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Developing e�ective disease-modifying therapies for neurodegenerative

diseases (NDs) requires reliable diagnostic, disease activity, and progression

indicators. While desirable, identifying biomarkers for NDs can be di�cult

because of the complex cytoarchitecture of the brain and the distinct cell

subsets seen in di�erent parts of the central nervous system (CNS). Extracellular

vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles

involved in the intercellular communication and transport of cell-specific

cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs

include exosomes, microvesicles, and apoptotic bodies based on their size and

origin of biogenesis. A growing body of evidence suggests that intercellular

communication mediated through EVs is responsible for disseminating

important proteins implicated in the progression of traumatic brain injury

(TBI) and other NDs. Some studies showed that TBI is a risk factor for

di�erent NDs. In terms of therapeutic potential, EVs outperform the alternative

synthetic drug delivery methods because they can transverse the blood–brain

barrier (BBB) without inducing immunogenicity, impacting neuroinflammation,

immunological responses, and prolonged bio-distribution. Furthermore, EV

production varies across di�erent cell types and represents intracellular

processes. Moreover, proteomic markers, which can represent a variety

of pathological processes, such as cellular damage or neuroinflammation,

have been frequently studied in neurotrauma research. However, proteomic

blood-based biomarkers have short half-lives as they are easily susceptible

to degradation. EV-based biomarkers for TBI may represent the complex

genetic and neurometabolic abnormalities that occur post-TBI. These

biomarkers are not caught by proteomics, less susceptible to degradation

and hence more reflective of these modifications (cellular damage and

neuroinflammation). In the current narrative and comprehensive review, we

sought to discuss the contemporary knowledge and better understanding

the EV-based research in TBI, and thus its applications in modern medicine.
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These applications include the utilization of circulating EVs as biomarkers for

diagnosis, developments of EV-based therapies, andmanaging their associated

challenges and opportunities.
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extracellular vesicles, exosomes, traumatic brain injury, neurodegenerative diseases,
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Introduction

Neurodegenerative diseases (NDs) are debilitating diseases

that affect the nervous system and are closely related to

brain function (Hansson, 2021). These diseases mainly include

acute injury to the central nervous system (CNS), such as

traumatic brain injury (TBI), stroke, and chronic diseases

(Alzheimer’s and Parkinson’s disease;Meisel et al., 2005; Rehman

et al., 2019; Guedes et al., 2020a). Currently, the diagnosis of

NDs is primarily reliant on neuroimaging techniques, such as

computed tomography (CT) and magnetic resonance imaging

(MRI), which involve high cost and biochemical examination of

cerebrospinal fluid (CSF) (Mattsson et al., 2017; Anderson et al.,

2019; Jia et al., 2019). Furthermore, NDs lack specific symptoms

and usually have a long course and a slow onset, making

their early diagnosis and treatment a challenging task (Niu

et al., 2020). The current blood-based biomarkers have some

limitations, such as their inefficiency in detecting or identifying

alternations in the preliminary or early phases of CNS diseases

(Jarmalavičiute and Pivoriunas, 2016; Chen J. J et al., 2017; Xia

et al., 2019). In addition, there are few or not recognized effective

therapeutic treatments for reversing or treating this category of

disorders (Paranjpe et al., 2019). Therefore, there is a pressing

need to explore reliable biomarkers for diagnosis and therapy of

the acute and chronic stages of neurodegenerative diseases.

Cellular crosstalk underpins many clinical conditions

and neurological disorders within the CNS. Even though

several mechanisms have been discovered as initiators of

the pathogenesis of the disease, it is now evident that

uncontrolled neuroinflammation and consequent cellular injury

are the major defining aspects of numerous neurological

diseases. Extracellular vehicles (EVs), a heterogeneous family of

membrane-bound vesicles (size < 1µm), are produced through

the cell’s paracrine pathway and are the newest addition to

the intracellular communication system (Budnik et al., 2016;

Pegtel and Gould, 2019; Wu et al., 2021). EVs are secreted by

different cells (i.e., lymphocytes, platelets, astrocytes, fibroblasts,

endothelium, and neurons). They may be found in all biological

fluids, including blood, urine, saliva, breast milk, and CSF

(Fauré et al., 2006; Kumari and Anji, 2022). Moreover, EVs are

relatively stable in a variety of physiological conditions and can

preserve biomolecules (proteins andmiRNA) in the extracellular

environment from breakdown and denaturation (Mulcahy et al.,

2014; Ha et al., 2016; Kalluri and LeBleu, 2020; Di Bella, 2022).

Emerging data suggest that they can serve as biomarkers of NDs

that are more consistent than CSF, blood, or urine (Andjus et al.,

2020; Pinnell et al., 2021).

EVs have evolved as multifaceted signaling molecules that

may alter the phenotypic traits of target cells in multiple

ways, such as the initiation of signaling events at the cell

surface and direct transfer of bio-compatible and active material

between cells (Colombo et al., 2014). EVs also include a variety

of biological payloads, such as membrane, cytosolic proteins,

micro RNA (miRNA), long non-coding RNA (lncRNA), and

sometimes even mitochondrial DNA (mtDNA) (Colombo et al.,

2014; Takahashi et al., 2017). They act as a selective transporter

of proteins, lipids, and genetic materials and form a significant

intracellular communication system capable of regulating a

variety of cellular functions in recipient cells. Furthermore, EVs

can also alter the biochemical composition of the extracellular

environment (Iraci et al., 2017) and maintain the cellular

homeostasis of the cells secreting EVs (Takahashi et al., 2017).

EVs produced by neuronal and glial cells are integral to

the intricate system of interrelated signals underpinning the

physiology and pathophysiology of the central nervous system

(Krämer-Albers and Hill, 2016). Emerging data show that EV-

regulated intracellular signaling may help modulate neuronal

activity and myelin formation (Antonucci et al., 2012). EVs

may contribute to the propagation of toxic misfolded proteins

in NDs and influence the aggregation process and aggregate

clearance (Thompson et al., 2016; Holm et al., 2018). It has been

demonstrated that EVs may cross the blood–brain barrier (BBB)

in injured patients, indicating the spread of neuroinflammation

with systemic repercussions (Kumar et al., 2017; Saint-Pol et al.,

2020; Shao et al., 2022). The capacity of EVs to traverse the

BBB, along with their low immunogenicity, provides a practical

basis for their use as excellent biomarkers and ideal candidates

for drug delivery carriers for the therapy and management of

CNS diseases.

This review summarizes the current biology and knowledge

of EV research and discusses the roles and shreds of evidence of

EVs in the pathogenesis of NDs, with special emphasis on TBI.

Also, we discuss the application of EVs in modern medicine,

such as the utilization of circulating EVs as biomarkers for
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diagnosis, emphasizing novel biomarkers in NDs illness, and

developments of EV-based therapies. The majority of research

conducted so far has mainly concentrated on microvesicles

and exosomes. The mounting attention to EVs has resulted

in the development of specific EV databases, such as Exocarta

and miRandola, that assemble data on EVs composition and

are continually updated with published literature in this field

(Greening et al., 2017; Kalluri and LeBleu, 2020). The current

narrative review emphasizes EVs with a special focus on their

biological significance as biomarkers of TBI.

The nanoscale in brief: Subtypes,
biochemical features, biogenic
origin, and molecular cargos

Despite significant advances in the biology of EVs research

over the last two decades, the specific mechanisms responsible

for regulating their biogenesis, cargo loading, transfer, and

release in the extracellular environment to facilitate cell-to-cell

communication remain incompletely defined and understood.

The following properties are shared by all varieties of EVs:

a lipid bilayer membrane enclosing a fluid-filled vesicle,

intraluminal transfer of cargo containing proteins, nucleic

acid, lipids, and their subsequent release into the extracellular

environment (Lötvall et al., 2014; Théry et al., 2018; Russell

et al., 2019). In the literature, EVs subtypes have been divided

into microvesicles or microparticles having a diameter of up to

1,000 nm and exosomes with a diameter of <100 nm. Although

the contemporary literature has focused on the size range and

function-based characterization of EVs, the recent consensus has

acknowledged that exploring the biogenesis and variability in the

molecular compositions of different EV subtypes may also be

important (Lötvall et al., 2014; Théry et al., 2018; Gurunathan

et al., 2019; Russell et al., 2019). Characteristics of different

subtypes of EVs are listed in Table 1.

Exosomes

Exosomes are membrane-derived, globular, intraluminal,

nanoscale vesicles of about size range of 40–150 nm in diameter

released by several types of cells (e.g., neurons, adipocytes,

endothelial and epithelial cells, astrocytes, B-lymphocytes, mast

cells, and dendritic cells) during normal cellular activity and,

more specifically, in response to cellular stress factors (Greening

et al., 2017; Van Niel et al., 2018; Kalluri and LeBleu, 2020).

Exosomes have been shown to act as transport vehicles for

nucleic acids, such as coding and non-coding RNA forms, along

with functional proteins and cellular metabolites (Takahashi

et al., 2017; Jeppesen et al., 2019; Kalluri and LeBleu, 2020).

Exosomes have been isolated in several biological fluids,

including blood, CSF, urine, semen, breast milk, amniotic

fluid, bronchial fluid, and lymph in healthy and pathological

conditions (Greening et al., 2017; Takahashi et al., 2017; Kalluri

and LeBleu, 2020). Initially, it was considered as non-functional

tiny vesicles just eliminating redundant proteins and other

metabolites from the cells and discharging them. Hence, they

were initially thought to contain “cellular junk” and function

merely as garbage transport and disposals for undesirable

proteins and molecules (Harding et al., 1983). Later, it was

discovered that they have an immunological function, in which

they act as a mode of intracellular communication, and play

an important role in normal physiological processes, such as

immunogenicity, inflammation, and nerve function (Chivet

et al., 2013; De Rivero Vaccari et al., 2016; Anakor et al., 2021).

Exosomes are considered intraluminal vesicles formed by

the inward budding of membrane-bound endosomes and their

subsequent discharge into the multivesicular body (MVB).

Exosomes are released from cells when MVBs merge with either

the lysosome, which degrades their contents, or the plasma

membrane and releases their contents (Colombo et al., 2014).

