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Abstract 

Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a life-threatening 
syndrome that occurs in adult and pediatric patients after hematopoietic stem cell transplantation. Nonspecific 
symptoms, heterogeneity within study populations, and variability among current diagnostic criteria contribute to 
misdiagnosis and underdiagnosis of this syndrome. Hematopoietic stem cell transplantation and associated risk fac-
tors precipitate endothelial injury, leading to HSCT-TMA and other endothelial injury syndromes such as hepatic veno-
occlusive disease/sinusoidal obstruction syndrome, idiopathic pneumonia syndrome, diffuse alveolar hemorrhage, 
capillary leak syndrome, and graft-versus-host disease. Endothelial injury can trigger activation of the complement 
system, promoting inflammation and the development of endothelial injury syndromes, ultimately leading to organ 
damage and failure. In particular, the lectin pathway of complement is activated by damage-associated molecular 
patterns (DAMPs) on the surface of injured endothelial cells. Pattern-recognition molecules such as mannose-binding 
lectin (MBL), collectins, and ficolins—collectively termed lectins—bind to DAMPs on injured host cells, forming activa-
tion complexes with MBL-associated serine proteases 1, 2, and 3 (MASP-1, MASP-2, and MASP-3). Activation of the 
lectin pathway may also trigger the coagulation cascade via MASP-2 cleavage of prothrombin to thrombin. Together, 
activation of complement and the coagulation cascade lead to a procoagulant state that may result in development 
of HSCT-TMA. Several complement inhibitors targeting various complement pathways are in clinical trials for the treat-
ment of HSCT-TMA. In this article, we review the role of the complement system in HSCT-TMA pathogenesis, with a 
focus on the lectin pathway.
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Background
Over the last 50 years, hematopoietic stem cell transplan-
tation (HSCT) has evolved into the standard of care for 
patients with otherwise fatal hematologic, metabolic, and 
neoplastic disorders [1, 2]. However, physical, chemical, 
and immunologic stressors during the transplantation 
process (conditioning regimens, radiotherapy, chemo-
therapy, immunosuppressive drugs, cytokines released 
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during the engraftment process, and allogeneic reac-
tions of donor-derived immune cells) perturb endothelial 
cells, precipitating endothelial injury [3]. Microvascular 
endothelial injury following HSCT places patients at risk 
for long-term organ damage and death [3].

Endothelial injury has been shown to be centrally 
involved in the pathophysiology of several HSCT-asso-
ciated conditions [2, 4], collectively termed endothelial 
injury syndromes (EIS). EIS include hepatic veno-occlu-
sive disease/sinusoidal obstruction syndrome, idiopathic 
pneumonia syndrome, diffuse alveolar hemorrhage, cap-
illary leak syndrome, graft-versus-host disease (GVHD), 
and thrombotic microangiopathy (TMA) [2, 4]. These 
conditions are not discrete diseases, but different clinical 
manifestations stemming from endothelial injury. Thus, 
these syndromes often overlap in presentation and classi-
fication [2, 5]. In HSCT-associated TMA (HSCT-TMA), 
endothelial injury commonly affects the kidneys as well 
as the gastrointestinal tract, lungs, heart, central nervous 
system, and, rarely, the retina [3, 6]. These manifestations 
typically occur during the first 6 months after HSCT [7, 
8] and reflect sites of underlying tissue damage [2].

Endothelial injury triggers activation of the comple-
ment system—significantly through the lectin pathway—
via altered cell-surface patterns on injured endothelial 
cells, initiating an inflammatory response [7]. Activation 
of the lectin pathway further triggers the coagulation 
cascade [9]. Both complement activation and the coagu-
lation cascade lead to a procoagulant state that reduces 
vascular integrity, promotes platelet adhesion, increases 
vasodilation, and promotes leukocyte infiltration [3]. 
Subsequent thrombus formation and tissue injury can 
lead to organ-specific damage, multiorgan dysfunction, 
or death [10].

Here we discuss evidence for the role of lectin path-
way activation in endothelial injury-associated com-
plications of HSCT and how targeting complement 
activity may provide therapeutic benefit for patients with 
HSCT-TMA.

Endothelial injury syndromes and clinical manifestations
Normal function of endothelial cells
Endothelial cells fulfill essential homeostatic functions 
within the circulatory system, as they form the contact 
interface between blood and the perfused tissues and 
organs [10]. Normally, a balance of procoagulant and 
anticoagulant pathways is poised to react to injury and 
to attenuate any imbalance before tissue damage [10]. 
Endothelial cells control these pathways by maintaining 
vascular tone and platelet activation, and by regulating 
prothrombotic and thrombolytic events [10]. In addi-
tion, endothelial cells mediate immune functions: healthy 
endothelium is responsible for diapedesis of leukocytes 

into injured and inflamed tissues and platelet-leukocyte 
interactions [10, 11].

Endothelial injury
In damaged endothelium, blood components such as 
C-reactive protein (CRP) enter the interstitial space and 
induce inflammation [10]. Impaired endothelial functions 
increase risk of disease by abrogating normal immune 
response, vascular tone, and transport of electrolytes and 
fluid [2]. Persistent activation of endothelium can lead 
to a procoagulant state, increasing the risk of stasis and 
endothelial injury [3, 12]. The resulting injury may cause 
organ damage and thrombosis, which can lead to arterio-
sclerosis, peripheral vascular disease, stroke, and hyper-
tension [10]. Risk of endothelial injury is increased by 
diabetes, obesity, hypertension, and environmental fac-
tors such as smoking [10, 13, 14].

