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Abstract

HIV-1-infected cells in peripheral blood can be grouped into different transcriptional subclasses. Quantifying the turnover of
these cellular subclasses can provide important insights into the viral life cycle and the generation and maintenance of
latently infected cells. We used previously published data from five patients chronically infected with HIV-1 that initiated
combination antiretroviral therapy (cART). Patient-matched PCR for unspliced and multiply spliced viral RNAs combined
with limiting dilution analysis provided measurements of transcriptional profiles at the single cell level. Furthermore,
measurement of intracellular transcripts and extracellular virion-enclosed HIV-1 RNA allowed us to distinguish productive
from non-productive cells. We developed a mathematical model describing the dynamics of plasma virus and the
transcriptional subclasses of HIV-1-infected cells. Fitting the model to the data allowed us to better understand the
phenotype of different transcriptional subclasses and their contribution to the overall turnover of HIV-1 before and during
cART. The average number of virus-producing cells in peripheral blood is small during chronic infection. We find that a
substantial fraction of cells can become defectively infected. Assuming that the infection is homogenous throughout the
body, we estimate an average in vivo viral burst size on the order of 104 virions per cell. Our study provides novel
quantitative insights into the turnover and development of different subclasses of HIV-1-infected cells, and indicates that
cells containing solely unspliced viral RNA are a good marker for viral latency. The model illustrates how the pool of latently
infected cells becomes rapidly established during the first months of acute infection and continues to increase slowly during
the first years of chronic infection. Having a detailed understanding of this process will be useful for the evaluation of viral
eradication strategies that aim to deplete the latent reservoir of HIV-1.
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Introduction

High levels of cell-associated HIV-1 RNA can be observed in

peripheral blood of patients with undetectable plasma viremia

during combination antiretroviral therapy (cART) [1–4]. The

various HIV-1 RNA and DNA species that are present during the

viral life cycle can serve as biomarkers for basal transcription in

viral reservoirs with different properties [5,6]. Gaining a quanti-

tative understanding of the development and turnover of HIV-1-

infected subpopulations and viral latency is of particular interest in

light of recent efforts in viral eradication strategies [7–10].

Highly sensitive assays for HIV-1 plasma RNA in patients on

cART usually provide bulk measurements of viral activity and

cannot distinguish between different infected subpopulations [11].

In contrast, the study by Fischer et al. [12] combined highly

sensitive PCR assays for unspliced (UsRNA) and multiply spliced

(MsRNA-tatrev and MsRNA-nef) HIV-1 RNA species with

limiting dilution endpoint analysis of peripheral blood mononu-

clear cells (PBMCs). In addition to intracellular RNA transcripts,

extracellular virion-enclosed HIV-1 RNA that provides a marker

for cells releasing virus particles was also measured. The study

identified four distinct viral transcriptional classes: two overlapping

cell classes of high viral transcriptional activity, representative of a

virus producing phenotype; and two cell classes that express HIV-

1 RNA at low and intermediate levels that match definitions of

viral latency [12,13].

Analyzing the decay kinetics of plasma viral load in HIV-1-

infected patients on cART using mathematical models has resulted

in a detailed understanding of viral replication dynamics in vivo
[14–16]. The plasma viral load typically exhibits three exponential

phases during the first year after start of cART (Figure 1). Due to

the rapid turnover of free virus in blood [17], the viral decay

phases are thought to reflect the contribution of different HIV-1-

infected cell populations on viral production. The first phase with

a half-life of 1 to 2 days is attributed to the loss of activated, virus-

producing cells [18,19]. The second phase exhibits a half-life of 1

to 4 weeks and is considered to reflect the loss of so-called

persistently infected cells with a lower state of activation [20,21].
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The third phase decay has a long half-live of 39 weeks suggesting

that latently infected cells are a primary candidate for this cellular

compartment [22,23], although slow release of virus from the

follicular dendritic cell network is another possibility [24].

Although not shown in Figure 1, in many patients, after the third

phase a final low steady state level of plasma viremia is attained,

that has been called a fourth phase [22]. This phase has also been

attributed to release of virus from activated latently infected cells

[22]. Other mathematical models have been developed that

stratify the infected cells into additional subpopulations such as

non-productively infected cells during the intracellular eclipse

phase [25] and defectively infected cells [26]. Nevertheless, most

studies to date are focused on the analysis of viral load and only

indirectly allow inferring the kinetics of cellular subpopulations.

