency loss is 77.01%. In
old subjects, the lesioning of the right side has a more pronounced
impact in the efficiency loss, 91.21% for the removal of the right
side and 70.89% for the removal of the left side. This result is
consistent with the HAROLD (hemispheric asymmetry reduction
in older adults) model proposed by Cabeza et al. (2002). The
difference in efficiency loss in old subjects after entire hemispheral
disconnection is 10 times larger (~20%) than in the young subjects
(~2%), which indicates that old subjects are more sensitive or
less robust to unilateral disruptions because aging process tend
to reduce hemispheric asymmetry. Based on these results, we
hypothesize that a process of dedifferentiationmay be a keymech-
anism to explain age-related hemispheric asymmetry reductions.
As it was already mentioned in Section 3.1, the efficiency loss
triggered by the disconnection of brain areas is more stereotypical
(less differentiated) in the elder age group than in the young age
group.

4. DISCUSSION

The objective of this work is to study network robustness, i.e.,
resilience to perturbations, in resting-state functional connectivity
networks in young and elderly conditions. The literature reviewed
here suggests that graph-based network analyses are capable of

uncovering system-level changes associated with aging in the
resting brain. We have analyzed the functional connectivity in
resting state using a perturbational approach consisting of either
the systematic removal of single nodes or the removal of entire
networks of interest, such as the DMN and others, and we have
computed the loss in network efficiency.

Our results expand previous works on the study of robust-
ness of structural brain networks. Interestingly, we find that the
distribution of network efficiency in the young and the elder
conditions show very different signatures. This is consistent with
the existing evidence (Meunier et al., 2009) that both young and
elderly subjects show non-random modularity and that normal
aging brain is associated with changes in modularity (Song et al.,
2014).

The efficiency loss in young subjects, upon the removal of single
nodes is always below the 5%, while in the elder condition, the
removal of individual nodes may yield a dramatic reduction of the
network efficiency (maximum of 32.87%). The young adults are,
thus, more robust to random deletion of single nodes. However,
when the lesioning is focused in specific brain networks rather
than single regions, the efficiency loss for young subjects is in
occasions higher than when the same damage is done in old
subjects. For example, the disconnection of the occipital lobe,
limbic structures, and central structures yields larger efficiency
loss in the young group. This result is compatible with the pre-
vious studies in normal healthy aging that show an increase in
the functional connectivity in the sensorimotor network and a
decrease in resting-state networks, including the DMN (Song
et al., 2014). The continuum decrease in DMN functional con-
nectivity found from normal aging to mild cognitive impairment
and toAlzheimer’s disease (AD) can be quantitatively studied. The
lowering of DMN activity is associated with better performance
on attention-demanding tasks, and DMN hyperactivity is being
related to negative rumination and depression (Whitfield-Gabrieli
and Ford, 2012).

We replicate the common finding that older subjects present
reduced functional connectivity compared to young adults
(Sala-Llonch et al., 2014). Healthy normal aging is associated with
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FIGURE 5 | Connectivity network for target network removal in both conditions. (A) DMN lesioning in young, (B) DMN lesioning in elderly, (C) frontal lesioning
in young, (D) limbic lesioning in elderly, (E) central lesioning in young, (F) frontal lesioning in elderly, (G) limbic lesioning in young, and (H) limbic lesioning in elderly.

cognitive decline, and the functional disconnection observed
here and other studies might play an important role (Ferreira
and Busatto, 2013; Dennis and Thompson, 2014). We observe
the largest values of efficiency loss in old adults compared to
young adults in the Default Mode Network and the frontal lobe
(Table 1). This is consistent with the compensation hypothesis in

healthy aging, which states that older adults brains compensate
for the overall functional deficits by increasing the activity levels
in frontal regions, as part of a reorganization process mediated
by healthy normal aging (Cabeza et al., 2002; Park and Reuter-
Lorenz, 2009). In this view, theDMN is a highly susceptible system
in healthy aging (Onoda et al., 2012; Betzel et al., 2014).
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TABLE 2 | Efficiency loss caused by the deletion of edges that connect brain
regions in young and elder conditions.

Network–network edges disconnection Eff. loss
young (%)

Eff. loss
old (%)

DMN–DMN 0.64 0.99
HC–HC 1.43 0.45
HC–DMN 0.16 0
Frontal-striatum 0.37 0

For example, DMN–DMN is the deletion of the edges that connect the right and the
left sides of the DMN, DMN–HC the edges that connect DMN and HC, including
parahippocampal areas.

Can efficiency loss be used as a predictor of brain network
differential activity? Vergun et al. (2013) applied a Support Vec-
tor Machine (SVM) linear classifier to rs-fMRI data in order to
compare age-related differences in four of the major functional
brain networks: the default, cingulo-opercular, frontoparietal, and
sensorimotor. The classifier was able to detect “connectivity hubs,”
or nodes with the most significant features that influenced age
classification. More work is, however, needed in order to properly
address the compatibility of informational efficiency measures
with non-parametric classifiers.

A natural continuation of this work is to incorporate a
translational outlook to, for example, investigate whether hubs
of human brain networks are more likely to be anatomically
abnormal than non-hubs in brain disorders (Crossley et al.,
2014). Informational efficiency measures may also shed light
on the dynamics and control of resting-state networks in

mental disorders. This perturbational approach can also be
extended to study the interplay between network efficiency
and brain metabolic demand, aiming to identify pathological
signatures for early diagnosis in neurodegenerative disorders.
The network dynamics associated with different conditions –
normal healthy aging, mild cognitive impairment, Alzheimer’s
disease, etc. – can be simulated with the same or similar type
of functional intervention proposed here. Interventions other
than disconnecting regions of interest or entire subnetworks
from the whole brain may include stress simulations induced
by impairment of structural, functional, or both connectivity
patterns in multimodal imaging models. The computational
lesioning of brain foci holds promise for systemic understanding
of compensatory and other network mechanisms, e.g., cascade
and contagion effects, under normal and pathological conditions.
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