Endothelial injury is common in HSCT. Condition-
ing regimens (including chemotherapy and/or radiation) 
prior to transplantation, agents given for prevention of 
acute GVHD such as calcineurin or mammalian target 
of rapamycin (mTOR) inhibitors, infection, and the graft-
versus-host reaction itself can all contribute to endothe-
lial injury [3, 15]. The site and severity of endothelial 
injury associated with HSCT determine the presentation 
and classification of the syndrome (Table 1) [2].

Clinical manifestations of endothelial injury
We present EIS as different clinical manifestations stem-
ming from the common underlying pathophysiology of 
endothelial injury, rather than as distinct diseases. Dam-
age due to endothelial injury may occur throughout the 
body, with overlap in target sites due to similar charac-
teristics across EIS [2]. The reported incidence of EIS in 
HSCT recipients varies widely due to differences among 
current diagnostic criteria and heterogeneity within 
study populations, especially in adults [12].

In some EIS, platelets adhere to endothelium and 
aggregate to form microthrombi [15]. These thrombi can 
cause thrombocytopenia and intravascular hemolysis due 
to red cell fragmentation, leading to tissue hypoxemia 
and organ damage and failure [15]. Hepatic veno-occlu-
sive disease (VOD)/sinusoidal obstruction syndrome 
(SOS) occurs when sinusoidal endothelial injury from 
the conditioning regimen leads to hepatic central vein or 
sinusoidal thrombosis [16]. Extravasation of blood cells 
and release of cellular debris into the space of Disse fur-
ther result in extraluminal compression of sinusoidal ves-
sels, causing sinusoidal obstruction, portal hypertension, 
sodium-avid fluid retention, ascites, painful hepatomeg-
aly from hepatic capsular distention, and jaundice [17]. 
Ultimately, multiorgan dysfunction and death can occur 
[16, 17].
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Another of the organ-specific EIS, idiopathic pulmo-
nary syndrome (IPS), is an umbrella term to describe any 
noninfectious disorder of the lungs characterized by mul-
tifocal acute lung injury, shortness of breath, cough, and 
hypoxemia that occurs within the first four months after 
HSCT [18]. The pathophysiology of IPS is not completely 
understood [12], and responses to high doses of corti-
costeroids are suboptimal [19]. Tumor necrosis factor-α 
(TNF-α) may play a role in the pathogenesis of IPS and 
the TNF inhibitor etanercept has been evaluated for 
management of IPS in combination with corticosteroids, 
although results were not definitively conclusive [20]. A 
subset of patients with IPS develop diffuse alveolar hem-
orrhage (DAH), a form of pulmonary injury that occurs 
at the time of engraftment, wherein diagnosis is estab-
lished by the appearance of increasing bloody returns 
on serial bronchiolar lavage fluids [19]. DAH pathology 
is thought to be associated with damage to pulmonary 
arterioles, capillaries, venules, and the alveolar-capillary 
basement membrane [3].

EIS with systemic presentations include engraft-
ment syndrome (ES), capillary leak syndrome (CLS), 
and fluid overload. ES occurs at the time of neutrophil 
engraftment after HSCT, and is believed to involve the 
unbridled release of proinflammatory cytokines, degran-
ulation products, and activation of complement, leading 
to systemic endothelial injury [21]. ES usually manifests 
as fevers, shortness of breath from pulmonary vascular 
leak, and transient rash that generally respond well to a 
short course of corticosteroids [21]. CLS is characterized 
by the loss of intravascular fluids into interstitial spaces 
due to endothelial injury [22]. In fluid overload, fluid 
retention and weight gain may require ongoing diuretic 
therapy or be associated with organ dysfunction [5].

GVHD is the most commonly expected complica-
tion of allogeneic HSCT [23]. Acute GVHD is mediated 
by donor T lymphocytes targeting host tissue, causing 
unspecified vascular inflammation and endothelial injury 
early after HSCT, while chronic GVHD tends to occur 
later and is mediated by a complex interplay between 
donor effector and regulatory T cells, B cells, and tis-
sue macrophages [2, 23]. Both acute and chronic GVHD 
can establish conditions that increase the risk of HSCT-
TMA, while the presence of HSCT-TMA increases the 
risk of GVHD [2, 3, 24]. Endothelial injury may represent 
a common link between GVHD and HSCT-TMA [25]: it 
is considered the common denominator for both condi-
tions, but excessive complement activation distinguishes 
HSCT-TMA from GVHD [26].

HSCT-TMA, also known as transplant-associated 
thrombotic microangiopathy (TA-TMA), occurs when 
endothelial injury and microthrombus formation cause 
microangiopathic hemolytic anemia, thrombocytopenia, 

and organ damage [3]. Reported incidence rates for 
HSCT-TMA range from 3 to 39% in children [24, 27–29], 
and from 4 to 68% in adults [8, 30–36]. Differing aware-
ness of HSCT-TMA and screening practices across 
institutions may reflect differences in identifying the con-
dition, rather than variable incidence in the population. 
In addition, these reported rates may underestimate the 
incidence of HSCT-TMA given the nonspecific symp-
toms, variability among current diagnostic criteria, and 
heterogeneity within study populations, which have con-
tributed to misdiagnosis and underdiagnosis of the disor-
der [37–41].

