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Deep learning from “passive feeding” to “selective eating”
of real-world data
Zhongwen Li1,8, Chong Guo1,8, Danyao Nie2,8, Duoru Lin1, Yi Zhu3, Chuan Chen4, Lanqin Zhao1, Xiaohang Wu1, Meimei Dongye1,
Fabao Xu1, Chenjin Jin1, Ping Zhang5, Yu Han6, Pisong Yan1 and Haotian Lin 1,7✉

Artificial intelligence (AI) based on deep learning has shown excellent diagnostic performance in detecting various diseases with
good-quality clinical images. Recently, AI diagnostic systems developed from ultra-widefield fundus (UWF) images have become
popular standard-of-care tools in screening for ocular fundus diseases. However, in real-world settings, these systems must base
their diagnoses on images with uncontrolled quality (“passive feeding”), leading to uncertainty about their performance. Here,
using 40,562 UWF images, we develop a deep learning–based image filtering system (DLIFS) for detecting and filtering out poor-
quality images in an automated fashion such that only good-quality images are transferred to the subsequent AI diagnostic system
(“selective eating”). In three independent datasets from different clinical institutions, the DLIFS performed well with sensitivities of
96.9%, 95.6% and 96.6%, and specificities of 96.6%, 97.9% and 98.8%, respectively. Furthermore, we show that the application of
our DLIFS significantly improves the performance of established AI diagnostic systems in real-world settings. Our work
demonstrates that “selective eating” of real-world data is necessary and needs to be considered in the development of image-
based AI systems.
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INTRODUCTION
Artificial intelligence (AI) platforms provide substantial opportu-
nities to improve population health due to their high efficiencies
in disease detection and diagnosis1–5. Deep learning, a subset of
machine learning based on artificial neural networks, has the
ability to self-learn from image features and exhibits remarkable
performance in classification tasks4–12. Relevant successful appli-
cations of deep learning based on different types of images have
been reported in health care, such as the detection of diabetic
retinopathy in retinal images, with an area under the receiver
operating characteristic curve (AUC) of 0.99, and classification of
skin cancer in clinical images, with an AUC over 0.915,6.
Currently, in ophthalmology, as ultra-widefield fundus (UWF)

imaging becomes a standard-of-care imaging modality for many
ocular fundus diseases and a popular tool in screening and
telemedicine due to a larger retina area coverage13–17, an
increasing number of studies have developed deep learning-
based AI diagnostic systems for automated detection of ocular
fundus diseases using UWF images18–28. To date, all previous UWF
image-based AI diagnostic systems have been developed and
evaluated using good-quality images alone18–28. Although the
performances of these systems in detecting ocular fundus
diseases are ideal in laboratory settings, their performances in
real-world settings are unclear because the systems have to make
a diagnosis based on images of varying quality. In real clinical
scenarios, many factors can compromise image quality, such as
patient noncompliance, operator error, hardware imperfections,
and obscured optical media29,30. Insufficient image quality will
result in the loss of diagnostic information and compromise
downstream analysis31–33. To address this, in the real-world clinic,

it is necessary to filter out poor-quality images to ensure that the
subsequent AI diagnostic analyses can be based on good-quality
images. However, manual image quality analysis often requires
experienced doctors and can be time-consuming and labour-
intensive, especially in high-throughput settings (e.g., disease
screenings and multicentre studies). Therefore, an automated
approach to detect and filter out poor-quality images becomes
crucial.
In this study, we aimed to develop a deep learning-based image

filtering system (DLIFS) to detect and filter out poor-quality UWF
images and assess its performance on three independent real-
world datasets from different clinical hospitals. In addition, we
investigated whether the DLIFS could enhance the performance of
our previously established AI diagnostic systems in detecting
lattice degeneration/retinal breaks (LDRB), glaucomatous optic
neuropathy (GON), and retinal exudation/drusen (RED) using
unselected real-world data.