Few studies have attempted to characterize the concentration of

virus and several infected subpopulations based on data simulta-

neously [26]. Fitting mathematical models to multiple quantities of

viral replication would result in refined parameter estimates for

describing the generation and maintenance of latently infected

cells.

In this study, we developed a mathematical model that describes

the dynamics of different transcriptionally active subclasses of

HIV-1-infected cells and the viral load in peripheral blood. The

model was fitted to previously published data from five chronically

HIV-1-infected patients starting cART [12]. This allowed us to

estimate critical parameters of the within-host dynamics of HIV-1

and the turnover of various subpopulations of infected cells.

Finally, we simulated the development of the latently infected cell

pool during acute infection, providing useful information for viral

eradication strategies.

Results

We first devised a detailed model of the within-host dynamics

of HIV-1 that is based on the observations of different subclasses

of HIV-1-infected cells in the study by Fischer et al. [12]. The five

subclasses are HIV-1 DNAz, low, medium and high HIV-1

RNA expressing and cells that have virion-enclosed HIV-1 RNA

associated with them (also see Methods). These subclasses show

distinct decay dynamics in patients on cART (Figure 2). The slow

decay of the subclass of PBMCs that contains proviral DNA

(DNAz) indicates that this cell population primarily contributes

to the third phase decay and likely consists of defectively or

latently infected cells to a large extent. The subclass of cells

exhibiting UsRNA only (Low) decays slowly and most likely

consists mainly of latently infected cells with low basal transcrip-

tion of HIV-1. The cells with medium transcriptional activity

(Mid) appear to contribute to the second and the third phase viral

decay, which is characteristic of persistently and latently infected

cells. The early drop in PBMCs with a higher transcriptional

activity (High), which is more pronounced compared to cells with

a low and medium transcriptional activity, that is followed by a

slower loss of cells is reminiscent of activated, virus-producing

and persistently infected cells. Finally, the PBMCs that have

extracellular virion-enclosed HIV-1 RNA associated with them

(Extra) show a very rapid loss before reaching the limit of

detection. This is expected as they should represent the short-

lived population of virus-producing cells [4] that contribute to the

first phase of viral decay.

The different subclasses of HIV-1-infected cells clearly overlap

and are representative of heterogeneous cell populations. Further-

more, the life cycle of HIV-1 from infection of a cell to the release

of virus particles can be divided into cell populations with different

transcriptional activity [27]. We took both of these important

characteristics into account in our model that consists of 12

subpopulations of cells that can be stratified according to their

HIV-1 DNA and RNA content (Figure 3 and Methods). In this

model, we defined persistently infected cells (M1 and M2) as long-

lived cells that can produce viral particles. Latently infected cells

(L1 and L2) were assumed to transcribe HIV-1 RNA at low or

intermediate levels [12,13]. Infected cells that are HIV-1 DNA

positive, but HIV-1 RNA negative, were assumed to remain

transcriptionally silent during the observation period and consid-

ered as defectively infected cells (D).

Figure 1. Three-phase decay of HIV-1 after start of cART. The
black line shows a typical decay profile of plasma viral load during the
first year of cART. Typical half-lives of the first (blue dashed line), second
(red dotted line) and third phase (green dash-dotted line) are 1.5 days, 4
weeks and 39 weeks, respectively [22].
doi:10.1371/journal.pcbi.1003871.g001

Author Summary

Gaining a quantitative understanding of the development
and turnover of different HIV-1-infected subpopulations of
cells is crucial to improve the outcome of patients on
combination antiretroviral therapy (cART). The population
of latently infected cells is of particular interest as they
represent the major barrier to a cure of HIV-1 infection. We
developed a mathematical model that describes the
dynamics of different transcriptionally active subclasses
of HIV-1-infected cells and the viral load in peripheral
blood. The model was fitted to previously published data
from five chronically HIV-1-infected patients starting cART.
This allowed us to estimate critical parameters of the
within-host dynamics of HIV-1, such as the the number of
virions produced by a single infected cell. The model
further allowed investigation of HIV-1 dynamics during the
acute phase. Computer simulations illustrate that latently
infected cells become rapidly established during the first
months of acute infection and continue to increase slowly
during the first years of chronic infection. This illustrates
the opportunity for strategies that aim to eradicate the
virus during early cART as the pool of HIV-1 infected cells is
substantially smaller during acute infection than during
chronic infection.
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Fitting the mathematical model to the data from five HIV-1-