The pathophysiology of HSCT-TMA is believed to 
occur in three phases (Fig.  1). The initiation phase of 
HSCT-TMA pathogenesis results from endothelial 
injury caused by immunosuppressive agents such as cal-
cineurin or mTOR inhibitors, acute GVHD, infection, 
or conditioning with cytotoxic agents and/or total body 
irradiation [15]. During the progression phase, comple-
ment activation including the lectin pathway, which is 
activated by altered carbohydrate and acetylated ligand 
patterns on injured endothelial cells, causes additional 
damage, particularly in the microvasculature [7, 15]. 
In the thrombosis phase, platelets aggregate and form 
microthrombi, causing consumptive thrombocytopenia, 
hemolysis from red cell fragmentation, and organ dam-
age [15].

Endothelial injury activates the complement system
A cascade of cellular distress signals can trigger comple-
ment activation, leading to a plethora of biologic events: 
activation of the cellular immune system, chemotactic 
direction of immune cells to sites of injury, proinflam-
matory stimulation of leukocytes, promotion of cell‒
cell interactions, and the generation of lytic or sublytic 
membrane attack complexes (MACs) that lyse or mark 
targeted cells [42, 43]. In a balanced system, the three 
complement activation pathways—the classical, lec-
tin, and alternative pathways (Fig. 2)—eliminate or clear 
infection or damaged host cells [42, 43]. When the com-
plement system is dysregulated, excessive complement 
activation results in damage [44].

Complement pathways
The classical pathway initiates complement activation 
through antibody binding to immune complexes: the 
globular heads of C1q bind to the Fc portion of IgM or 
to clusters of IgG fixed to antigens [43]. C1q may also 
identify foreign surfaces containing proteoglycan pat-
terns (e.g., chondroitin sulfate [serglycin]) [43]. When 
C1q binds a target, the C1q-associated protease C1r is 
activated through a conformational change to cleave its 
only substrate C1s, which in turn cleaves and activates 



Page 6 of 17Gavriilaki et al. Experimental Hematology & Oncology           (2021) 10:57 

complement proteins C4 and C2 [43]. The resultant com-
plex C4b2b (formerly C4b2a) is known as C3 convertase 
[45]. The classical pathway was thought to be the pre-
dominant pathway activated by endothelial injury [46, 
47], but subsequent studies have elucidated that endothe-
lial injury primarily activates the lectin pathway of com-
plement [48–51].

Activation of the lectin pathway, a scavenger system, 
is initiated when pattern-recognition molecules (PRMs) 
bind to certain molecular patterns presented on dam-
aged, malignant or distressed self-tissue, or ligands on 
microbes [43, 52]. Specific molecular patterns exposed on 
the surface of necrotic, apoptotic, distressed or otherwise 
injured host cells are termed damage-associated molecu-
lar patterns (DAMPs) and those on microbes are termed 
pathogen-associated molecular patterns [43, 52]. PRMs 
may also bind fragments and debris of viruses. In HSCT, 
highly cytotoxic treatment leaves behind many injured 
endothelial cells that trigger lectin pathway activation.

The lectin pathway-activating carbohydrate pattern-
binding class of PRMs known as lectins include man-
nose-binding lectin (MBL), collectins (CL-10 and CL-11), 
and ficolins (ficolin-1, ficolin-2, and ficolin-3), which 
bind to specific ligands on bacteria, viruses, and injured 
cells [53]. Lectin pathway-specific proteases known as 
MBL-associated serine proteases 1, 2, and 3 (MASP-1, 
MASP-2, and MASP-3) form activation complexes with 
the collectins and ficolins [53]. Juxtaposition of dis-
crete PRM/MASP activation complexes initiates lectin 

pathway activation [54]; binding of these activation com-
plexes to DAMPs in close proximity to each other facili-
tates the conversion of MASPs from their zymogen form 
into their enzymatically active form [53, 55–57]. Cleavage 
of C4 and C2 via MASP-2 results in formation of C3 con-
vertase [53, 55–57]. Notably, MASP-2 is the only MASP 
that can cleave both C2 and C4; hence, in the absence 
of MASP-2, the lectin pathway cannot generate C3 con-
vertase [58–61].

The alternative pathway balances a low-grade steady 
state of activation with the ability to respond to damage 
or infection [43, 52]. Factor D cleaves Factor B associ-
ated with C3b or C3(H2O), generating a C3 convertase 
[C3bBb or C3(H2O)Bb] [62, 63]. MASP-3 was recently 
shown to be essential for alternative pathway functional 
activity, as it is required to convert pro-Factor D into its 
enzymatically active form [63–66]. Hence, in the absence 
of MASP-3 functional activity, the alternative pathway 
is deficient [63, 65, 66]. The alternative pathway primar-
ily acts as an amplification loop of the classical or lectin 
pathways, triggered by formation of C3b [59, 64–66]. 
Spontaneous hydrolysis of C3 to C3(H2O) allows for con-
tinuous turnover of C3 and generation of C3 convertase 
to initiate the alternative pathway [43]. Crosstalk between 
different pathways of complement supports a rapid 
response to triggers, and tight regulation prevents collat-
eral damage [60, 67]. A single study observed that prop-
erdin may act as a PRM and bind DAMPs on injured host 
cells, initiating complement activation via the alternative 

Fig. 1 Role of the complement system, including the lectin pathway, in pathophysiology of HSCT-TMA [7, 15]. In Phase 1 (Initiation), factors 
associated with hematopoietic stem cell transplantation such as calcineurin and mTOR inhibitors, acute graft-versus-host disease, infection, or total 
body irradiation lead to endothelial injury. In Phase 2 (Progression), the lectin pathway of complement is activated and complement proteins cause 
further endothelial injury, leading to platelet aggregation and microthrombi formation. In Phase 3 (Thrombosis), further microthrombi formation and 
mechanical damage lead to HSCT-TMA, organ damage, and organ failure. HSCT-TMA hematopoietic stem cell transplantation-associated thrombotic 
microangiopathy, mTOR mammalian target of rapamycin
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pathway [68]. However, no follow-up studies have been 
published that corroborate a functional role of properdin 
as a PRM.