RESULTS
Performance of the DLIFS
In total, 40,562 images from 21,689 individuals aged 3–86 years
(mean age of 48.3 years, 44.3% female) were used to develop and
evaluate the DLIFS. There were 679 disputed images that were
arbitrated by the senior retina specialist, of which, 223 images
were assigned to the poor-quality group, and the remaining 456
images were assigned to the good-quality group. Finally, our study
included 32661 good-quality images and 7901 poor quality
images. Summary information for the datasets from the Chinese
Medical Alliance for Artificial Intelligence (CMAAI), Zhongshan
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Ophthalmic Centre (ZOC), and Xudong Ophthalmic Hospital (XOH)
is shown in Fig. 1. The DLIFS for detecting and filtering out poor-
quality images achieved AUCs of 0.996 (95% confidence interval
[CI]: 0.995–0.997), 0.994 (95% CI: 0.989–0.997), and 0.997 (95% CI:
0.995–0.998) in the CMAAI test set, ZOC set, and XOH set,
respectively (Fig. 2). Further information on the model’s perfor-
mance, including the sensitivity and specificity of each dataset, is
displayed in Table 1.
To visualise how the DLIFS discerned poor-quality images,

heatmaps were generated to indicate the poor-quality areas
detected by the DLIFS. In the ZOC dataset, the heatmaps
effectively highlighted the poor-quality areas regardless of their
locations and shapes in all true positive images. Typical examples
of heatmaps for poor-quality images are shown in Fig. 3.

Performances of established AI diagnostic systems with and
without the DLIFS
In the ZOC dataset, the AUCs of the GON system were 0.988 (95%
CI: 0.980–0.994), 0.964 (95% CI: 0.952–0.975), and 0.810 (95% CI:
0.739–0.879) in good-quality (with the DLIFS system), mixed-
quality (without the DLIFS system), and poor-quality images,
respectively (Fig. 4a); the AUCs of the RED system were 0.967 (95%
CI: 0.954–0.979), 0.941 (95% CI: 0.924–0.957) and 0.808 (95% CI:
0.731–0.879) in good-quality, mixed-quality and poor-quality
images, respectively (Fig. 4A). In the XOH dataset, the AUCs of
the LDRB system were 0.990 (95% CI: 0.983–0.995), 0.947 (95% CI:
0.927–0.967) and 0.635 (95% CI: 0.543–0.729) in good-quality,
mixed-quality and poor-quality images, respectively (Fig. 4b); the
AUCs of the GON system were 0.995 (95% CI: 0.993–0.997), 0.982
(95% CI: 0.976–0.987), and 0.853 (95% CI: 0.791–0.907) in good-
quality, mixed-quality and poor-quality images, respectively (Fig.
4b); and the AUCs of the RED system were 0.982 (95% CI:
0.969–0.993), 0.947 (95% CI: 0.928–0.965) and 0.779 (95% CI:
0.710–0.848) in good-quality, mixed-quality and poor-quality
images, respectively (Fig. 4b). Details regarding the performance
of these systems in the ZOC and XOH datasets are listed in Table 2.
After initially applying the DLIFS to detect and filter out the

poor-quality images, the sensitivities of the LDRB, GON and RED
systems in the two external datasets were increased, and the
specificities were comparable to those without applying the DLIFS.
Both the sensitivities and specificities of the LDRB, GON and RED
systems in good-quality images were better than those in poor-
quality images. The detailed results are described in Table 2.