infected patients resulted in a good description of the viral and

cellular decay kinetics during cART (Figure 4 and Text S1). The

individual dynamics of each subpopulation of cells are shown

separately (Figure 5). The model clearly describes more pro-

nounced decay dynamics in infected cells with increasing transcrip-

tional activity. Table 1 provides a summary of the geometric means

as well as the ranges of the best fit parameter estimates that describe

the virus dynamics in each of the five patients. We found that 1.1%

(0.2%–7.0%) of all CD4z T cells can be target cells for infection

with HIV-1. We also obtained estimates for the average lifespans of

target cells (61 days, range: 11–528 days) and latently infected cells

(33 years, range: 168 days–505 years). While others have estimated

the average half-life of latently infected cells to be 6.3 months [28]

and 44 months [29], our estimates are less precise due to the much

shorter follow-up period after start of cART. However, the

estimated activation rate of latently infected cells (2:7|10{3 d{1,

range: 5:3|10{5{1:5|10{1 d{1) that also influences the slope

of the third phase decay in plasma HIV-1 RNA is consistent with

previous findings [30].

The parameters fD, fL and fM denote the fractions of cells

that end up in a particular subpopulation in a sequential process

during the intracellular eclipse phase. From this, we can

calculate the average proportion of newly infected cells that

become a certain cell type (Text S1). In contrast to another

study [26], we find that only 63.4% (0.2%–7.0%) of infected

cells become activated, virus-producing cells (I6). A substantial

fraction of infected target cells results in defectively (14.0%) and

persistently infected cells (21.2%). The proportion of infected

cells that become latently infected or die before ending up in

one of the subpopulations is small (0.3% and 1.1%, respective-

ly). Note that after activation, latently infected cells can then

either become persistently infected or activated, virus-producing

cells by moving through cell class I4. Transcriptional bursts that

increase the level of viral RNA transcription occur on average

every 12.7 days (1=s2, range: 3.5–165.2 days) and 9.7 days

(1=k2, range: 1.5–37.0 days) in latently and persistently infected

cells, assuming that bursts last for one day on average

(s1~k1~1 d{1). The total number of virus particles produced

by a cell during its lifetime, the viral burst size, was estimated at

219000 virions per cell (range: 39500–2409000 virions per cell).

Note that we assumed that persistently infected cells in an

elevated transcriptional state (M2) produce viral particles at the

same rate as activated, virus-producing cells. However, the

duration of virus release is shorter in persistently infected cells as

they can revert to a lower transcriptional state (M1). The

majority of virus particles is produced by activated, virus-

producing cells I6 (68.3%, range: 5.6%–98.1%) with the

remaining proportion being produced by persistently infected

cells M2. The high viral burst size suggests that the total number

of virus-producing cells in peripheral blood must be small and

we indeed found an average of only 25.7 cells ml{1 (range: 7.8–

143.1 cells ml{1) in the model during the chronic phase of

infection.

The parameters were estimated by fitting the virus dynamics

model to data of patients chronically infected with HIV-1.

Although there are mathematical models that describe acute

and chronic HIV infection together [31,32], the virus dynamics

during acute infection could differ significantly due to different

parameter values and even model structures. Nevertheless, our

model can still be used to simulate the virus dynamics during the

acute phase and compare the results to experimental and

clinical data. We used the average of the estimated parameters

to simulate early infection with HIV-1 from a small viral

Figure 2. Decay kinetics of subclasses of HIV-1-infected cells during cART. The five subclasses of PBMCs are: DNAz (containing HIV-1 DNA,
black circles), Low (containing solely HIV-1 UsRNA, red diamonds), Mid (containing only HIV-1 MsRNA-tatrev or MsRNA-nef, green crosses), High
(containing elevated levels of both HIV-1 MsRNA-tatrev and MsRNA-nef, blue triangles) and Extra (carrying virion-enclosed HIV-1 RNA, chocolate
squares). Thick lines and symbols represent the geometric means of the five patients from the study by Fischer et al. [12]. Thin transparent lines for
each color represent the original data for each subclass of cells of each individual patient. The dashed line represents the limit of detection that was
set at 50% of the lowest measured cell count. Measurements below this threshold were assumed to be at 50% of the detection limit to include them
in the mean.
doi:10.1371/journal.pcbi.1003871.g002
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inoculum in a hypothetical patient. We set V (0)~1 copy per ml