The MVBs are transferred to the plasma membrane, followed

by fusion and release of contents into the extracellular domain

(Heijnen et al., 1999). Transmembrane proteins are integrated

into the invaginating membrane during this process, preserving

a structural orientation identical to the plasma membrane

(Gurung et al., 2021). A heteromeric protein complex known as

endosomal sorting complex is required for transport (ESCRT)

along with related proteins [e.g., programmed cell death 6

interacting protein; (also known as ALIX), tumor susceptibility

gene 101 protein; TSG101] and sphingolipids or tetraspanins

that are involved in the tightly controlled mechanisms for

cargo selection, inward budding process, and intraluminal

vesicle production (van Niel et al., 2011; Kowal et al., 2016;

Willms et al., 2016). Additionally, the ESCRT-independent

pathway works in concert with ESCRT-dependent mechanisms

to produce exosomes (Doyle and Wang, 2019). Exosomes have

been identified to contain endosome-linked components such as

Annexins and flotillins, as well as ESCRT and associated proteins

such as TSG101 and ALIX (Théry et al., 2018; Jadli et al., 2020;

Gurung et al., 2021; Wei et al., 2021). Exosomes are also rich

in membrane proteins that play critical functions in forming

endosomes or MVBs, such as tetraspanins CD9, CD81, and

CD63, which are considered exosome-specific markers involved

in exosome biogenesis (Xu et al., 2016; Théry et al., 2018; Jadli

et al., 2020).

Microvesicles or microparticles

MVs, also referred to as ectosomes or microparticles,

are subtypes of EVs that are larger than exosomes, typically

ranging between 100 and 1,000 nm in diameter and containing

cytoplasmic material (Colombo et al., 2014; Janas et al., 2016).

Like exosomes, MVs can originate from a variety of cell
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TABLE 1 Characteristics of extracellular vehicles (EVs) subtypes.

EVs subtype Biogenesis Morphology Markers Cellular/molecular

cargos

References

Exosomes

Size range:

40–150 nm

diameter

The membrane of early

endosomes bulges out to

make MVBs in endosomes.

Exosomes are made when

MVBs fuse with the plasma

membrane and is the

subsequent release of

intraluminal vesicles in the

extracellular domain

Normally appear cup-shaped

on transmission-electron

microscopy

• Endosome-associated

components: Annexins,

flotillins, integrins

• ESCRT, CD9, CD81, CD82,

and TSG101

• Surface proteins,

cell-specific markers

adhesion molecules, MHC

class I and II

• Neurotransmitter

• Receptors and Lipids.

• Nucleotides: coding RNA

(mRNA), non-coding RNA

(miRNAs,

circRNAs, lncRNAs)

Greening et al.,

2017; Kalluri and

LeBleu, 2020

Microvesicles

Size range:

100–1,000 nm

diameter

Outward budding of plasma

membrane

Spherical, discoid, and

cylindrical

• Considerable overlap

with Exosomes.

• No definite markers.

• Selectins, integrins

• Surface proteins,

intraluminal proteins

• adhesion proteins

• integrins, Selectins.

• Nucleotides: coding RNA

(mRNA), non-coding RNA

(miRNAs, circRNAs,

lncRNAs).

• Lipids (Phosphatidyl-

serine, sphingomyelin)

Colombo et al.,

2014; Janas et al.,

2016

Apoptotic bodies

Size range:

500–5,000 nm

diameter

Shedding/budding of the

plasma membrane by cells

experiencing apoptosis

Heterogeneous • Phosphatidylserine • DNA, histones, and

cytoplasmic components,

adhesion proteins

Gurunathan et al.,

2019; Kang et al.,

2021; Obeng, 2021

types, with their lipid and protein composition indicating their

biological origin. In addition to their smaller size, microvesicles

are distinct from exosomes in their underlying biogenesis

mechanism. They are directly formed by the plasma membrane’s

outward blebbing and discharge the nascent MV into the

extracellular environment (Tricarico et al., 2017). However, the

route of biogenesis and cargo loading process of MVs are not

as well defined and understood as exosomes. They also contain

varying amounts of adhesion molecules, such as integrins,

which influences vesicle transport and uptake. It has been

demonstrated that MVs transport molecular cargoes consisting

of many functional proteins, nucleic acids, and bioactive lipid

molecules to the cell of their origin. When discharged into the

extracellular space, MVs enter the circulation, carrying their

molecular payloads/cargo to neighboring or far away cells and

initiating phenotypic and functional changes relevant to various

NDs. Due to their overlapping physiochemical features, lack

of differentiating markers, and comparable biological contents

makes it difficult to separate exosomes and microvesicles

experimentally (Pathan et al., 2019). Even though tetraspanins

are considered unique markers for exosomes, these proteins

have been identified in microvesicles and other vesicles recently

(Crescitelli et al., 2013; Tauro et al., 2013). A study by

Jeppesen et al. (2019) reported annexin A1 as a microvesicle

specific biomarker. More experimental data containing robust

characterization techniques are needed to identify specific

proteins enriched in MVs and distinguish them from other

EV subtypes.

Apoptotic bodies

Apoptotic bodies include a heterogenous group of cell

particles produced by dying cells in the extracellular space

and are a subset of EVs released by apoptotic cell plasma

membranes formed during apoptosis (Hill, 2019). They are

relatively large EVs with diameters ranging from 500 to

5000 nm, fragmented subcellular organelles for degradation,

and variable morphology. These vesicles include subcellular

organelle breakdown products, such as DNA, histones, and

cytoplasmic components (Gurunathan et al., 2019; Kang et al.,

2021; Obeng, 2021). Because apoptotic bodies are digested

by phagocytic cells, they do not participate in intercellular

communication, such as exosomes and microvesicles.
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A proper understanding of different subtypes of EVs is

crucial in studying physiological functions. It is technically

challenging and tricky to characterize the subpopulations of

EVs (Zabeo et al., 2017; Tkach et al., 2018). Considering the

methodological constraints to accurately characterize EVs, we

shall use the term EVs in the subsequent portions of this

review except in studies where their biogenic origin has been

unambiguously confirmed.

EV cargos: Nucleic acids, proteins,
and lipids

The field of EV research is continuously evolving, and efforts

are ongoing to quantify the different proportions of genetic

material (nucleic acids) found in EVs. However, the accurate

classification seems to be contingent on the methodological

approach involved in their isolation and, in particular, the

specific cell type being analyzed. EVs carry multiple types

of genetic material, particularly all subtypes of RNA, which

include mRNA, transfer RNA, miRNA, lncRNA, small nuclear,

ribosomal, and cytoplasmic RNA (Bellingham et al., 2012a;

Yáñez-Mó et al., 2015; Wortzel et al., 2019; Amiri et al.,

2022). Some mRNAs are more abundant in EVs than cells,

and some data suggest disease-specific patterns of vesicular

miRNA (Huang et al., 2013). In addition to various species of

RNA, a fraction of EVs, particularly tumor-derived EVs, have

been found to contain DNA (both single and double-stranded)

transposons, nuclear, and mitochondrial DNA (mtDNA)

(Guescini et al., 2010; Li et al., 2021). Microvesicles produced

by glioblastoma cells include mRNA, miRNA, and proteins.

Normal host cells, such as brain microvascular endothelial

cells, take up these microvesicles. It has been demonstrated

that they can carry RNA and proteins that stimulate tumor

development (Skog et al., 2008). These microvesicles are also

rich in angiogenic proteins, which drive tubule development in

endothelial cells. Thus, they may also function as a vehicle for

transmitting genetic information and proteins to recipient cells

in the tumor environment (Valadi et al., 2007).

MiRNAs, one of the most significant EVs cargo, are

non-coding RNAs (consisting of 15–20 nucleotides) and are

important players in controlling protein expression and have

been demonstrated to be highly concentrated in exosomes,

indicating a selective method of miRNA loading during

vesicle synthesis (Guduric-Fuchs et al., 2012; Yáñez-Mó et al.,

2015; Beatriz et al., 2021). However, the precise underlying

mechanism of packaging, enrichment, and release into the

recipient cell is not well known, and the utility of EVs-derived

miRNAs as consistent indicators of disease progression is still

under investigation.

The protein composition of EVs varies from cell to cell

and is heavily influenced by their biological origin. EVs include

around 40,000 proteins, accounting for roughly one-quarter

of the known human proteome (Keerthikumar et al., 2016;

Duong et al., 2019). Endosomal membrane–localized proteins

involved in biogenesis are themost prevalent in EVs. The ESCRT

heteromeric protein complex components, including TSG101,

ALIX, flotillins, and tetraspanins, are among the proteins in EVs

(CD81, CD82, CD63, and CD9) (Guedes et al., 2020a; Gurung

et al., 2021).Most of the above-mentionedmembrane-associated

proteins used asmarkers of different subpopulations of EVs (e.g.,

exosomes) are not limited to neuronal cells. However, they may

also be detected in other EVs (e.g., MVs) (Lötvall et al., 2014).

Apart from protein and nucleic acids molecules, EVs

also have lipids molecules (e.g., cholesterol, phospholipids,

glycerophospholipids, and sphingolipids) and some biologically

active lipid molecules (e.g., leukotrienes, prostaglandins, and

phospholipase C), which act as lipid carriers facilitating the

transfer of biologically active lipid molecules to a target cell

(Skotland et al., 2017). EVs communicate with target cells via

interaction between receptors and ligands at the surface of the

membrane, through endocytosis, or fusing directly with the

plasma membrane (Rojas et al., 2020). The structure of distinct

subtypes of EVs is recognized to transport a range of important

nucleic acids, functional proteins, and lipids, which may be

transferred to target cells and translated into the corresponding

proteins, resulting in epigenetic alterations. These functions of

molecular cargo of EVs have led to the innovative notion that

they can act as mediators of intercellular communication, which

has been utilized and expanded in various disciplines, including

the bench to the clinic (Coleman and Hill, 2015; Hsu et al., 2022;

Weng et al., 2022).

Role of EVs in the maintenance and
repair of the CNS

A substantial body of evidence for the EVs involvement in

the maintenance of CNS physiological functions comes from

studies concentrating on brain/neuronal cells. Neuronal cells

produce and release EVs, and many glial cell types regulate

or assist neuronal processes. For example, in response to

the neurotransmitter glutamate, oligodendrocytes, a glial cell

engaged in myelination of the axon, produce EVs in a calcium-

dependent (Ca2+) way (Frühbeis et al., 2013a). Neuronal

activity, in turn, leads to an increase in oligodendrocyte EV

secretion, which protects neurons from oxidative damage and

malnutrition by enhancing their metabolic activity (Frühbeis

et al., 2013a). However, it should be recognized that EV

oligodendrocytes can interact with cell types other than neurons.