All three pathways converge to mediate the cleavage of 
C3 into C3a and C3b. C3a, along with C5a, is a potent 
anaphylatoxin with proinflammatory, prothrombotic, 
and chemotactic functions that trigger leukocyte recruit-
ment and cytokine production [42, 53]. Accumulation of 
C3b on the cell surface leads to opsonization of debris 
and bacteria for clearance [42]. Binding of C3b to C3 
convertase forms C5 convertase (C4b2b3b from the clas-
sical/lectin pathway, or C3bBb3b from the alternative 
pathway), which cleaves C5 into C5a and C5b, initiating 
the terminal pathway [42]. C5b recruits C6, C7, C8, and 
multiple C9s, resulting in formation of the MAC [42]. 
The MAC promotes further endothelial damage and may 
result in apoptosis [69].

Induction of a procoagulant state can be initiated not 
only by C3a and C5a but also via MASP-2 cleavage of 
prothrombin to thrombin; MASP-2 can activate the 
coagulation cascade via activation of prothrombin [70] 
and by the cleavage of Factor XII to XIIa [71], and activa-
tion of the cascade drives fibrin deposition and clot for-
mation [9, 72]. The coagulation cascade [70]—in concert 
with endothelial damage arising from complement acti-
vation—leads to thrombosis, which can result in stroke, 
hypertension, and peripheral vascular disease [10].

Endothelial injury triggers lectin pathway activation 
in related diseases
As the lectin pathway of complement is activated in 
response to endothelial injury, evidence for complement 
activation has been demonstrated in ischemia of various 
organs, including the kidney and heart [48, 73, 74]. Direct 

Fig. 2 Complement activation pathways [42, 48, 52]. The three complement activation pathways—the classical, lectin, and alternative pathways—
eliminate or clear infection or damaged host cells. The classical pathway initiates complement activation through antibody binding to immune 
complexes. The lectin pathway is initiated when pattern-recognition molecules bind to certain molecular patterns presented on damaged, 
malignant or distressed self-tissue or on microbes. The alternative pathway acts as an amplification loop of the classical or lectin pathways. All three 
pathways converge to mediate cleavage of C3, leading to initiation of the terminal pathway and assembly of the MAC. The coagulation cascade 
can be activated via MASP-2 cleavage of prothrombin to thrombin and cleavage of Factor XII to XIIa. MAC membrane attack complex, MASP 
mannan-binding lectin-associated serine proteases, MBL mannose-binding lectin
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activation of the lectin pathway was identified in animal 
models of ischemia/reperfusion associated with skeletal 
muscle, intestinal, myocardial, and kidney injuries [51]. 
In certain instances of kidney ischemia, the alternative 
pathway amplifies cleavage of C3 after initiation through 
the lectin pathway [51, 75]. Activation of the lectin path-
way is triggered by local CL-11 upregulation in post-
ischemic kidney tissue [76], and CL-11–driven lectin 
pathway activation may play a central role in tubuloint-
erstitial injury broadly associated with proteinuric renal 
diseases [77, 78]. Lectin pathway activity also occurs dur-
ing progression of ischemic brain damage [79–83], with 
the lectin pathway recognition molecules MBL [84, 85] 
and ficolin-3 [82] identified as independent predictors 
of ischemic stroke outcome. Furthermore, MASP-2 was 
found to play a crucial role in ischemia/reperfusion of a 
murine model: MASP-2‒deficient mice were protected 
against myocardial and gastrointestinal injury arising 
from ischemia/reperfusion [58]. In a later study, use of an 
anti–MASP-2 antibody in a murine model conferred car-
dioprotection against myocardial infarction [86].

Rapidly developing research in severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) has dem-
onstrated the role of endothelial injury in COVID-19. 
Endothelial injury in patients with COVID-19 activates 
the complement system, leading to thrombosis and acute 
respiratory distress syndrome (ARDS) [87]. Microvas-
cular deposits of C5b-9, C4d, and MASP-2 in patients 
with COVID-19 suggest the role of the lectin pathway 
in proinflammatory sequelae [87]. Lectin pathway PRMs 
such as MBL, ficolin-2, and CL-11 bind to spike and 
nucleocapsid (N) proteins of SARS-CoV-2, contribut-
ing to subsequent lectin pathway-mediated deposition 
of C3b and C4b [88]. Moreover, N proteins within the 
coronavirus family, including SARS-CoV, MERS-CoV, 
and SARS-CoV-2, are bound to MASP-2 through an 

evolutionarily conserved motif [88, 89]. This interaction 
results in hyperactivation of the complement system and 
suggests that the lectin pathway is a promising target 
for coronavirus-induced pneumonia [89]. In small case 
series, anti-complement therapies have been associated 
with COVID-19 improvements [89–93]. The C5 inhibitor 
eculizumab resulted in recovery and reduced mean CRP 
levels in four patients with COVID-19 [92], although the 
global Phase 3 clinical trial evaluating the longer-acting 
C5 inhibitor ravulizumab was recently discontinued 
for lack of efficacy [94]. The C5a inhibitor BDB-001 has 
shown promising results in patients with severe COVID-
19 [95]. The C3 inhibitor AMY-101 resulted in successful 
treatment of a patient with severe ARDS due to COVID-
19 pneumonia [91] and is being investigated for the 
management of ARDS caused by COVID-19 in a Phase 
2 placebo-controlled trial [96], although a Phase 1/2 trial 
of the C3 inhibitor APL-9, a pegylated form of AMY-101, 
for the treatment of severe COVID-19 was recently dis-
continued due to lack of efficacy [97]. The MASP-2 inhib-
itor narsoplimab was associated with rapid and sustained 
reduction of circulating endothelial cell counts and 
serum IL-6, IL-8, CRP, and lactate dehydrogenase (LDH) 
in six patients with COVID-19 on mechanical ventila-
tion, correlating with clinical improvement [93].