and assumed that the target cells are at steady-state

(T(0)~l=dT ). The rapid rise of plasma HIV-1 RNA during

the first weeks of infection is followed by the chronic phase at

which the virus concentration reaches its set-point level

(Figure 6). The total pool of latently infected cells (L1zL2) show

somewhat different dynamics during acute HIV-1 infection. A

very rapid expansion of latent cells during the viral growth phase

is followed by a slower increase into the chronic phase of

infection. From the time of peak viremia (22 days) to the chronic

phase (1000 days), the latently infected cell pool expands 14.3-

fold from 9.8 to 140.4 cells per ml. The expansion of the total

number of HIV-1 DNA positive cells from the acute (1813 cells

per ml) to the chronic phase (7608 cells per ml) is smaller (4.2-

fold). This is consistent with the 3.8-fold difference in the number

of HIV-1 DNA copies that were measured in patients that

initiated cART during the acute and chronic phase from another

study [33, and see Text S1]. The time after infection at which

latently infected and HIV-1 DNA positive cells reach 50% of

their chronic level is 441 and 451 days, respectively. Altogether,

this illustrates the opportunity for eradication strategies during

early cART interventions as the pool of HIV-1 infected cells

seems to be substantially smaller during acute infection than

during chronic infection.

Discussion

We present the first mathematical model of virus dynamics that

groups the different subpopulations of HIV-1-infected cells

according to their transcriptional profile. The model assumes a

heterogeneous population of latently and persistently infected cells

having occasional transcriptional bursts to increase their level of

RNA transcription which is consistent with experimental data

from Fischer et al. [12]. Fitting this model to the unique data of

virus transcription levels at the single cell level resulted in new

estimates of the HIV-1 dynamics in vivo. We found that a large

fraction of infected cells become either defectively or persistently

infected cells. Furthermore, we found that the viral burst size can

be high, between 3:5|103 and 2:4|105 viral particles per virus-

producing cell. Lastly, we simulated the acute phase of HIV-1

infection in a typical patient. This illustrated that the latently

infected cell pool becomes rapidly established during the first

months of acute infection and shows a slow increase during the

first years of chronic infection.

Our study is unique in that we fit a mathematical model of

HIV-1 within a host to data of the dynamics of different subclasses

of infected cells. This is a substantial step beyond modeling studies

that considered free virus in plasma, CD4z T cells and bulk

measurements of viral activity only. The new quantitative insights

Figure 3. Model of HIV-1 dynamics. Actively infected cells move through an intracellular eclipse phase (I1 to I5) before they start to produce virus
particles (I6). Some of the cells during the intracellular eclipse phase become either defectively infected (D), latently infected (L1) or persistently
infected (M1). Both latently (L1 and L2) and persistently (M1 and M2) can move between two transcriptional states. Persistently infected cells that are
in a high transcriptional state (M2) also contribute to virus production. The different subpopulations of infected cells can be stratified according to
their HIV-1 DNA and RNA content (shown on top).
doi:10.1371/journal.pcbi.1003871.g003
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into the replication dynamics of HIV-1 in vivo that this study

provides will be useful for an improved understanding of HIV and

the effects of novel treatment strategies.

The measurements of HIV-1-infected cells and the virus

concentration were performed in blood only. In our mathematical

model, we thus assume homogeneous mixing of virus and cells

throughout the body. It is important to note, however, that the

characteristic decay profile in the study by Fischer et al. [12] could

also be a result of differential trafficking of virus particles and HIV-

1-infected subpopulations of cells between the blood and lymphoid

tissue. It has also been suggested that the virion clearance rate

from the blood corresponds to a virion efflux to other organs

where the virus is ultimately cleared [34]. Furthermore, non-

productively infected CD4z T cells could also indirectly die

through ‘bystander’ effects [35,36]. Finally, the typical second-

phase decay could also result from virus production in infected

macrophages [20] or heterogeneity in activation rates of latently

infected cells [30,37].

The concept of persistently infected cells has been previously

used in mathematical models of HIV-1 dynamics to describe a

population of long-lived cells that can contribute to the second-

phase decay of virus during cART [20,26]. Since the cellular

subclass with medium transcriptional activity (Mid) seems to be

rather long-lived and strongly characterized by a decay dynamics

that could contribute to the second-phase decay of virus, we

assumed that the majority of persistently infected cells belong to

this class. This is consistent with the notion that persistently

infected cells could be in a lower state of activation [21]. The

contribution of other subpopulations of cells to the subclass Mid is

small as the average lifespan of those cells is longer (L2) or shorter

(I4) than that of persistently infected cells. It remains to be

determined whether persistently infected cells could indeed release

viral particles as a result of an increase in their transcriptional

level. However, the reversion of virus-producing cells into a lower

state of activation has been proposed previously [30]. The data did

not allow estimation of both the frequency and duration of

transcriptional bursts that lead to the release of virions in

persistently infected cells. We assumed that once persistently

infected cells release viral particles, the probability to die through

cell lysis is the same as the probability of reversion.