Differences in disease distribution in poor-quality and
good-quality images
The proportions of GON, RED and LDRB in the poor-quality and
good-quality images from the external validation datasets are
shown in Table 3. In the ZOC dataset, the proportions of GON and
RED that needed to be referred in poor-quality images were
significantly higher than those in good-quality images (P < 0.05). In
the XOH dataset, the proportions of LDRB, GON and RED that
needed to be referred in poor-quality images were also
significantly higher than those in good-quality images (P < 0.05).
In total, the established AI diagnostic system indicated that 27.7%
(67/242) of the poor-quality images from the ZOC dataset and
30.3% (96/317) of the poor-quality images from the XOH dataset

Ultra-widefield fundus images 
from CMAAI dataset                

N = 36,070

All images labeled by 3 retina 
specialists and 1 senior retina specialist 

7,381 poor-quality images            
28,689 good-quality images

Training set     
N = 25,241

Validation set     
N = 5,418

Test set           
N = 5,411

Randomization

Augmentation  
N = 126,205

Best model identified

Training models Validating models

Deep learning-based image filtering system

Testing the 
selected model

ZOC external validation dataset 
225 poor-quality images         

1,307 good-quality images 

XOH external validation dataset 
295 poor-quality images         

2,655 good-quality images 

Further verifying 
the selected model

Further verifying 
the selected model

Fig. 1 Process of developing and evaluating the deep learning-based image filtering system based on ultra-widefield fundus images.
CMAAI Chinese Medical Alliance for Artificial Intelligence, XOH Xudong Ophthalmic Centre, ZOC Zhongshan Ophthalmic Centre.

Fig. 2 Receiver operating characteristic curves showing the
ability of the DLIFS in detecting and filtering out poor-quality
ultra-widefield fundus images. AUC area under the receiver
operating characteristic curve, CMAAI Chinese Medical Alliance for
Artificial Intelligence, DLIFS deep learning-based image filtering
system, XOH Xudong Ophthalmic Centre, ZOC Zhongshan Ophthal-
mic Centre.
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required further clinical investigation. The overlaps among these
poor-quality images of LDRB, GON and RED in the ZOC and XOH
datasets are described in Fig. 5.

DISCUSSION
In this study, after evaluating UWF images from multiple
institutions, our DLIFS achieved high sensitivity and specificity in
detecting and filtering out poor-quality images. Moreover, our
DLIFS had high generalisability as the AUCs were ideal in all the
external validation datasets. When the DLIFS is applied in the
clinic, photographers can be immediately notified if a poor-quality
image is detected, and the photographer can reimage for better
quality. If the image quality does not improve after reimaging,
obscured optical media will be suspected, and the DLIFS will
automatically suggest that the corresponding patient be referred
to an ophthalmologist for further examination. Good-quality
images, conversely, will be directly transferred by the DLIFS to
the subsequent AI diagnostic systems for ocular fundus disease
screening.
Several automated techniques for evaluating fundus image

quality have been published. Shao et al.31 developed a fundus
image quality classifier by the analysis of illumination, naturalness,
and structure using three secondary indices. Their model achieved
a sensitivity of 94.69% and a specificity of 92.29% in 80 images.
Hunter et al.34 proposed an image quality assessment approach
based on the clarity of vessels within the macula area and contrast
between macula fovea area and retina background, which

achieved a sensitivity of 100% and a specificity of 93% in 200
fundus images. Zago et al.33 assessed image quality using a deep
learning method and obtained a sensitivity of 95.65% and a
specificity of 98.55% in 216 fundus images. Compared with
previous studies, there are several important features of our study.
First, all previous studies developed image quality evaluation
methods based on traditional fundus images. To the best of our
knowledge, there is no automated image filtering system to
discern poor-quality images for UWF cameras or UWF image-
based AI diagnostic systems. This study has developed the DLIFS
for detecting and filtering out poor-quality UWF images such that
only good-quality images will be transferred to the subsequent AI
diagnostic systems (“selective eating process”). Second, to
enhance the performance of the DLIFS, the datasets we used to
train and validate the DLIFS were substantially large (40,562 UWF
images from 21,689 individuals). Third, our datasets were obtained
from multiple clinical settings and thereby were more representa-
tive of the real world.
Despite the high accuracy of many deep learning-based

models, it is very challenging to interpret their output and
decision-making rationales6,8,35. In this study, the salient regions
that the DLIFS used to detect poor-quality images can be
highlighted through heatmaps. This interpretability feature of
the DLIFS may promote its application in real-world settings as
photographers can understand the location of the blurred regions
and how a final classification is made by our deep learning
algorithm.