Collectively, these data suggest a key role for comple-
ment, and particularly the lectin pathway, in the patho-
genesis of diseases associated with endothelial injury.

Complement activation underlies the pathology 
and diagnosis of HSCT‑TMA
Complement activation plays an essential role in the 
pathology of EIS, including HSCT-TMA. The “Three-
Hit Hypothesis” (Table  2) outlines sequential risks that 
facilitate development and progression of HSCT-TMA 
[7, 15, 98]. The first “hit” toward HSCT-TMA comprises 

Table 2 The “Three-Hit Hypothesis” for development of hematopoietic stem cell transplantation-associated thrombotic 
microangiopathy (HSCT-TMA) [7, 15]

Adapted with permission from [7]

Sequential risks facilitate development and progression of HSCT-TMA. The first “hit” comprises inherent or nonmodifiable risk factors, such as underlying 
predisposition to complement activation via genetic risk factors. The second “hit” involves transplant-associated risk factors such as cytotoxic conditioning regimens 
that cause endothelial injury. The third “hit” includes post-transplant risk factors that may initiate complement activation, such as medications, aGVHD, infection, and/
or circulating antibodies

aGVHD Acute graft-versus-host disease, CMV Cytomegalovirus, HLA Human leukocyte antigen, HSCT Hematopoietic stem cell transplantation, mTOR Mammalian target 
of rapamycin

Inherent/ non‑modifiable risk factors Transplant‑associated risk factors Post‑transplant risk factors

Underlying predispositions:
 Female sex
 African American ethnicity
 Severe aplastic anemia
 CMV seropositive recipient
 Prior stem cell transplant
 Genetic variants

Endothelial injury and procoagulant endothelium:
 Transplant conditioning
 Total-body irradiation
 Unrelated donor transplants
 HLA mismatch
 Other factors

Post-HSCT initiators of complement activation:
 Calcineurin inhibitors
 mTOR inhibitors
 aGVHD
  Infection
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inherent or nonmodifiable risk factors, such as underly-
ing predisposition to complement activation via genetic 
risk factors or prior endothelial injury [15]. The second 
“hit” involves transplant-associated risk factors, such as 
cytotoxic conditioning regimens during HSCT that cause 
endothelial injury [7, 15]. The third “hit” toward develop-
ment of HSCT-TMA includes post-transplant risk fac-
tors (medications, GVHD, infection, and/or circulating 
antibodies) that may initiate complement activation [7, 
15].

Evidence for the role of complement in HSCT-TMA 
can be found in both pediatric and adult populations. 
Elevated serum levels of the terminal complement com-
plex C5b-9 are observed in both children and adults with 
HSCT-TMA [24, 29, 99–102]. In addition, a higher level 
of complement activation is detected in sera or plasma 
from patients with HSCT-TMA compared with patients 
without TMA after HSCT [26, 103].

Genetic evidence indicates a role for complement 
in HSCT‑TMA
Genetic abnormalities in complement system proteins 
and regulatory components are associated with increased 
complement activity and risk of TMA in HSCT recipi-
ents [102, 104]. Recent genetic analysis demonstrated 
that adult patients with HSCT-TMA possessed signifi-
cantly more pathogenic, rare variants in regulatory and 
coding regions of ADAMTS13, C3, CFB, CFH, CFI, 
CD46, CFHR3, CD55, and THBD than non-TMA HSCT 
control recipients [102]. These variants were detected 

in approximately three fifths of patients who did not 
respond to conventional treatment and approximately 
two thirds of patients who died from transplant-associ-
ated complications [102].

Genetic variations have also been detected in pediatric 
HSCT-TMA populations. In an analysis of 17 candidate 
genes known to participate in complement activation, 
variations were identified in 65% of patients with HSCT-
TMA versus 9% of non-TMA HSCT controls [104]. Inci-
dence of HSCT-TMA and number of gene variants were 
both higher in nonwhite versus white HSCT recipients 
[104]. In a different study, transcriptome analyses col-
lected before HSCT, at onset of HSCT-TMA, and after 
resolution of HSCT-TMA in children showed upregu-
lation of all three complement pathways during active 
HSCT-TMA that then returned to normal levels after 
treatment with eculizumab [105].

Diagnostic and prognostic markers in HSCT‑TMA
Pediatric diagnostic criteria for HSCT-TMA are rela-
tively well established [29]; however, diagnostic criteria 
in adults are less clear due to the lack of robust natural 
history studies [37–41]. Variability across current guide-
lines for HSCT-TMA diagnosis is shown in Table 3, dem-
onstrating the need for universally accepted diagnostic 
criteria for HSCT-TMA in adults. Moreover, uniform 
standards for diagnosis and prognosis of HSCT-TMA 
may expand understanding of markers for disease onset 
and progression [29] and would be important for clinical 
management [3].