For instance, a subset of microglial cells may internalize and

destroy oligodendrocyte EVs (Fitzner et al., 2011), implying the

quantity of oligodendrocyte-derived EVs available to control

neuronal actions may be dependent on microglial function.

Consequently, neuronal EVs may transmit bioactive molecular

payloads such as proteins, nucleic acids, and lipids across
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cells, modulating neurovascular integrity, preserving synaptic

function, and maintaining myelination.

Microglia, a subtype of glial cell, acts as the initial line of

defense following brain injury and releases exosomes enriched

within aminopeptidase CD13, which are metabolically active

in catabolismleucine- and methionine-enkephalins peptides (a

neuropeptide) (Potolicchio et al., 2005). A common element

in EV-mediated neuron–glia communication is that EV release

seems to be linked with synaptic activity (Frühbeis et al.,

2013a; Chivet et al., 2014; Fröhlich et al., 2014; Laulagnier

et al., 2017). Emerging data suggest that the relationship

between neuronal EVs discharge and synaptic activity may

be important for the maintenance of plasticity, implying that

neuronal EVs might influence synaptic plasticity and play an

important role in maintaining neurovascular integrity (Korkut

et al., 2013; Krämer-Albers and Hill, 2016; Blanchette et al.,

2022). The trafficking of certain RNAs into EVs appears to

have a function, such as the maintenance of synaptic plasticity

and its association with local protein synthesis (Goldie et al.,

2014; Anakor et al., 2021). Neuronal-derived EVs can also

transport their molecular cargo to other brain cells, influencing

their behavior and potentially affecting the synaptic activity and

neurovascular integrity. The production of EVs from activated

neurons may assist in removing less functional synapses and

neuronal remodeling (Xu et al., 2017), suggesting that the

transfer of EVs mediated regulatory components may have

a crucial role in safeguarding the functional integrity of

the CNS.

Glial cells derived EVs have been found to control neuronal

activity and offer neurons support and assistance on synaptic

action via activating sphingolipid metabolism. When glutamate

is present, oligodendrocytes release EVs, which include MVs

at the axonal surface (Frühbeis et al., 2013a). Glial EVs

may potentially aid neurons’ energy metabolism by delivering

enzymes and substrates of the glycolytic pathway to neurons

during synaptic action (Budnik et al., 2016). Furthermore, some

proteomic studies have found that EVs derived microglia and

oligodendrocytes are involved in the transport of numerous

enzymes of energy metabolism (Potolicchio et al., 2005; Drago

et al., 2017). EVs are also involved in myelination remyelination.

EVs from multiple origins were found to perform an important

role in the myelination process (Domingues et al., 2020),

indicating that EVs from a peripheral origin might participate

in and regulate the process of myelination and its maintenance

under specific circumstances. Schwann cells, which are part of

the peripheral nervous system and release exosomes, have been

shown to promote the maintenance and regeneration of local

axonal cells (Lopez-Leal and Court, 2016). Moreover, it has been

shown that the miRNA from Schwann cells in axon terminals

is mediated through exosomes, impacting gene expression and

neurite growth (Ching et al., 2018).

Role of the blood–brain barrier in
the transportation of EVs to and
from CNS

The BBB is a unique microvasculature of the CNS, which is a

very selectively permeable interface of capillary endothelial cells

that connects the circulatory system to the brain’s extracellular

environment and facilitates the communication between the

periphery and CNS (Naranjo et al., 2021). BBB closely regulates

CNS homeostasis, which is necessary for appropriate neuronal

function as well as for protecting the CNS from infections,

toxins, inflammation, and injury (Obermeier et al., 2016). It is

now widely acknowledged that EVs can breach the complex

BBB and play a central role to initiate, promote, and reinforce

physiological blood-to-brain transport in several pathological

chronic processes such as NDs including TBI (Pegtel et al.,

2014; Saint-Pol et al., 2020; Busatto et al., 2021). Therefore,

understanding the processes by which EVs interact with the

BBB under normal and pathological settings might lead to the

creation of novel vehicles for targeted brain delivery, as well as

the identification and validation of diagnostic and prognostic

biomarkers of brain diseases. Due to the BBB’s impediment to

medication delivery to the CNS, significant attempts have been

undertaken to develop techniques to modify or bypass the BBB

to deliver medicines (Rufino-Ramos et al., 2017; Shaimardanova

et al., 2020).

When discussing the neuronally generated vesicles,

especially in the periphery, we have to explore whether

EVs cross the BBB in either direction. Many studies have

shown that EVs are transported over the BBB and reach

the periphery; however, the underlying mechanism remains

unclear, and evidence is sparse (Pegtel et al., 2014; Yáñez-Mó

et al., 2015; Saint-Pol et al., 2020). Recent studies have shown

that anti-inflammatory drugs could be delivered to the mice’s

brains through intranasal injection of EVs, indicating that EV

administration to the CNS is feasible (Zhuang et al., 2011;

Loch-Neckel et al., 2022). Similarly, the systemic administration

has also exploited EVs to transfer small-interfering RNA

molecules to mice brains (Cooper et al., 2014). Because BBB

failure is a recognized characteristic of AD (Cooper et al., 2014)

and TBI (Guedes et al., 2020a; Zhai et al., 2021), EV transfer

from peripheral/systemic circulation to the brain may have

therapeutic promise in NDs (Yamazaki and Kanekiyo, 2017).

All these findings imply that in NDs, the breakdown of the

BBB allows EVs to go in both directions, from CNS to the

periphery and vice versa. The disruption of the BBB is known

to occur in many NDs, typically due to inflammation, providing

another possible avenue for EV transport to the periphery. An

assessment of connections between the systemic immune system

and the CNS indicated that EVs facilitate mRNA transfer from

hematopoietic cells to Purkinje cells of the cerebellum, altering
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gene expression in these cells, which indicates their functional

significance (Ridder et al., 2014). EVs have also been transferred

across the BBB using modified vesicles with a surface-protein-

coated membrane to facilitate the transfer (Alvarez-Erviti et al.,

2011). Endothelial cells that form and contribute to the BBB are

also involved in the production of EVs, which transport proteins

and play an important role in mediating intercellular signaling

(Mazzucco et al., 2022). These EVs might be a source of NDs

biomarkers, particularly in diseases involving BBB breakdown.

Examination of EVs in serum samples by proteomics analysis

has also uncovered the manifestation of CNS-specific proteins,

indicating the presence of neuronal EVs in the blood of patients

with Parkinson’s disease (Ouerdane et al., 2022). Understanding

how distinct EV subpopulations cross the BBB and interact to

modulate barrier characteristics might develop therapeutic EVs

for the CNS and boost the therapeutic potential of EVs-derived

biomarkers for neurological diseases using peripheral biofluids

(Figure 1).

Insights and current perspectives on
EVs and neurodegenerative
disorders

NDs are one of the leading causes of mortality and

disability and a significant financial strain on healthcare

organizations (Luarte et al., 2016). EVs are considered to

contribute to the etiology of NDs and play an important

role in critical physiological activities of the CNS. EVs

have the potential to serve as both diagnostic markers and

therapeutic agents for TBI and NDs. NDs are characterized

by the accumulation of toxic protein aggregates, which cause

neuronal degeneration and death. Finding out how the disease

alters the biochemical structure, properties, biogenesis, cargo

composition, and intracellular communication of exosomes

with their target cells will shed information on their function in

disease regulation and, more crucially, their potential to serve

as an ideal candidate for disease biomarkers. In TBI, possible

functions for EVs are only now being investigated. This section

briefly explores the studies demonstrating that EVs have a role

in NDs, shedding light on the importance of EVs as diagnostic

and therapeutic biomarkers.

The mechanisms behind neurodegeneration are diverse,

but one common feature is the formation of aggregation

of toxic proteins, which nucleate and propagate like prion

proteins, ultimately leading to neurodegeneration and

damage (Bellingham et al., 2012b). The toxicity might be

attributed to multiple processes, including protein aggregation,

mitochondrial dysfunction, axonal support disruption, synaptic

network proteins toxicity, and stress to the endoplasmic

reticulum membrane.

EVs are also involved in the local and long-distance

transmission of neuronal-derived tau protein and a variety of

mechanisms linkedwith the etiology of Alzheimer’s disease (AD)

(DeLeo and Ikezu, 2018; Badhwar andHaqqani, 2020). EV is also

a potential candidate for biomarkers of other NDs, including

Parkinson’s and Creutzfeldt–Jakob disease (Bellingham et al.,

2012b). EVs have also been associated with proteins, such as

α-synuclein (Emmanouilidou et al., 2010) tau (Saman et al.,

2012), and prions (DeLeo and Ikezu, 2018; Nisbet and Götz,

2018). EVs may play a part in the dissemination of amyloid

proteins throughout the brain and in the production of seeds for

harmful amyloid proteins in NDs. They act as a primary vehicle

that transports amyloids out of cells and contributes to plaque

development (Rajendran et al., 2014). Exosomes have been

demonstrated to release amyloids in Alzheimer’s disease, such

as amyloid (A), and exosome-associated amyloids which can

function as seeds for plaque development in the brain thereby,

suggesting their role in the pathogenesis of AD (Rajendran et al.,

2006).

EVs have been also reported to allow discrimination between

stroke patients and controls and, to a lesser extent, the capacity

to appropriately categorize the various stroke types. It has

been shown that different types of cells including neural

cells, endothelial cells, platelets, blood and vascular cells, and

granulocytes release EVs in brain and circulation in acute phase

of stroke (Jung et al., 2009; Kuriyama et al., 2010; Chiva-

Blanch et al., 2016; Stenz et al., 2020). Moreover, Stroke-

specific miRNAs generated from EVs have been described to be

differentially expressed in both acute and subacute phases (Ji

et al., 2016; Zhou et al., 2018; Wang W. et al., 2018). Table 2

outlines the studies related to candidate EVs biomarkers for NDs

from different body fluids.

EV research in traumatic brain injury

TBI is a major cause of mortality and disability worldwide

and a significant public health burden (El-Menyar et al.,

2017; Quaglio et al., 2017). TBI can be caused by a blow

or a penetrating injury to the head that causes mild to

severe brain damage and affects normal neurological function

(Khellaf et al., 2019). TBI is a complicated, heterogeneous,

and debilitating disorder, especially among young people, with

severe long-term consequences for survivors (Maas et al.,

2017). The severity of TBI varies from mild–moderate to

severe and is determined by clinical criteria, such as the

occurrence and duration of loss of consciousness, memory loss,

and changes in the mental status post-injury (Khellaf et al.,

2019). TBI is widely recognized as a long-term illness that

might have protracted health complications, and individual

vulnerability to neurodegenerative alterations and continual

symptoms remains largely unknown (Mollayeva et al., 2018).