Table 1. Performance of the DLIFS in detecting poor-quality images.

CMAAI test set Zhongshan ophthalmic centre dataset Xudong ophthalmic hospital dataset

AUC (95% CI) 0.996 (0.995–0.997) 0.994 (0.989–0.997) 0.997 (0.995–0.998)

Sensitivity (95% CI) 96.9% (96.3–98.3) 95.6% (92.9–98.3) 96.6% (94.5–98.7)

Specificity (95% CI) 96.6% (96.1–97.1) 97.9% (97.1–98.7) 98.8% (98.4–99.2)

AUC area under the receiver operating characteristic curve, CI confidence interval, CMAAI Chinese Medical Alliance for Artificial Intelligence, DLIFS deep
learning-based image filtering system.

Fig. 3 Heatmaps of poor-quality images detected by the DLIFS. Blurred areas shown in original images a1, b1 and c1 correspond to the
highlighted regions displayed in heatmaps a2, b2 and c2, respectively. DLIFS, deep learning-based image filtering system.
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Our study demonstrated that previously established AI diag-
nostic systems performed better in real clinical settings when
poor-quality images were detected and filtered out first by the
DLIFS. In addition, those AI diagnostic systems exhibited better
performances when dealing with good-quality images than with
poor-quality images for both external datasets (ZOC and XOH),
indicating that the AI diagnostic systems developed based on

good-quality images cannot be readily applied to poor-quality
images. However, poor-quality images are inevitable in clinical
practice due to various factors, such as a dirty camera lens, head/
eye movement, eyelid obstruction, operator error, patient non-
compliance and obscured optical media31,36. Therefore, we
propose that the systems developed using good-quality images
for detecting retinal diseases in real-world settings (e.g., LDRB,

a Zhongshan Ophthalmic Center Dataset

Retinal exudation/drusenGlaucomatous optic neuropathy

Lattice degeneration/retinal breaks Glaucomatous optic neuropathy

b Xudong Ophthalmic Hospital Dataset

Retinal exudation/drusen

Fig. 4 Performances of established AI diagnostic systems in images with different quality levels. Receiver operating characteristic curves
of previously established AI diagnostic systems for detecting lattice degeneration/retinal breaks, glaucomatous optic neuropathy, and retinal
exudation/drusen in images of only good quality (GQ), only poor quality (PQ) and of both good and poor quality (GPQ), respectively. The
images were obtained from the Zhongshan Ophthalmic Centre and Xudong Ophthalmic Hospital datasets. AI artificial intelligence.
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retinal detachment, and retinitis pigmentosa)18–28 need to be
integrated with the DLIFS to initially discern and filter out poor-
quality images, to ensure their optimum performance.
Our DLIFS was developed based on criteria that can be applied

to various ocular fundus diseases at different locations (posterior,
peripheral, or the entire retina). Therefore, the DLIFS can be readily
integrated with other UWF image-based AI diagnostic systems to
minimise the negative impacts of poor-quality images. Moreover,
cases with poor-quality images detected by the DLIFS will need
further evaluation by ophthalmologists because poor-quality
images are more likely from patients with ocular fundus diseases
(Table 3), which can cause poor target fixation during UWF
imaging. Previous reports also suggested the referral of cases with
poor-quality images to an ophthalmologist for further
evaluation4,6.
Although our DLIFS is developed based on a large sample of

clinical data from multiple centres, there are still some limitations.
First, providing referrals for all cases with poor-quality images will
increase the burden on a healthcare system as some results are
false positives. An approach that can decrease the number of
poor-quality images caused by human factors is needed. In
addition, the DLIFS is not capable of identifying the causes of the
poor-quality images. It would help photographers to adopt a
precise solution if they knew what was leading to the poor quality.
Further studies are needed to address this challenge.
In conclusion, our study developed a DLIFS that can accurately

distinguish poor-quality UWF images from good-quality ones. The
DLIFS can be applied to filter out poor-quality images obtained
from real-world settings, thereby significantly improving the
ability of AI diagnostic systems trained by good-quality images.
As all medical photographic equipment can sometimes produce
poor-quality images, irrespective of the field, the process for deep
learning from “passive feeding” to “selective eating” real-world
data is necessary and needs to be considered when developing an
image-based AI diagnostic system.