Table 3 Nonspecific diagnostic criteria for HSCT-TMA

LDH Lactate dehydrogenase, HSCT-TMA Hematopoietic stem cell transplantation-associated thrombotic microangiopathy, TA-TMA Transplant-associated thrombotic 
microangiopathy, TMA Thrombotic microangiopathy

√ = presence of parameter in HSCT-TMA diagnostic criteria

Parameter Blood and Marrow 
Transplant Clinical 
Trials Network (2005) 
[37]

International 
Working Group 
(2007) [38]

Overall TMA 
grouping (2010) 
[39]

City of 
Hope 
(2013) [40]

American Society 
of Hematology–
European Society for 
Blood and Marrow 
Transplantation (2014) 
[41]

Jodele 
criteria 
(2014) [29]
Pediatric

Schistocytes √ √ √ √ √ √

Elevated LDH √ √ √ √ √ √

Thrombocytopenia √ √ √ √ √

Decreased hemoglobin √ √ √ √

Negative Coombs test √ √ √

Increased serum  
creatinine

√ √

Decreased haptoglobin √ √

Elevated soluble C5b-9 √ √

Proteinuria √ √

Hypertension √ √

Other Neurologic dysfunction TA-TMA Index ≥ 20
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Tissue histology remains the gold standard in HSCT-
TMA diagnosis, but the inherent risk involved with 
biopsy for HSCT recipients has led clinicians to seek 
other less-invasive diagnostic markers [106]. Based on 
results of pediatric studies, the earliest indications of 
endothelial injury can occur 10 to 14 days before HSCT-
TMA diagnosis [29]. In pediatric populations, hyperten-
sion, proteinuria, and elevated serum LDH levels have 
emerged as early signals of HSCT-TMA [29, 30]. Grade II 
to IV acute GVHD is also an independent risk factor for 
pediatric HSCT-TMA [30].

Increased markers of endothelial and complement acti-
vation correlate with TMA and other EIS after HSCT. 
Immunohistochemistry of complement has been used 
to diagnose and characterize HSCT-TMA [26, 106–108]. 
Deposition of C5b-9 and C4d have been observed in 
blood vessels and organs of patients with HSCT-TMA 
[106, 108], and these patients have higher levels of sol-
uble C5b-9 and endothelial activation markers (e.g., 
thrombomodulin) compared with patients without 
HSCT-related complications [26, 29]. Another method 
to identify patients with increased complement activity 
is the modified Ham test, which has been used to show 
a higher level of complement activation in patients with 
HSCT-TMA versus control recipients of HSCT [26, 103, 
109]. Finally, significantly higher levels of MASP-2 have 
been reported  in patients with TMAs after allogeneic 
HSCT [110].

Suppressor of tumorigenicity 2 (ST2) is another molec-
ular marker under consideration for diagnosis of HSCT-
TMA [25]. When measured 14 days after HSCT, elevated 
ST2 is associated with an increased risk of HSCT-TMA 
in pediatric and young-adult recipients of HSCT [25]. 
ST2 is also associated with treatment resistance and 
death in patients with GVHD [111, 112]. In adults, pre-
liminary evidence from the Mount Sinai Acute GVHD 
International Consortium (MAGIC) suggests that a 
combined test for ST2 and regenerating islet-derived 3α 
(REG3α) may predict development of HSCT-TMA [113]. 
When measurement of these two biomarkers from blood 
samples taken one week after allogeneic HSCT was used 
to determine risk category (high vs low), HSCT-TMA 
developed in seven of 18 high-risk patients and 13 of 88 
low-risk patients (p = 0.041) [113]. Other diagnostic tests 
in development include measuring levels of thrombo-
modulin, calpain, and haptoglobin degradation product 
[7].

A few prognostic markers have been identified in pedi-
atric populations, but further characterization is neces-
sary in adult recipients of HSCT. Initial approaches to 
characterize early symptom patterns in both adults and 
children during HSCT-TMA may be associated with 
better treatment outcomes [108]. In pediatric patients 

predicted to have a moderate risk of HSCT-TMA, ele-
vated soluble C5b-9 levels were associated with higher 
risk of mortality than was nephrotic range proteinuria 
[24]. Expression of ST2, a possible diagnostic marker of 
HSCT-TMA as previously discussed, before HSCT was 
also found to be a prognostic marker for one-year nonre-
lapse mortality and severe GVHD [112].

The Endothelial Activation and Stress Index (EASIX)—
a composite measure of LDH, creatinine, and platelet lev-
els—has demonstrated prognostic value for risk of death 
in patients with GVHD [114–116]. In adult patients 
with GVHD and HSCT-TMA, soluble C5b-9 levels were 
strongly associated with EASIX score 100  days after 
transplant and at last follow-up [115]. When EASIX was 
calculated before conditioning, the score was a signifi-
cant prognostic factor for HSCT-TMA and was predic-
tive of overall survival after HSCT, independent of other 
assessments [114]. EASIX score before conditioning also 
correlated with biomarkers of endothelial homeostasis 
(e.g., CXCL8/IL-18 and free IL-18) [114].