Lifestyle, gender, genetic and socioeconomic variables, and

medical history, including past head injuries, are major TBI

recovery determinants (Mac Donald et al., 2017).
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FIGURE 1

Overview of the extracellular vesicles (EVs) in brain injury. The diagram illustrates a graphical overview of the EV-mediated pathways and

mechanisms that contribute to neuroinflammation and CNS damage (such as Traumatic brain injury; TBI) and are engaged in bidirectional

cellular communication via EVs. All major types of CNS cells can send and receive EVs together with their molecular payloads, such as nucleic

acids, functional proteins, and lipids molecules. Neuronal insult causes the release of ATP and molecular danger stimulus, which can produce

pro-inflammatory EVs by microglia (IL-6, IL-1β). Microglial-derived EVs transmit inflammation via pro-inflammatory stimulation of other

microglia and astrocytes. Microglial pro-inflammatory EVs can transverse the blood–brain barrier (BBB) to communicate with peripheral

receptors upon neuronal absorption. After being stimulated with pro-inflammatory cytokines, astrocytes and endothelial cells generate EVs that

cross the BBB and spread neuroinflammation by inducing the acute pro-inflammatory cytokine response, enabling molecular crosstalk between

brain cells in the peripheral circulation. EVs, associated with inflamed astrocytes, generate neurotoxic chemicals. Also, EV-associated Astrocyte

(Glial Fibrillary acidic protein; GFAP, Neurofilaments; NFs) and neuron-specific proteins (Neuron-specific enolase; NSE, TAU) may be released

from damaged neurons due to traumatic axonal injury and enter the blood if BBB integrity is compromised, and their presence may indicate

neuronal injury. EVs generated from oligodendrocytes and astrocytes transfer prior protein to a neuron which aids in neuronal stress relief and

survival under ischemic and hypoxic conditions. EVs are also involved in the propagation, dissemination, and clearance of abnormal and

neurotoxic proteins in neurodegenerative diseases. Figure created with BioRender.com.

Mild TBI (mTBI) is the most common kind of brain

injury, impacting individuals of all ages (Silverberg et al., 2020).

TBI can cause neurodegenerative alterations in milder cases,

putting survivors at risk of acquiring long-term neurological

and psychological issues. Multiple TBIs in populations, such

as military personnel and contact sports players, have been

associated with worsening neurobehavioral symptoms and

poor outcomes (Rao et al., 2017; Pattinson et al., 2020). The

complex nature of TBI, compounded with inadequate scientific

knowledge underpinning disease pathophysiology, poses a

challenge to developing successful and effective therapeutic

modalities. Consequently, the consideration of modalities for

accurate diagnosis and prognosis in TBI has spawned a number

of studies to identify potential biomarkers to guide better

clinical therapeutic strategies and identify individuals most

at risk for poor recuperation and long-term repercussions

(Gill et al., 2018a; Wang K. K. et al., 2018; Nitta et al.,

2019).

TBI as a risk factor for
neurodegenerative disorders

The aberrant aggregation, accumulation, and deposition of

protein in the brain are a shared component between traumatic

brain injury (TBI) and several neurodegenerative illnesses.

Some studies showed that TBI, regardless of severity, is a

risk factor for different NDs (Fleminger et al., 2003; Rugbjerg

et al., 2008; Jafari et al., 2013; Li et al., 2017). However, up

to date, the relationship between TBI and NDsis inconsistent
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TABLE 2 The study of candidate EVs biomarkers for neurodegenerative diseases (NDs) from di�erent biofluids.

NDs EVs source Biomarkers Expression References

Alzheimer’s disease

(AD)

Plasma-derived exosomes p-t181-tau, Aβ-42 Upregulated Fiandaca et al., 2015; Winston

et al., 2016

Plasma-derived exosomes &

CSF

Aβ and NFT Upregulated Wang J. K. et al., 2017; Xiao

et al., 2017

Plasma-derived exosomes NRGN Downregulated Winston et al., 2016

Plasma-derived exosomes HSF-1,LAMP-1,

IRS-1 P-IRS-1,

Upregulated Kapogiannis et al., 2015; Pluta

and Ułamek-Kozioł, 2019

Plasma-derived exosomes Cathepsin-D, LAMP-1, Neurexin

2α, GluA4-containing glutamate

receptor, NLGN1, NPTX2

Upregulated Downregulated Goetzl et al., 2015b, 2018

Plasma-derived exosomes Heat Shock Protein-70 Downregulated in early and

middle stages and upregulated

in late stages

Goetzl et al., 2015b

Serum-derived exosomes SNAP-25 Downregulated Agliardi et al., 2019

Serum-derived exosomes miR-135a, miR-384 and miR-193-b Downregulated Goetzl et al., 2015a

CSF exosomes miR-193b Upregulated Liu et al., 2014

Serum-derived exosomes MiR-342-3p,miR-342-5p Collectively altered

(Downregulated)

Lugli et al., 2015

Plasma-derived exosomes miR-150-3p,miR-185-3p,

miR-338-3p, miR-342-3p,miR-332-

5p,miR-24-3p,

miR-23b-3p,miR-29b-3p

Differential expression Lugli et al., 2015

Serum-derived exosomes hsa-miR-101-3p,

miR-1306,hsamiR-106b

Upregulated Downregulated Cheng et al., 2015

Parkinson’s disease CSF-derived exosomes α-Synuclein Upregulated Stuendl et al., 2016

Plasma-derived exosomes α-Synuclein Upregulated Shi et al., 2014

Plasma-derived exosomes tau Upregulated Shi et al., 2014

Salivary EVs α-Synuclein Upregulated Cao et al., 2019

Serum-derived exosomes miRNAs, hsa-miR-374a-5p,

hsa-miR-374b-5p,

hsa-miR-199a-3p, hsa-miR-28-5p,

hsa-miR-22-5p and

hsa-miR-151a-5p

Upregulated He et al., 2021

Urinary exosomes DJ-1 Upregulated Ho et al., 2014

Urinary exosomes Ser(p)1292, LRRK2 Upregulated Fraser et al., 2016

AD, Alzheimer’s Disease; Aβ-42, Amyloid beta-42; CSF, Cerebrospinal fluid; NFT, neurofibrillary tangles; NRGN, Neurogranin; HSF-1, Heat Shock Factor 1; IRS-1, Insulin receptor

substrate 1; P-IRS-1, phospho (P)-serine-type 1 insulin receptor substrate; LAMP-1, Lysosome-associatedmembrane protein; NPTX2, Neuronal pentraxin; NRXN2α, neurexin 2α; NLGN1,

neuroligin 1; SNAP-25, synaptosomal-associated-protein-25; hsa-miR, human micro RNA; LRRK2, Leucine-rich repeat kinase 2.

and remains a hot topic for researchers and clinicians (Huang

et al., 2018a). The neuroinflammatory response after acute

brain injury involves the release of pro- and anti-inflammatory

cytokines, neurotrophic factor modulation, and cell migration

to clear the resultant debris and heal the damaged region are

tightly regulated and followed with a repair of the structural

damage (Brett et al., 2022). However, this healing process is

limited to the persistence of neuroinflammatory processes in

some patients.

Extracellular vesicles and TBI

TBI produces a variety of cognitive, bodily, and sensory

symptoms as a result of acute injury-induced tissue damage

and subsequent cellular and biochemical processes (Beard et al.,

2020). EVs, especially exosomes, have garnered great excitement

as potential novel diagnostic and therapeutic tools for TBI. EVs

derived from the neuronal cells of CNS facilitate neuronal–glial

cell communication, regulate neuroinflammation, and promote
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the dissemination of toxic proteins such as tau, and amyloid β, all

of which collectively drive neurodegeneration in TBI (Frühbeis

et al., 2013b; Kumar et al., 2017).

TBI, in most cases, is diagnosed by a neurological assessment

of the patient, in combination with imaging modalities readily

available such as computed tomography (CT) and magnetic

resonance imaging (MRI) in clinical settings (De Guzman and

Ament, 2017). The present clinical categorization modalities

for TBI do not fully cover the disease’s underlying etiology.

Therefore, treating TBI properly using these clinical criteria

alone is difficult. For example, the Glasgow Coma Scale (GCS)

is commonly used for measuring functional outcomes by

evaluating the level of patient consciousness. A total score

of 13–15 denotes mTBI, 9–12 denotes moderate TBI, and 3–

8 denotes severe TBI (Teasdale et al., 2014). However, these

categorizations are contested due to inadequate descriptions of

TBI variability (Mac Donald et al., 2017). The GCS score, for

example, has limitations in diagnosing mild TBI in the context

of multiple traumas, alcohol abuse, sedative use, and emotional

stress (Di Pietro et al., 2017). Due to insufficient sensitivity

and a lack of bleeding, standard imaging techniques such as

CT and MRI scans generally fail to reveal lesions induced by

traumas, which make characterization and prognosis of severe

TBI relatively easy but recognizing mild and moderate TBI

challenging (Silverberg et al., 2020).

Furthermore, imaging is widely utilized to identify brain

lesions and abnormalities to determine the severity and

localization of the injury for possible surgical planning (Smith

et al., 2019). However, traditional imaging methods provide

little assistance for therapeutic therapy. Mild TBI poses the

most complex and unique diagnostic problem because it

frequently contains microscopic injury involving axonal and

vascular damages that alter biochemical, metabolic, and cellular

homeostasis. Damage at the microscopic level may contribute to

the development of long-term neurological impairments in the

form of post-concussion complications (Marshall and Riechers,

2012).

A lack of specific biomarkers for TBI has been a significant

impediment to the improvement of diagnostic assessment

and therapeutic therapy (Bogoslovsky et al., 2016; Zetterberg

and Blennow, 2016). TBI may compromise the structural

integrity of the brain, leading to tissue, and vascular damage,

intracerebral hemorrhage, and axonal shredding. As soon as

the initial shock subsides, a complex chain of biochemical

reactions linked with secondary injuries, such as alteration of

the BBB, neuroinflammation, increased neuronal stimulation,

and oxidative stress, begins (Masel and Dewitt, 2010; Blennow

et al., 2012). These processes can typically last for longer

periods after an injury, triggering regenerative and degenerative

tissue responses (Blennow et al., 2012). The heterogenous and

complex nature of TBI, along with a lack of knowledge of

underlying pathophysiology, makes the development of effective

therapeutic modalities very difficult. As a result, major hurdles

remain in establishing definite effective therapies, diagnosis,

prognosis, and improved stratification and characterization of

TBI patients in order to optimize management and therapy

approaches (Yue et al., 2020; Mondello et al., 2021).