METHODS
Ultra-widefield fundus image datasets
A total of 36,070 UWF images (19,684 individuals) were collected from the
CMAAI, which is a union of medical organisations, computer science
research groups and related enterprises in the field of AI with the aim of
improving the research and translational applications of AI in medicine.
The CMAAI dataset includes 15322 images obtained from Shenzhen Eye
Hospital, 7387 images from Huazhong screening program, 4929 images
from Eastern Guangdong Eye Study and 8432 images from Southern China
Guangming Screening program. These images were from individuals who
presented for retinopathy examinations, ophthalmology consultations, or
routine ophthalmic health evaluations, and were obtained between June
2016 and September 2019 using an OPTOS nonmydriatic camera (OPTOS
Daytona, Dunfermline, UK) and 200-degree fields of view. Participants were
examined without mydriasis. All UWF images were deidentified before
they were transferred to research investigators. This study was approved
by the Institutional Review Board of ZOC (identifier, 2019KYPJ107) and
conducted in accordance with the tenets of the Declaration of Helsinki.
Informed consent was exempted due to the retrospective nature of the
data collection and the use of deidentified UWF images.

Image quality criteria
The image quality was defined as “poor” if any of the following criteria was
met:

(1) More than one-third of the fundus was obscured4.
(2) Vessels within the macular area could not be identified or over 50%

of the macular area was obscured8.
(3) Vessels within 1-disc diameter of the optic disc margin could not be

identified37.

Note: The above criteria for a poor-quality image could be used for
lesions scattered throughout the retina (e.g., retinal haemorrhage and
exudation), situated in the peripheral retina (e.g., lattice degeneration andTa
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retinal breaks), or located at the posterior pole area of the retina (e.g.,
drusen or glaucoma).
Examples of poor-quality images are shown in Fig. 6.
If none of the abovementioned criteria was met, the image quality was

defined as “good”.

Image labelling and reference standard
All images were classified into two categories: good quality and poor
quality. Three board-certified retina specialists, each with at least five years
of clinical experience in UWF image analysis, separately labelled all
anonymous images, and they were masked to the DLIFS’s outcomes. For
screening out a poor-quality image, they initially assessed whether more
than one-third of the image was obscured. If not, they would evaluate
whether the vessels within the optic and/ or macular areas could be
identified. To ensure the reliability of the image annotation, the reference

standard was determined only when a consensus was achieved among all
three retina specialists. Any disputed images were presented at a
consensus meeting for arbitration by another senior retina specialist with
over twenty years of clinical experience to clarify the final classification.
The performance of the DLIFS in detecting the poor-quality images was
compared to this reference standard.

Image preprocessing and augmentation
Image standardisation was performed prior to deep feature learning. All
images were downsized to 512 × 512 pixels, and the pixel values were
normalised to the interval 0–1. Data augmentation was used to increase
image heterogeneity of the training dataset and thus reduce the chance of
overfitting during the deep learning process. The new samples were
obtained through simple transformations of the original images and
corresponded to “real-world” acquisition conditions. Random horizontal

Table 3. Proportions of glaucomatous optic neuropathy, retinal exudation/drusen, and lattice degeneration/retinal breaks in the good-quality and
poor-quality images.