Established risk factors for mortality associated with 
HSCT-TMA reflect the multifactorial nature of this 
condition [15, 33]. In pediatric recipients of HSCT, pro-
teinuria and plasma levels of soluble C5b-9 are negatively 
associated with survival: 1-year survival rates are signifi-
cantly lower in patients with elevated plasma C5b-9 lev-
els or proteinuria 30 mg/dL or higher [29]. Furthermore, 
the antecedent conditions of HSCT-TMA affect survival 
rates: patients with idiopathic or drug-related HSCT-
TMA have longer survival after diagnosis than patients 
with other precipitating events [33]. Additional risk fac-
tors for mortality may include anemia (hemoglobin below 
9  g/dL), liver dysfunction, and gastrointestinal bleeding 
[30]. Intestinal TMA following HSCT emerges as a dis-
tinct condition from HSCT-TMA that results in higher 
mortality rates [117] and is an unfavorable predictor of 
overall survival by multivariate analysis (p = 0.048) [118].

Treatment of HSCT‑TMA
Standard of care
The standard of care for HSCT-TMA aims to resolve 
the physiologic stress that leads to complement acti-
vation and endothelial injury. For patients who do not 
meet the high-risk criteria for HSCT-TMA, recom-
mended management strategies include reducing or 
withdrawing calcineurin inhibitor treatment (follow-
ing risk–benefit assessment) and providing supportive 
care [7, 108]. For patients with high-risk HSCT-TMA, 
these measures do not markedly improve survival: one 
study reported similar rates of hematologic resolution 
in patients withdrawn from calcineurin inhibitor treat-
ment versus those who continued calcineurin inhibitor 
treatment (28% vs 29%, respectively) [33]. Hazard ratios 
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for death were not appreciably different between the 
two groups even after adjusting for covariates [33].

Therapeutic plasma exchange (TPE) historically has 
been used as an urgent treatment for TMAs, includ-
ing HSCT-TMA [119, 120]. In complement-mediated 
TMAs, TPE is thought to remove activated comple-
ment components and replenish complement regula-
tors [120]. Early initiation of TPE in ten patients with 
HSCT-TMA unresponsive to conventional care was 
associated with laboratory resolution of microangi-
opathy in nine patients and improved kidney function 
and HSCT-TMA survival in five patients, suggesting 
that early TPE may be beneficial in selected patients 
[119]. However, many patients with HSCT-TMA do not 
respond to TPE, and the long-term results of TPE in 
complement-mediated TMAs are poor [7, 121].

Defibrotide is approved by the FDA and EMA for 
treatment of VOD/SOS [122, 123] and due to its 
endothelial protective properties, several retrospective 
studies and case series have investigated defibrotide 
for the treatment of HSCT-TMA. Outcomes have been 
varied: an early retrospective study reported death of 
all five pediatric HSCT-TMA patients treated with defi-
brotide [124], while another study reported response 
to defibrotide in four of five children and two of seven 
adults with HSCT-TMA [125]. In a large retrospective 
study of 539 HSCT recipients, 64 of whom developed 
HSCT-TMA, defibrotide treatment was associated 
with a favorable outcome based on univariate analy-
sis (p = 0.02) [126]. More recent retrospective surveys 
have found response rates to defibrotide ranging from 
65 to 77% in adult and pediatric patients with HSCT-
TMA [127, 128]. In a case series, three adults with 
HSCT-TMA responded to treatment with low-dose 
defibrotide (< 10 mg/kg/day), although one later died of 
sepsis [129].

Targeting the complement system
Reducing or inhibiting complement activity has shown 
promise in selected patients with HSCT-TMA during 
clinical trials (Table 4). Several therapeutics under clini-
cal investigation target the terminal pathway by inhibit-
ing C5, while one targets the lectin pathway via inhibition 
of MASP-2. These potential treatments are discussed 
in further detail below. Additional complement inhibi-
tors that have been approved or under development for 
other complement-mediated diseases [130] may also be 
relevant in HSCT-TMA, but their clinical utility in this 
syndrome is currently not known.

The monoclonal antibody eculizumab binds C5 to pre-
vent cleavage into C5a and C5b, inhibiting generation of 
C5a (one of two primary complement anaphylatoxins) 
and terminal complement activity [131]. Eculizumab 
has been studied in small trials and case series with 
mixed outcomes for adult and pediatric patients [24, 101, 
132–136]. Data supporting treatment of adult patients 
with HSCT-TMA are limited; in two case reports, adult 
patients with HSCT-TMA had hematologic and/or 
renal responses to eculizumab treatment [133, 134]. A 
retrospective analysis of nine adults and three children 
treated with eculizumab for TMA showed a hematologic 
response in six patients, including four adults [135]. In 
a different case series, initial hematologic responses to 
eculizumab were observed, but long-term overall sur-
vival was poor in adult patients [136]. Despite limitations 
of availability and early initiation, complement inhibi-
tion seems to offer improved survival compared to best 
available treatment so far. Better patient selection might 
help to identify patients who are in need of a comple-
ment inhibitor or patients who might be resistant to ecu-
lizumab [102, 137].