Currently, despite significant efforts and the identification

of a number of promising markers of acute and chronic head

injury (Thelin et al., 2017; Diaz-Pacheco et al., 2022), not a single

blood-based marker has been accepted or being used widely

in the routine clinical practice (Mondello et al., 2021; Rogan

et al., 2022). Therefore, the scientific community continues

to search for innovative, more accurate, and refined TBI

biomarkers. Several studies have sought to find biomarkers to

guide treatments and identify people at the highest risk of poor

recovery and persistent sequelae (Gill et al., 2018a; Nitta et al.,

2019; Czeiter et al., 2020; Shahim et al., 2020). Several research

groups have investigated candidate biomarkers detected in

serum, plasma, and other body fluids (Sharma et al., 2017; Wang

K. K. et al., 2018; McBride et al., 2022; Meier et al., 2022; Visser

et al., 2022). The majority of investigations have concentrated

on neuronal and astrocyte-derived proteins (Laverse et al.,

2020; Meier et al., 2020; Mondello et al., 2020; Flynn et al.,

2021; Garland et al., 2021; Richard et al., 2021). Other

potential biomarkers include markers for neuroinflammation

and vascular damage (Chiaretti et al., 2008; Li et al., 2016; Nitta

et al., 2019) as well as circulating miRNAs that play important

roles in gene regulation (Bhomia et al., 2016; Lafourcade et al.,

2016; Di Pietro et al., 2017, 2018; Martinez and Peplow, 2017;

Mitra et al., 2017, 2022; Qin et al., 2018; Das Gupta et al., 2021).

The long history of unsuccessful TBI-related clinical

trials (Maas et al., 2013; Lener et al., 2015; Horton et al.,

2018) has investigated innovative therapeutic strategies.

Accumulating evidence suggests that EVs/exosomes regulate

neuroinflammation, synaptic plasticity, and neurovascular

integrity and alter BBB permeability, thereby controlling the

cellular responses to brain damage (Lafourcade et al., 2016).

There is strong evidence that EVs can arise in cells of the

central nervous system (Pascual et al., 2020; Guedes et al.,

2021; Schnatz et al., 2021) and play a critical role in regulating

and modifying neuroinflammation, neuronal regeneration,

and neurite outgrowth (Wang et al., 2011; Li H. et al., 2019).

EVs exhibit several features that make them effective potential

biomarkers of TBI. EVs’ inadequate immune response, stability,

long half-life, and capacity to transverse the BBB (Delpech

et al., 2019) render the man excellent candidate for delivering

therapeutic agents. As a result, exosomes (EVs) can be used

as a liquid biopsy and as an alternative to imaging techniques.

Blood-derived EVs are minimally invasive and can measure the

biochemical and molecular alterations that occur in neuronal

and glial cells of the brain following TBI. Almost all brain

cells generate EVs that contain molecular payloads/cargos

resembling their biogenic cells and are protected from damage

when crossing the BBB (Wu et al., 2021). Thus, isolating EVs

from different brain cell types and subsequently evaluating their
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unique cargo should increase our capacity to identify distinct

TBI signature phenotypes, such as neuroinflammation, axonal

damage, and neurodegeneration.

Moreover, biomarkers based on EVs may easily cross the

BBB with their intact molecular payloads, which remain in

circulation for a longer time (Witcher et al., 2015; Sulhan et al.,

2020; Wu et al., 2021). This might be especially useful for

diagnosing mTBI and could be an alternative to neuroimaging

modalities for assessing TBI across different severities. Unlike

surrogate protein indicators of acute TBI pathology, blood-

derived EVs actively drive homeostatic and pathogenic processes

as well as healing in the wounded CNS throughout the process

of disease development (Frühbeis et al., 2013b).

Despite significant and rapid technological advancement,

the study of EVs population in brain injury is an emerging

field. The intrinsic difficulty in the differential diagnosis of

head traumas is well established. The variability of clinical

presentation, the large number of unreported injuries, and

the various etiologies inherent in the injuries considerably

raise the chance of misinterpretation. Most current proteomic

techniques focus on analyzing the small number of neuronal

damage indicators that are currently known, either single or in

pairs. Furthermore, numerous research projects have focused on

detecting these indicators in the CSF. Although these techniques

are viable, they pose significant clinical hurdles due to the

difficulty of obtaining the CSF sample, which requires an

intrusive procedure. Identifying trauma-specific biomarkers in a

peripheral blood sample might serve as a de facto “liquid biopsy”

for concussion or TBI, considerably benefiting doctors in the

differential diagnosis and evaluation of the brain injury (Rayyan

et al., 2018).

EVs and inflammation in TBI

Neuroinflammation is recognized to have a significant role

in the pathophysiology of TBI by exacerbating the secondary

injury (Woodcock andMorganti-Kossmann, 2013; Lozano et al.,

2015; Sulhan et al., 2020). The acute TBI leads to primary brain

insult. Moreover, insight into the etiology of traumatic brain

injury has revealed that hyper neuroinflammation, disruption

of the BBB, oxidative stress, mitochondrial alteration, and

disruption of synaptic plasticity and neurovascular integrity

lead to disruption of the activation of downstream secondary

injury cascades (Sulhan et al., 2020). The very first inflammatory

response is initiated to defend the injured region against

invading germs and tissue waste containing toxins. However,

the bulk of secondary cell death following TBI is caused

by the overactivation of neuroinflammation, which includes

microglia, astrocytes, inflammatory mediators such as cytokines

and chemokines, and other invading immune cells (Sulhan

et al., 2020). In addition, TBI induces a complex cascade of

systemic inflammatory responses that can persist for longer

durations after the initial injury. Initial inflammation has been

shown to have protective effects, such as clearing away cell and

tissue debris and protecting against pathogens. On the other

hand, prolonged neuroinflammation is hazardous because it

can lead to TBI progression, worsening of the initial injury,

neurodegeneration, and delayed cell death (Schimmel et al.,

2017).

Recent translational investigations have shown that EVs

can activate the immune system and promote inflammation

by transporting and discharging a range of pro-inflammatory

mediators (Zhao et al., 2017; Alam et al., 2020), thereby playing

an important regulatory role in neuroinflammation in multiple

neurological diseases (Khan et al., 2018; Sulhan et al., 2020).

A recent seminal study investigated the function of microglial

MVs in promoting inflammation of the brain in a mouse

model (Kumar et al., 2017). The study showed that microglia-

derived extracellular vehicles with high concentrations of

pro-inflammatory molecules (such as IL-1 and miR-155) are

discharged into the bloodstream following TBI. This increases

the neuroinflammatory responses by activating microglial cells,

leading to enhanced expression of pro-inflammatory molecules

(Kumar et al., 2017). Another study found that exosomal

miR-124-3p improved neurologic consequences and reduced

inflammatory response to TBI by reducing microglia activation

and mTOR signaling activity (Huang et al., 2018b).

Furthermore, exosomes promote neurite development

via miR-124-3p translocation into neurons. These studies

have shown that chronic inflammatory reactions are key

contributors to the development of NDs. Understanding ways

to reduce and modify neuroinflammation following TBI and

possible therapeutic applications remains a significant research

priority domain.

EVs as diagnostic and therapeutic
conduits in TBI: Examining TBI with
EV-based biomarkers

Extracellular vesicle miRNAs

Micro RNAs (miRNAs) are small, single-stranded, non-

coding RNA molecules (containing ∼22 nucleotides), which

are involved in the post-transcriptional regulation of genes in

eukaryotic cells (Towler et al., 2015). Micro RNAs have sparked

attention as potential biomarkers and therapeutic targets in

TBI. A multidimensional Exo-proteomic approach involving

EVs has shifted the attention from traditional markers of brain

injury toward a targeted, personalized evaluation of TBI and its

progression and recovery trajectories.

A recent study looked at miRNAs isolated from plasma, and

plasma-derived EVs from military veterans with mTBI and 45

and 32 miRNAs were shown to be differentially regulated in EVs

and plasma, respectively (Ghai et al., 2020). Neuroinflammation,
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TABLE 3 Studies related to EVs as biomarkers in TBI.

EVs Study type Biomarkers Origin of

biomarkers

Observations Isolation and

characterization

method

References

Microvesicles

(MVs)

In vivo and in

vitro both

81 miRNA molecules in

CSF microparticles. (e.g.,

miR-9 and miR-451)

CSF derived

MVs

MPs were found to be augmented

in CSF following severe TBI

Serial centrifugation

Ultracentrifugation

Flow cytometry,

Electron microscopy,

Polymerase chain

reaction (PCR),

Western blotting

Patz et al., 2013

Microvesicles Humans

In vivo

Tissue factor (TF) and

P-selectin

Endothelial

platelet and

leukocyte-

derived

MVs

After a severe TBI, the number of

MPs was augmented

Serial centrifugation and

Flow Cytometry

Nekludov

et al., 2014

In vivo

(Ratmodel of TBI)

Not reported Exosomes

derived from

MSCs

Cell-free MSC-generated exosomes

improved functional recovery after

TBI in rats by enhancing

endogenous angiogenesis and

neural regeneration while reducing

inflammation.

qNano,

Transmission electron

microscopy, Western

blot

Zhang et al.,

2015

Microvesicles In vivo (Mice) Tight junction proteins

(TJPs)

Microvesicles

derived from

brain

endothelium

Following a TBI, the cerebral

endothelium undergoes vascular

remodeling via the release of EVs

carrying tight junction proteins

and endothelial markers.

Exoquick Flow

cytometry,

Electron microscopy,

Western blotting

Andrews et al.,

2016

Microvesicles In vivo (Mice) miRNA (miR-21,

miR146, miR-7a, and

miR-7b)

EVs derived

from the

neuronal cells

Increased expression of miR-21,

miR-146, miR-7a, and miR-7b in

EVs and decreased expression of

miR-212 in the brain of mice

model of TBI

Repeated centrifugation

and

Electron microscopy,

Sequencing of miRNA

Harrison et al.,

2016

Microvesicles In vivo Glial fibrillary acidic

protein (GFAP),

neuron-specific enolase

(NSE), and aquaporin-4

(AQP4),

Neuronal–

glial-derived

Microparticles

When compared to healthy

controls, the severe TBI group had

larger concentrations of MPs

expressing GFP and AQP4.