ZOC dataset XOH dataset

GON RED LDRB GON RED

Good quality 258/1290 (20.0%) 233/1290 (18.1%) 156/2643 (5.90%) 306/2643 (8.40%) 190/2643 (7.2%)

Poor quality 67/242 (27.6%) 61/242 (25.2%) 45/317 (14.2%) 74/317 (23.3%) 78/317 (24.6%)

P value* 0.009 0.01 <0.001 <0.001 <0.001

ZOC Zhongshan Ophthalmic Centre, XOH Xudong Ophthalmic Centre, GON glaucomatous optic neuropathy, RED retinal exudation/drusen, LDRB lattice
degeneration/retinal breaks.
*P-values were calculated between the good-quality and poor-quality images using the two-proportion Z-Test.

Retinal exudation/drusen

Glaucomatous optic neuropathy

Lattice degeneration/retinal breaks

ZOC poor-quality images 242

XOH poor-quality images 317

Fig. 5 Overlapping ocular fundus diseases in poor-quality images of the XOH and ZOC datasets. The numbers shown in the figure indicate
the number of images.

Fig. 6 Typical examples of poor-quality ultra-widefield fundus images. a Obscured area over one-third of the image. b Obscured macular
area. c Obscured optic disc area.
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and vertical flip, random rotations up to 90 degrees around the image centre,
and random brightness shift within the range of 0.8 to 1.6 were applied to
the images of the training set to increase their size to five times larger than
the original size (from 25,241 to 126,205).

Development and evaluation of the DLIFS
The process for the development and evaluation of the DLIFS is illustrated
in Fig. 1. The images from the CMAAI dataset were randomly assigned
(7:1.5:1.5) to the training and validation datasets for developing the DLIFS,
and the test datasets for evaluating the performance of the DLIFS. No
individuals overlapped among these sets. The DLIFS was trained by a state-
of-the-art deep convolutional neural network (CNN) architecture, Incep-
tionResNetV2, which combines the architectural characteristics of ResNet
and Inception, including skip connection and variable kernel sizes, and
results in a more performant architecture than the two predecessors38. Our
previous study also has demonstrated that the InceptionResNetV2 is the
best algorithm for developing an AI system based on UWF images when
compared to other three state-of-the-art algorithms (InceptionV3,
ResNet50 and VGG16)19. Weights pretrained for ImageNet classification
were applied to initialise the CNN architectures39. The loss function used
was binary cross-entropy. The optimiser used was the adaptive momen-
tum optimiser40.
The deep learning model was trained up to 180 epochs. In the training

process, validation loss was assessed using the validation set after each
epoch and applied as a reference for model selection. Early stopping was
employed, and when the validation loss did not improve over 60
consecutive epochs, the training process was stopped. The model state
with the lowest loss was saved as the final state of the model.
The DLIFS had one input and one output. The input was the UWF images

and the output was a standard binary task for determining whether the
quality of the input image was poor. Two external datasets were used to
further evaluate the performance of the DLIFS. One was derived from the
outpatient clinics at ZOC in Guangzhou (southeast China), consisting of
1532 UWF images from 828 individuals, and the other was from the
outpatient clinics and health screening centre at Xudong Ophthalmic
Hospital (XOH) in Inner Mongolia (northwest China), consisting of 2960
UWF images from 1177 individuals. The reference standard used in these
two datasets was the same as the CMAAI dataset.

Visualisation heatmap
In ZOC datasets, the area of the image that the DLIFS used for classification
was highlighted based on the Saliency Map visualisation technique. This
technique computes the gradient of the output with respect to the input
image to decide which pixels in the input image have more influence on
the model’s prediction41. The intensity value of the heatmap is a direct
indication of the pixels’ impact on the DLIFS’s classification. Using this

approach, the heatmap indicates the location on which the decision of the
DLIFS is based.