Among pediatric populations, the largest eculizumab 
trial to date established a diagnostic protocol to iden-
tify patients with high-risk HSCT-TMA, which has the 

Table 4 Complement inhibitors under clinical investigation for treatment of HSCT-TMA

HSCT-TMA Hematopoietic stem cell transplantation-associated thrombotic microangiopathy, LTB4 Leukotriene B4, mAb Monoclonal antibody, MASP-2 Mannan-
binding lectin-associated serine protease 2

Drug Target/mechanism of 
action

Class Company Status ClinicalTrials.gov

Eculizumab C5 inhibition mAb Alexion Pharmaceuticals Phase 2 ongoing; 
off-label use in clinic 
[161]

NCT03518203  
(pediatric + adult) [162]

Ravulizumab (ALXN1210) C5 inhibition mAb Alexion Pharmaceuticals Phase 3 ongoing NCT04543591  
(adolescent + adult) [141]
NCT04557735 (pediatric) [142]

Nomacopan (Coversin) C5 and LTB4 inhibition Recom-
binant 
protein

Akari Therapeutics Phase 3 ongoing NCT04784455 (pediatric) [145]

Narsoplimab (OMS721) MASP-2 inhibition mAb Omeros Corporation Phase 2 complete NCT02222545 (adult) [147]
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poorest prognosis [24, 138]. Across pediatric patients 
(N = 64), 64% had measurable responses, 56% achieved 
complete remission, and there were no HSCT-TMA 
relapses during the study [24]. Patients with high-
risk HSCT-TMA and elevated complement activation 
showed poorer outcomes after eculizumab treatment 
(odds ratio = 0.15, p = 0.0014) and received more doses 
of eculizumab (r = 0.43, p = 0.0004) [24]. Taken together, 
these results indicate that early initiation of eculizumab 
treatment and adjustment of dosing seems to be benefi-
cial in this pediatric subpopulation. Since patients with 
HSCT-TMA suffer from multiple comorbidities, long-
term effects of eculizumab require further investigation.

Ravulizumab (ALXN1210) is a C5 inhibitor engineered 
from eculizumab that possesses a longer terminal half-
life, allowing for extended dosing intervals [139]. Like 
eculizumab, ravulizumab binds C5 with high affinity 
[140]. In a Phase 3 trial for atypical hemolytic uremic 
syndrome, ravulizumab treatment resulted in complete 
TMA response in 54% of patients with no unexpected 
adverse events [139]. Phase 3 trials for ravulizumab in 
both adult and pediatric populations with HSCT-TMA 
are currently ongoing [141, 142].

Nomacopan (formerly Coversin) is a bifunctional 
inhibitor of C5 and leukotriene B4 that blocks termi-
nal complement activity [143]. In a case report of pedi-
atric HSCT-TMA resistant to eculizumab (due to a C5 
variant), nomacopan showed promising results. Daily 
treatment with nomacopan improved LDH levels and 
reticulocyte count and decreased classical pathway 
hemolytic assay (CH50) below the lower limit of normal 
[144]. A two-part Phase 3 trial evaluating dosing and effi-
cacy of nomacopan for pediatric HSCT-TMA is ongoing 
[145].

Narsoplimab (OMS721) is a fully human immuno-
globulin gamma 4 (IgG4) monoclonal antibody that binds 
MASP-2, the effector enzyme of the lectin pathway, and 
thereby blocks lectin-mediated complement activation 
[110]. Targeting the lectin pathway without affecting the 
function of the classical pathway maintains the body’s 
ability to adopt adaptive immune defense mechanisms 
for protection against encapsulated organisms, such as 
Neisseria meningitis [146]. Narsoplimab was studied in 
adult patients with severe HSCT-TMA (N = 28) in a sin-
gle-arm, open-label trial [147]. Overall, 61% of patients 
(17/28) who received at least one dose of narsoplimab 
achieved a response based on improvement in labora-
tory markers and organ function, and 74% of patients 
(17/23) who received per-protocol narsoplimab (at least 
four doses) responded to treatment [148]. One-hundred–
day survival post-HSCT-TMA diagnosis was 68% among 
all patients, 83% among the per-protocol population, 
and 94% among responders [148]. The most commonly 

reported adverse events were fever, diarrhea, vomiting, 
nausea, neutropenia, fatigue, and hypokalemia [148]. 
These results suggest efficacy and safety of narsoplimab 
as treatment for HSCT-TMA.

In patients with HSCT-TMA, there is an inherent risk 
of infection due to intensive conditioning regimens and 
prolonged immunosuppression associated with the trans-
plantation process. HSCT recipients should be given 
vaccinations according to published guidelines [149], 
although there is limited evidence regarding the efficacy 
of meningococcal vaccinations in HSCT patients receiv-
ing terminal complement inhibitors [150, 151]. Antibiotic 
prophylaxis should be considered for patients receiving 
C5 inhibitors despite vaccination status [151]. Following 
HSCT, and in those receiving complement inhibitors for 
HSCT-TMA, it is critical that patients are closely moni-
tored for infection.

Conclusions
The characterization of endothelial injury and com-
plement activity in human diseases has improved our 
understanding of HSCT-TMA and other EIS. Genetic, 
histologic, and clinical evidence supports the “Three-
Hit Hypothesis” for HSCT-TMA, demonstrating that 
pre-existing physiologic conditions as well as peri-trans-
plant events and immunologic agents add to the risk of 
endothelial injury in patients undergoing HSCT.

Currently, there is limited knowledge of the natural 
history of HSCT-TMA in adult patients. A better under-
standing of the clinical course of HSCT-TMA in both 
adult and pediatric patients is needed to provide appro-
priate treatment. Diagnostic and prognostic markers will 
be important for distinguishing between patients who 
may benefit from supportive care versus anti-comple-
ment therapy.

Understanding the pathophysiology of complement 
activation in EIS, including activation of the lectin path-
way, has provided an opportunity for evidence-based and 
mechanism-based, targeted therapy for HSCT-TMA. 
Preliminary single-arm clinical trials evaluating comple-
ment inhibitors for treatment of severe HSCT-TMA have 
provided promising results for this life-threatening con-
dition. Lectin pathway inhibitors hold potential for treat-
ment of HSCT-TMA.
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