Serial centrifugation

flow cytometry

Nekludov

et al., 2017

Exosomes In vivo

(Severe TBI

patients)

(NOD)-like receptor

protein-1(NLRP-1)

inflammasome proteins

Peripheral

blood,

CSF-derived

exosomes

CSF-derived exosomes showed

Increased expression of

inflammasome proteins in TBI

patients – Exosomes derived from

neurons deliver siRNA (short

interfering RNA) into the CNS to

inhibit inflammasome activity.

ExoQuick method

Western blot

De Rivero

Vaccari et al.,

2016

Microvesicles In vivo (Mice) Pro-inflammatory

cytokines, interleukin-1β

and miR-155

Microglial

derived

microvesicles

Microglial-derived MPs

contributed to developing and

disseminating neuroinflammation

following TBI by stimulating

microglia and increasing systemic

immune responses.

Serial

Ultracentrifugation Flow

cytometry

Kumar et al.,

2017

(Continued)

Frontiers in AgingNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2022.933434
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Khan et al. 10.3389/fnagi.2022.933434

TABLE 3 (Continued)

EVs Study type Biomarkers Origin of

biomarkers

Observations Isolation and

characterization

method

References

Exosomes In vivo

(Human)

Tau protein,

amyloid-beta (Aβ42),

and cytokines (tumor

necrosis factor-alpha

(TNFα, interleukin

(IL)-6 and−10)

Neuronal

derived

exosomes

Concentrations of exosomal tau,

Aβ42, and IL-10 were elevated in

the mild TBI group suggesting that

central inflammatory activity

contributes to PTSD symptoms

Ultracentrifugation,

ExoQuick and digital

array technology by

single-molecule

enzyme-linked

immunoassays

(SimoaTM)

Gill et al.,

2018b

Exosomes In vitro

In vivo (Mice)

miR-124-3p Microglial

derived

exosomes

MiR-124-3p levels in microglial

exosomes increase from acute to

chronic stages of TBI/miR-124-3p

transfer in microglia through

exosomes decreasing neuronal

inflammation and promoting

neurite outgrowth in vitro,

enhancing neurologic outcome and

suppressing neuroinflammation in

vivo.

Centrifugation

Electron microscopy

NanoParticle Tracking,

miRNA

microarray analysis

Huang et al.,

2018b

Exosomes In vivo (Rat) human adipose

mesenchymal stem cell

(hADSC)-derived

exosomes (hADSC-ex)

Mesenchymal

stem

cell-derived

exosomes

Intracerebroventricular

microinjection of human adipose

mesenchymal stem cell-derived

exosomes (hADSC-ex) inhibited

neuroinflammation, decreased

neuronal death, and enhanced

neuronal regeneration in the rat

model of TBI.

Flow cytometry,

western blot, ELISA,

qRT-PCR

Chen et al.,

2020

Exosomes In vivo

(Human)

miR-873a-5p Astrocyte-

derived

exosomes

By inhibiting the NF-B signaling

pathway, miR-873a-5p, reduced

microglia-mediated

neuroinflammation and

ameliorated cognitive deficits

following TBI

Immunofluorescence,

Western blot Electron

microscopy

Long et al.,

2020

Exosomes In vivo (Rat

model of TBI)

In vitro

miR-216a-5p Exosomes

derived from

mesenchymal

stem cells

Brain-derived neurotrophic factor

(BDNF)-BDNF-induced

MSCs-Exosomes successfully

inhibited inflammation and

promoted neuronal regeneration

Hyper centrifugation

and Western blot

Transmission electron

microscopy (TEM)

Xu et al., 2020

Exosomes In vivo (Rat

model of TBI)

In vitro

miR-17-92 Multi-potent

mesenchymal

stromal cell

(MSC)-derived

exosomes

Exosomes enriched in the

miR-17-92 cluster enhance

functional recovery following TBI

by reducing neuroinflammation

and increasing endogenous

angiogenesis and neuronal

regeneration

Western Blot, qRT-PCR

Immunofluorescence

Zhang et al.,

2021
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vascular modeling, and function of neuronal cells have been

shown to be related to differently regulated miRNAs (Ghai et al.,

2020). Additional research has identified a biomarker panel

based on miRNAs that can identify TBI in animal models and

humans (Ko et al., 2018, 2020). Using microRNA sequencing

of GluR2+ extracellular vesicles across various injury severity,

types, and time frames, another study has discovered discrete

TBI profiles across numerous models of injury and post-trauma

periods, as well as panels of biomarkers capable of detecting,

and identifying specific phases of injury (Ko et al., 2020). This

work demonstrated that in a mouse model of mild to moderate

TBI, neuronal-derived EVs exhibited varying expression levels

of miRNAs involved in regulating multiple distinct pathways,

including stimulatory effects, neurotransmitter signaling, and

intracellular pathways (Ko et al., 2020).

A study by Harrison et al. investigated the miRNA cargo of

neuronal-derived EVs isolated from brain injury models of mice

and controls to evaluate the relevance of EV-associated miRNA

in TBI (Harrison et al., 2016). They observed that miR-146, miR-

7a, miR-21, and miR-7b expression increased considerably, with

miR-21 showing the highest variation among conditions. Micro

RNA-21 (MiR-21) was shown to be released from neurons as

probable EV cargo, as evidenced by the simultaneous increase

in miR-21 in EVs and neurons. This study reported a novel

cell–cell communication pathway in TBI (Harrison et al., 2016).

Studies examining the role of EVs associated biomarkers of TBI

in animals and humans are listed in Table 3.

These investigations highlight the vast range of EVs

molecular cargo expressed in readily available samples of EVs,

which might give a plethora of biochemical information for

evaluating differential diagnosis, and therapeutic routes involved

in TBI.

Blood-based EVs as biomarker reservoirs
for di�erent severities of TBI

The complex nature of TBI, compounded with inadequate

scientific knowledge underpinning disease pathophysiology,

poses a challenge to developing accurate diagnostic, prognostic,

molecular biomarkers, and effective therapeutic modalities. The

quantification of EVs as a biomarker has been investigated in

studies using serum and plasma-derived EVs without sample

enrichment for specific EV subtypes (Younas et al., 2022). The

majority of attempts to establish EV-derived biomarkers of

TBI have centered on leveraging the presence of traditionally

investigated blood-derived proteins inside EVs for diagnosis and

evaluating neurological impairments predicting the outcome

(Winston et al., 2019; Vaughn et al., 2021).

Mild TBIs (mTBI), which include concussions, are the most

common TBI resulting in post-TBI survival (Lefevre-Dognin

et al., 2021). Although mTBI may cause neuropathological

alterations, the early clinical symptoms are primarily due

to functional impairment rather than structural damage

(Sussman et al., 2018). As a result, abnormalities are seldom

seen with conventional structural neuroimaging, and mTBI

are frequently undiagnosed since traditional techniques, i.e.,

computed tomography (CT) and magnetic resonance imaging

(MRI), may not be able to detect micro-lesions or injuries (Shin

et al., 2017).

In addition to CSF-based biomarkers, a number of

promising blood-based TBI biomarkers have been reported

(Azar et al., 2017; Edalatfar et al., 2021; Hvingelby et al., 2022).

However, because of the restrictions in their diffusion over

the BBB, blood levels of free circulating proteins and mRNA

are readily degraded and can fall below detection levels for

identification. Furthermore, the provenance of the tissue is

unclear, limiting the interpretation of potential mechanistic

contributions (Ghaith et al., 2022). As a result, there is an unmet

clinical need for accurate biomarkers that can identify all TBIs,

including mTBI, and predict the likelihood of developing long-

term sequelae, including post-concussive syndrome chronic

traumatic encephalopathy (Ghaith et al., 2022; Mavroudis et al.,

2022). Recent research has revealed that circulating exosomes

enriched for CNS-specific tissue sources may be a method to

develop practical biomarkers for TBI, particularly mild TBI, to

circumvent these difficulties (Goetzl et al., 2019, 2020; Winston

et al., 2019; Vaughn et al., 2021).

The microtubule-associated tau protein is mainly expressed

in the neurons, where they stabilize microtubules in axons

(Barbier et al., 2019; Li et al., 2022). Normally, tau undergoes

phosphorylation to regulate the movement of microtubules.

When they are hyperphosphorylated, tau accumulates and

forms neurofibrillary tangles. These tangles disrupt neuronal

functions and induce neurodegenerative changes in the brain

(Alonso et al., 1996; Barbier et al., 2019). Several studies have

found links between total tau protein or phosphorylated tau

and mild, moderate to severe TBI incidents applying CNS-

derived exosome enrichment methods. Despite the variability

and heterogenicity in TBI presentations, exosomal total tau

has been found to be augmented in mild, moderate, severe,

and repetitive TBI patients from days to years after the initial

injury (Stern et al., 2016; Kenney et al., 2018; Gill et al., 2018b;

Goetzl et al., 2019, 2020; Muraoka et al., 2019, 2021; Mondello

et al., 2020), suggesting it to be relatively sensitive marker which

exhibits both an acute and a chronic temporal course.

Aβ42 protein is derived from the amyloid precursor protein,

which is normally located in the synaptic membranes of neurons

(Sohma, 2016; Chen G. F. et al., 2017). Cleavage in the amyloid

precursor protein can result in the accumulation of Aβ isoforms

like Aβ42 and the subsequent development of brain plaques

(Sohma, 2016). Accumulating evidence suggests that Aβ plaques

have a role in neurotoxicity and the development of TBI

(Johnson et al., 2010; Bird et al., 2016; Edwards and Soto, 2017).

The build-up of Aβ42 in the soma and axon of neurons following
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TBI is a potential contributor to the persistence of neuronal

impairment (Edwards and Soto, 2017). Multiple investigations,

similar to those showing an increase in tau protein, have revealed

that Aβ42 is upregulated and increased in isolated exosomes in

every clinical classification of TBI (mild, moderate, severe, and

repetitive). Moreover, Aβ42 has been found to be increased in

both neuronal and astrocyte-enriched exosomal samples of TBI

patients and remained in circulation from days to years after the

initial injury (Edwards and Soto, 2017; Gill et al., 2018b; Goetzl

et al., 2019, 2020; Winston et al., 2019; Vaughn et al., 2021).