Evaluation of established AI diagnostic systems with and without
the DLIFS
We previously established three AI diagnostic systems based on good-
quality UWF images for detecting LDRB, GON, and RED, respectively. The
methods used to develop the AI diagnostic systems are as follows: A total
of 5915 UWF images (3417 individuals) collected from the CMAAI between
November 2016 and February 2019 were used to develop a deep learning
system for detecting GON. A total of 22,411 images (13,258 individuals)
obtained from CMAAI between June 2016 and June 2019 were used to
develop a deep learning system for identifying RED. The distribution of the
datasets used to develop these systems is summarised in Supplementary
Table 1. Because retinal hard exudation is difficult to distinguish from
drusen based on appearance alone and because cases with each of these
conditions should be referred, we assigned them to the same group.
Methods for developing a deep learning system to detect LDRB were
described in our previous study19. For GON detection, images were
classified into two categories: GON and non-GON. The criteria for
diagnosing GON were based on a previous study from Zhongshan
Ophthalmic Centre8. Poor-quality images for GON were defined when
vessels within 1-disc diameter of the optic disc margin could not be
identified or over one-third of the photograph was obscured. Poor-quality
images were removed before training the deep learning system. For RED
identification, the images were assigned to two groups: RED and Non-RED.
Poor-quality images for RED were defined when vessels within the macular
area could not be identified, when over 50% of the macular area was
obscured, or when more than one-third of the photograph was obscured.
Poor-quality images were excluded before training the deep learning
system. The approach used to develop the AI diagnostic systems was the
same as the method used to develop the DLIFS. The performance of these
AI diagnostic systems is shown in the Supplementary Fig. 1.
In the two real-world external datasets (ZOC and XOH) that did not

exclude any poor-quality images, the performance of those AI diagnostic
systems (LDRB, GON and RED systems) without the DLIFS (images mixed
with good and poor quality) was compared to that of the systems with the
DLIFS (only good-quality images). The performance of the AI diagnostic
systems in only poor-quality images was also evaluated. The detailed
research protocol is described in Fig. 7. The actual retinal condition of the
poor-quality image cases was obtained from the electronic medical record
system. Notably, the ZOC dataset could not be used to evaluate the
performance of the LDRB system because this system was trained using
part of the ZOC images. There is no overlap between the training data of
GON, LBRD, RED model and the XOH dataset, and between the training
data of GON, RED and the ZOC dataset in this study.

ZOC and XOH datasets including both good-quality and poor-quality ultra-widefield fundus images

Deep leaning-based 
image filtering system

Poor-quality images
Filtering out

Good-quality images

Previously established AI diagnostic systems for identifying lattice degeneration/retinal breaks, 
glaucomatous optic neuropathy, and retinal exudation/drusen

Performance on 
good-quality images

Performance on  
poor-quality images

Performance on 
mixed-quality images

Comparison Comparison

Fig. 7 Flowchart evaluating the performance of previously established AI diagnostic systems with good-quality (with DLIFS), mixed-
quality (without DLIFS), and poor-quality ultra-widefield images. AI artificial intelligence, DLIFS deep learning-based image filtering system,
XOH Xudong Ophthalmic Centre, ZOC Zhongshan Ophthalmic Centre.
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Statistical analyses
The deep learning was performed using Keras 2.2.4 with Tensorflow
1.13 as backend. Statistical analyses were conducted using Python 3.7.3
(Wilmington, Delaware, USA). The performance of the DLIFS in detecting
poor-quality images was evaluated by calculating the sensitivity,
specificity and AUC. The 95% CIs for sensitivity and specificity were
calculated with Wilson Score method using a Statsmodels package, and
for AUC, using Empirical Bootstrap with 1000 replicates. We plotted a
receiver operating characteristic (ROC) curve to show the ability of the
DLIFS. The ROC curve was created by plotting the ratio of true positive
cases (sensitivity) against the ratio of false-positive cases (1-specificity)
using the packages of Scikit-learn and Matplotlib. A larger area under
the ROC curve (AUC) implied better performance. Differences of GON,
RED and LDRB distribution between poor-quality and good-quality
images were calculated using two-proportion Z-Test with the Statsmo-
dels package. All statistical tests were 2-sided with a significance level
of 0.05.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article
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