Multiple studies examined the expression levels of neuronal

and glial damage indicators in the exosome profiles of people

with TBI. Neurofilament light chain (NFL), a structural

scaffolding protein abundantly expressed in long myelinated

axons, is one of themost studied biomarkers due to axonal injury

caused by trauma (Lee et al., 2020). NFL levels in plasma-derived

exosomes have been shown to be higher in mild, moderate, and

severe TBI patients at different time points following damage

compared to controls (Mondello et al., 2020; Peltz et al., 2020;

Guedes et al., 2020b, 2021, 2022) indicating exosomal NFL

measurements are detectable in TBI’s acute and chronic course.

The cytoplasmic enzyme UCH-L1 (ubiquitin carboxy-

terminal hydrolase L1) is essential for the preservation of axonal

and neuronal health (Wang K. K. et al., 2017). Neuronal-derived

exosomes have been reported to have UCH-LI elevated at an

acute level (within 7 days) but not chronically in moderate

TBI victims (Goetzl et al., 2019). In a study reporting temporal

profile, the levels of UCH-L1 in total exosomes decreased

after 24 h post-injury in patients with moderate to severe TBI

(Mondello et al., 2020). Also, the median levels of total exosomal

UCH-L1 were found to be elevated 8-fold higher as compared to

day 5, indicating a significant reduction (Mondello et al., 2020).

Glial fibrillary acidic protein (GFAP) is a cytoarchitectural

protein found in astrocytes. Its presence in the blood serum and

CSF has frequently been used as a glial injury marker (Abdelhak

et al., 2022). Therefore, the role of GFAP as a biomarker

for neurodegeneration and acute astrocytic damage is being

investigated. Studies have shown that exosomal levels of GFAP

in moderate to severe TBI patients are significantly increased up

to 48 h of initial injury (Mondello et al., 2020; Peltz et al., 2020;

Flynn et al., 2021). Although GFAP levels decrease immediately

following injury, persistent increases in GFAP have been linked

to long-term cognitive damage in TBI veterans (Nekludov et al.,

2017; Peltz et al., 2020; Puffer et al., 2020). However, a correlation

or link between GFAP and mild or repeated TBI has not yet

been established.

Aquaporins (AQPs) have been found to play a role in EVs

and have emerged as a promising candidate to play an essential

role in regulating the early stage of TBI. Aquaporin-4 (AQP4)

is a water channel transmembrane protein widely distributed

in the glial cells. It is crucial in regulating neuroinflammatory

and edema processes in the brain (Liu et al., 2021; Dadgostar

et al., 2022). Even though the role of EVs-based AQP4 in TBI

has been established recently, it is already being suggested as

a biomarker for disease, drug targets, and possible treatments

of TBI. Studies have shown that total EV levels of AQP4 are

significantly augmented inmild and severe TBI patients vs. those

without injury (Nekludov et al., 2017; Dadgostar et al., 2022).

Furthermore, research on EV-based biomarkers has also

concentrated on a condition known as chronic traumatic

encephalopathy (CTE), one of the most devastating possible

sequelae of TBI. CTE is characterized by a specific dispersion of

tau protein pathology and can be produced bymultiple mild TBI

and a single severe TBI that does not elicit concussion (McKee

et al., 2009). The levels of tau protein have been shown to be

augmented in plasma and CSF specimens following acute TBI

(Rubenstein et al., 2017). However, these proteins have not been

widely acceptable biomarkers of CTE in clinical settings (Stern

et al., 2016); it is being postulated that proteins associated with

EVs may accurately evaluate neuronal damage following TBI.

In a study, Stern et al. (2016) observed that the

concentrations of tau protein in plasma-derived EVs were

higher in ex-football players who had mild recurrent TBIs

(rTBIs) than controls in sports-related mTBI, indicating its

possible utility as a predictive biomarker of CTE. Another

study by Kenney et al. (2018) examined plasma-derived

exosomal concentrations of amyloid-beta (A), tau protein,

and phosphorylated tau (p-tau) in persons with a history of

combat-related mTBI with persistent cognitive impairment

symptoms. rTBI patients had augmented exosomal tau and

p-tau levels than those with two or fewer mTBI and those

without TBI. Exosomal tau and p-tau levels were shown to be

substantially linked with post-traumatic and post-concussion

effects, suggesting their potential value as a biomarker for

mTBI prediction. Overall, these studies and the current research

scenario employing EVs as potential biomarkers of TBI suggest

that detecting a wide variety of brain-derived EV payload

molecules may give an additional distinct perspective of the

pathogenic mechanisms behind TBI sequelae.

Microglial derived EVs in TBI

It is believed that past exposure to a series of rTBI renders

the brain more sensitive to degenerative processes following a

head injury, which may be regulated in part by neuronal–glial

cells (Manley et al., 2017). Following a traumatic brain injury,

microglial cells remain in an inflammatory state. Inflamed

microglia have diminished ability and threshold for reacting to

stimuli that influence the function of the brain (Witcher et al.,

2015). Neuroinflammation is a hallmark in the brain with CTE,

with a substantial elevation in the stimulated microglia cells in

the brain’s white matter (Gardner and Yaffe, 2015). Moreover,

the activation of microglia may be advantageous in the initial

stages of damage but can subsequently be deleterious. However,
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the significance of microglial EV miRNAs in controlling TBI

neurodegeneration is yet unknown.

The investigation of microglial-derived extracellular vesicles

(MDEs) miRNAs in a mouse model of rTBI showed that

microRNA-124-3p had a neuroprotective effect on recovery

trajectories in TBI by promoting the polarization of M2 in

microglial cells and inhibiting neuroinflammation (Huang et al.,

2018b). Similar to these observations, a study by Yang et al.

(2019) revealed that treatment with EV-derived micro RNA

(miR-124) boosted hippocampal regeneration by promoting the

polarization of microglial M2 cells, which were achieved via

blocking Toll-like receptor 4.

Another study by Li D. et al. (2019) reported that enhanced

miR-124-3p in milk-derived exosomes (MDE) increased neurite

development by arresting neuronal autophagy and providing

protection against neuronal injury. In another investigation, the

micro-RNA levels ofMiR-124-3p inMDE have been shown to be

significantly altered throughout the acute, subacute, and chronic

phases of rTBI (Ge et al., 2020). Notably, the surface markers

considered to recognize myeloid cells in the CNS are expressed

by both microglial cells and macrophages (Depaula-Silva et al.,

2019). The studies discussed above demonstrate that MDEs play

a role in neurodegeneration and neuroinflammation; microglial

EVs may be an effective and potential candidate biomarker

in TBI.

EVs as potential predictors of
functional outcomes in TBI

Risks for post-traumatic stress disorder (PTSD), depression,

and other mental diseases increase dramatically after a

TBI (Barnes et al., 2018; Roy et al., 2019; Stein et al.,

2019; Kulbe et al., 2022). Patients dealing with TBIs’

long-term effects are often at the risk of developing

cognitive impairment (CI) or post-concussion syndrome

(PCS) (Mehrolhassani et al., 2020). Although EVs-based

biomarkers can detect neurological injuries, their therapeutic

relevance would be significantly enhanced if they could predict

functional consequences, such as cognitive decline or mental

health symptoms.

Cognitive impairment has been the most frequently studied

functional outcome associated with exosome protein cargo

in patients with TBI. A study studying the long-term effects

of TBI, reported p-tau, cellular prion protein (PrPc), Aβ42,

and synaptogyrin-3 to be elevated in plasma NDEs of TBI

patients with CI but not in healthy controls (Goetzl et al.,

2020). A separate study reported IL6, NFL, TNF-alpha, and

GFAP to be elevated in NDEs of TBI patients with CI

compared to TBI patients without CI providing evidence that

elevated levels, CNS-enriched exosomal biomarkers linked with

TBI and CI can be detected even decades after initial TBI

(Peltz et al., 2020). Another preliminary study had shown

that total exosomal tau levels significantly correlated with

cognitive functioning as measured by short-term memory

in retired professional football players (Stern et al., 2016).

Studies involving proteomic analysis of CSF-derived and

plasma-derived EVs from retired National football league

(NFL) players who were at risk of developing CTE found

a significant correlation between t-tau and p-tau181 levels

in CSF, but not in a control group (Muraoka et al., 2019,

2021).

In addition to CI, several studies have also identified

EVs cargo links with neuropsychiatric symptoms (Gill et al.,

2018b). It has been reported that NDE tau and NFL markers

are also associated with PCS symptoms and PTSD (Kenney

et al., 2018; Pattinson et al., 2019; Guedes et al., 2020b, 2021,

2022). Some studies have also reported an increased NDE,

and total exosomal levels of p-tau and total tau in patients

with mild TBIs are associated with increased PTSD symptoms

(Kenney et al., 2018; Gill et al., 2018b). However, most of these

studies involved small sample sizes, making it challenging to

generalize their results regarding functional outcomes in the

cognitive and psychiatric domain, and there is no substantial

clinical evidence yet, on how EVs cargo might forecast future

cognitive impairment after TBI. To distinguish whether EVs

are linked with TBI-specific cognitive impairment, longitudinal

investigations with larger sample sizes will be sorely needed for

clearer insight.

MSC-derived exosome as a novel
therapy for TBI

Over the last decade, scientific and clinical findings

have backed cell therapies, such as bone marrow-derived

mesenchymal stem cells (MSCs), which have shown promise as

a viable treatment modality in variety of NDs, including TBI

(Das et al., 2019). MSCs-derived exosomes may provide various

benefits over traditional cell-based therapies, including superior

safety profile, being less invasive, higher stability, simple transfer,

and inducing minimal or no immune responses (Dehghanian

et al., 2020). Neurological illnesses induce sensory and

motor dysfunctions and anomalies in the CNS. Furthermore,

damaged axons lack the ability to recover spontaneously due

to a restrictive cellular environment, diminished neuronal

cell regeneration capacity, and a lack of growth-promoting

chemicals (Anderson et al., 2016). Surgical intervention and

pharmaceutical therapy may reduce but not totally cure, making

NDs treatment a critical issue in the clinical setting (Silberberg

et al., 2015). Exosomes produced from MSCs may serve as

a non-invasive intervention for the delivery of therapeutic

drugs to the brain and may be useful in the treatment of TBI

(Xiong et al., 2017). Therefore, it is important to investigate the
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FIGURE 2

Possible mechanistic and therapeutic approach of mesenchymal stem cell (MSCs) following traumatic brain injury: TBI breaches the

blood–brain barrier (BBB), resulting in a cascade of reactions such as hypoxia, edema, cellular infiltration, and release of inflammatory mediators

by immune cell. This causes an increase in the formation of reactive oxygen species (ROS), which causes oxidative stress, neuroinflammation,

and apoptosis, all of which damage neurons and activate astrocytes and microglia. Activated astrocytes and microglia set o� inflammatory

processes that further damage neurons and other cells, leading to tissue loss and functional deficiencies over the long term. When we use MSCs

to treat traumatic brain injury (TBI), MSCs and their released exosomes can cross the blood–brain barrier (BBB) and migrate steadily to the

damaged area of the brain. There, they release a variety of cytokines, including neurotrophic factors and vascular regeneration factors, to

promote nerve and blood vessel repair and regeneration, leading to the restoration of the brain microvascular system and its function. Figure

created with BioRender.com.

newer treatment modalities for the elimination of neurological

illnesses progression.

MSCs have been extensively employed in regenerative

medicine for therapeutic purposes (Levy et al., 2019). MSC

treatment for neurological illnesses has shown neuroprotective

potential in both laboratory and clinical investigations (Levy

et al., 2019; Li P. et al., 2019). MSCs are adult stem cells generated

from mesoderm, which can self-renew and differentiate in

several directions. They are found in different tissues and

organs, including bone marrow (Zhang et al., 2015; Staff

et al., 2019). MSCs-derived exosomes have also been shown

to play critical functions in the paracrine route and exert

neuroprotective properties and therapeutic efficacy by healing

the damaged cellular-microenvironment (Staff et al., 2019;

Zhang K. et al., 2022). There is compelling evidence that MSC-

derived EVs may exert therapeutic effects following TBI in

animal models (Xin et al., 2013a; Doeppner et al., 2015; Xiong

et al., 2017).

Zhang et al. (2015) conducted a seminal work in which

they found that intravenous administration of MSC-derived

exosomes enhanced cognitive and sensory and motor functional

outcomes in a rat model of traumatic brain injury. MSC-

derived exosomes have also been reported to improve vascular

integrity and density, promote angiogenesis and neuronal

regeneration, and diminish neuroinflammation of the brain

(Zhang et al., 2015), while having no effect on the volume

of the cortical lesion. Similarly, another study showed that

infusion of EVs isolated from human MSCs suppressed

neuroinflammation and improved functional outcomes

1-month post-injury (Kim et al., 2016). Another important

study demonstrated that MSC-derived exosomes, when

administered intravenously, in a dose- and time-dependent

manner, led to substantial neuroprotective and neurohealing

effects by reducing loss of neuronal cells, neuroinflammation

and augmenting neurogenesis and angiogenesis in a rat

model TBI (Zhang et al., 2020). Accumulating evidence
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also suggests that human umbilical cord mesenchymal stem

cells (HUCMSCs) aid neurological recovery following TBI.

Moreover, exosomal HUCMSCs enhanced sensorimotor

function and neurovascular remodeling, prevented apoptosis,

and decreased neuroinflammation, leading to a significant

recovery in functional outcomes in a rat model of TBI (Zhang

Z. W. et al., 2022), indicating their potential as a viable and

emerging therapeutic option for treatment of TBI.

Furthermore, research into the involvement of miRNAs in

MSC-derived exosomes as potential neuroplasticity mediators

might be an attractive field of study. It has been postulated

that exosomes deliver miRNAs to the brain, promoting

neuroplasticity and functional recovery following brain damage.

Functional miRNAs, for example, delivered from MSCs to

brain cells through exosomes have been shown to increase

neurite rebuilding and functional recovery in stroke rats (Xin

et al., 2013b). The above studies indicate that MSCs-derived

exosomes can potentially act as a non-invasive intervention

for the transportation of therapeutic agents into the brain and

further be applied in treating TBI. Although prior research has

yielded promising findings, we are only at the beginning of our

understanding of the potential of MSC-derived exosomes as a

feasible therapeutic strategy for TBI, and further investigation

is necessary to ascertain the function of active exosomal

miRNAs in fostering functional recovery and neurovascular

remodeling, controlling neuroinflammation and peripheral

immune response, and regulating brain growth factors.

Taken together, these results show that MSC-derived

exosomal treatment modality appears to be a viable and

promising approach that might considerably enhance our

understanding of the pathogenesis and neuroprotective

mechanism involved in TBI. However, more extensive

investigation is required with respect to the time and dosage-

dependent efficacy, toxicity, and methodological considerations

of MSC-derived exosome, which would ultimately determine

their therapeutic utility in clinical settings. Figure 2 shows the

possible mechanistic and therapeutic approach to mesenchymal

stem cell (MSCs) following traumatic brain injury.

Extracellular vesicles:
Methodological concerns

The EVs have been discovered and isolated in different body

fluids, such as peripheral blood, saliva, CSF, breast milk, and

urine, making them easily available (Fauré et al., 2006; Yáñez-Mó

et al., 2015; Kumari and Anji, 2022). Recently, the technological

barrier of conclusively separating exosomes from MVs has been

a major impediment to advancement in understanding and

possible therapeutic use of EVs. This, of course, increases biases

when describing EV features for molecular research. As a result,

one of the field’s major priorities is to enhance and standardize

EV isolation and analysis procedures (Mateescu et al., 2017;

Couch et al., 2021). Blood is the initial source of EVs-based

biomarkers and is commonly employed in clinical diagnosis

(Boukouris and Mathivanan, 2015). It has been established that

fresh plasma and serum contain intact exosomes (Muller et al.,

2014). A single freeze-thaw cycle with a shorter storage time

does not change the size or concentration of EVs. In contrast,

repeated freeze/thaw cycles had been shown to cause an increase

in protein aggregation (Muller et al., 2014). Additional research

has demonstrated that exosomes held in plasma at 80 or 20◦C

are more stable, providing a better recovery after 90 days than

exosomes stored at 4◦C (Kalra et al., 2013).

Researchers routinely debate the “optimal” separation

approach. While each approach obviously has advantages, the

project’s objectives influence the decision to adopt one over

another. The selection of an isolation method is influenced by

several characteristics, such as sensitivity, specificity, sample,

cost, and workforce constraints. The most widely used EV

isolation and purification procedures, such as differential

centrifugation and ultracentrifugation, are time-consuming,

take days, and frequently contaminate samples with cellular

fragments (Xu et al., 2016). To overcome these issues, recently

developed microfluidic devices or platforms can act as an

alternative and have been shown to significantly improve

the sensitivity and accuracy of EV isolation (Iliescu et al.,

2019). These methods allow for faster and higher-throughput

isolation of brain-derived EVs. When coupled with advanced

techniques, such as enzyme-linked immunosorbent assay

(ELISA), next-generation sequencing, and biomarker discovery,

these technologies may enable the rapid assessment of multiple

biomarkers from extremely small amounts of sample material.

The common identification and quantification techniques

for EVs include Electron microscopy and Flowcytometry for

morphological characterization and the Western immunoblot

technique for identification of the markers of membrane protein

(Porro et al., 2015). Nonetheless, methodological consideration

and variability in standardization techniques remain a source

of inconsistencies in EV recovery (Doyle and Wang, 2019).

Diversity within EV populations is one of the most intriguing

avenues for discovering TBI biomarkers. Recent articles (Zabeo

et al., 2017; Tkach et al., 2018) have explored the limits of

previously accepted ideas of an “exosome” as well as the

significance of identifying EV subtypes. Different separation

strategies can remove a fraction of exosomes containing critical

diagnostic information, whether they are tiny or big. However,

the isolation of certain exosomal groups is still being explored,

and categorization is being defined constantly on a regular basis

(Couch et al., 2021).

Conclusions and future perspectives

Over the past two decades, EVs have transformed from

their original categorization as “Garbage bins” of cells into the
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emergence of promising biomarkers and innovative therapeutic

agents in several biological processes. They have also been linked

to several NDs’ pathogenesis, development, and progression.

The emerging research and evidence underscore the growing

interest in EVs, implying the possibility that they could produce

transformational methods for diagnosis, characterization, and

therapy in NDs.

TBI is a complex and heterogeneous injury with

varied clinical manifestations and recovery patterns.

Neurodegeneration and neuroinflammationmay play important

roles in the pathology of TBI and other neurological illnesses.

Mechanisms involving EVs in the CNS may shed light on

the potential involvement of EVs in TBI pathogenesis and

progression, which is currently unknown. Reliable TBI

biomarkers might improve the diagnosis and management

of TBI patients. Identifying individuals at high-risk of

neurodegeneration post-TBI is crucial to initiating the

therapeutic interventions prior to the onset of irreversible

pathological manifestations.EVs as biomarkers have shown

considerable promise in the realm of TBI diagnoses.

Additionally, EVs may be utilized to support personalized

medicine methods for TBI therapy by performing

complementary diagnostics for medications undergoing

clinical trials. Biomarkers are required to identify which disease

processes contribute the most to a patient’s condition to evaluate

which treatment is most likely to be beneficial for the patient.

Thus, EV-based biomarkers can play an important role for

developing personalized medicine to treat patients with TBI.

An increasing body of research indicates that EVs obtained

from peripheral blood might be used for the diagnosis of

TBI. However, EV research is still at an early stage, as

there are methodological constraints with respect to optimal

standardization methods, nomenclature, and methodological

characterization. Regarding “analytical performance,” critical

technological issues will include the development of validated

methodologies capable of isolating, classifying, and evaluating

EV subtypes accurately and efficiently. Before any more steps

can be taken toward clinical use, the results must be reliable,

be able to be repeated in different clinical settings, and have

higher sensitivity and specificity. In this case, it would be

very important to find out if specific exosomes and MVs

allow phenotypic characterization of NDs. This could bring

new life to the current classification and lead to a novel

risk stratification system based on molecular phenotyping and

biological and pathophysiological implications. Moreover, larger

clinical studies will be required to evaluate and define the

clinical utility of particular EV populations within specific

contexts and identify its additional value for developing newer

methodological approaches to integrate clinical and molecular

information to improve outcomes.

Finally, we still need to explore and define the clinical

utility of specific EVs subsets within a specific context of

use and assess its value beyond current clinical practice

while developing new methodological approaches for their

integration and combination with other types of clinical and

molecular data.

Based on these and other unanswered problems in the field

of EVs, we anticipate that the advancement in research will

lead to the development of novel diagnostic and treatment

approaches for TBI. The current knowledge of exosome

composition, biosynthesis, function, and their potential as

diagnostic and therapeutic candidates continues to expand,

providing new insights into normal physiology and disease

processes in neurodegenerative diseases.
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