For simplicity, we considered only one type of CD4z target cell

whereas HIV-1 can infect activated but also resting CD4z T cells.

Our estimate of the proportion of CD4z T cells that are target

cells (1.1%) is somewhat lower than the 6.5% of CD4z Ki-67z T

cells in HIV-1-infected individuals that have been measured

previously [38]. Also, the estimated average lifespan of target cells

was longer than what others have estimated for activated cells

[39]. The target cells in the model thus represent a particular

subset of CD4z T cells that is smaller than the population of

activated cells but has a longer average lifespan. The longer

lifespan of target cells results from the assumption that the death

rates of cells during the intracellular eclipse phase (I1 to I5) and

Figure 4. HIV-1 dynamics during cART. Circles denote measured data of patient 112 and lines represent the best fit of the default model. Model
fits to data of the four other patients are given in Text S1.
doi:10.1371/journal.pcbi.1003871.g004
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persistently infected cells (P1) remain the same after infection, i.e.,

are the same as the death rate of uninfected target cells (T ). While

persistently infected cells are indeed defined as long-lived cells that

can produce virus, some studies have suggested that infected cells

in the eclipse phase could also be a target of cytotoxic T

lymphocyte (CTL) killing and experience high death rates [25,40–

42]. The early steps of proviral transcription also remain elusive. It

has been suggested that the decay of non-integrated viral DNA in

infected cells could render them CD4z target cells again [43–46].

The kinetics of HIV-1 DNA indeed show a small drop early after

start of cART (Figure 2 and ref. [47]). However, we have excluded

this effect for simplicity. Ultimately, the mechanisms of viral

latency in HIV-1 remain a matter of debate [48].

In our model, we assumed that after proviral insertion some

cells fail to increase viral RNA transcription and become latently

infected cells. Latency could also result from infection of resting

CD4z T cells or de-activation of activated CD4z T cells. We

have not included the latter two mechanisms in our model as the

data would not allow us to distinguish between them.

The complexity of the HIV-1 life cycle and its mathematical

representation prevents the identification of a ‘true’ underlying model.

We made several simplifying assumptions in our default model but we

also studied a series of alternative models and found that some of those

models also fit the data well (Table S1 in Text S1). Importantly, the

estimates of critical parameters such as the viral burst size, the

proportion of CD4z T cells that are target cells, and the fractions of

cells that become defectively, latently or persistently infected in the

alternative models that fit the data well were very similar to those

estimated with the default model (Table S2 in Text S1).

We were also able to reject some competing hypotheses about

the life cycle of HIV-1 (Table S1 in Text S1). Removing the

intracellular eclipse phase, that contains infected cells at different

stages with increasing levels of viral transcription, impairs the

model fit. Assuming that latently or persistently infected cells are

homogeneous subpopulations results in a substantially worse fit to

the data. The limited number of data points and patients

prevented a more thorough analysis and resulted in substantial

uncertainty in estimating the model parameters. The wide ranges

of estimates in Table 1 illustrate that the reported parameter

values need to be treated with caution. We also used the least-

squares method to fit the model to the data and did not consider

maximum likelihood approaches [49], values below the limit of

detection or nonlinear mixed-effect models [50].

It remains to be determined how well the parameter estimates

that were obtained during the chronic phase of infection represent

the situation of acute HIV-1 infection. It is re-assuring that the

simulated virus dynamics of acute infection show a peak around

three weeks after infection, which is in agreement with observa-

tions in patients [51,52]. Nevertheless, differences in immune

activation during acute infection are likely to result in different

proportions of cells becoming latent upon infection and different

activation rates of latently infected cells. Hence, our results on the

development of the latently infected cell pool during acute

infection need to be interpreted with caution.

We found the HIV-1 burst size in vivo to be large,

corroborating previous estimates from Chen et al. [53] who found

the average burst size in SIV-infected rhesus macaques to be

between 4:0|104 and 5:5|104. This is higher than other

Figure 5. Dynamics of HIV-1-infected subpopulations during cART. The 12 different cellular subpopulations from Figure 3 (patient 112) are
shown together with the virus. CD4z target cells (T ): black dashed line; actively infected cells during the intracellular eclipse phase (I1 to I5): blue
dashed lines; activated, virus-producing cells (I6): blue solid line; defectively infected cells (D): chocolate line; latently infected cells (L1 and L2): red
dashed and solid line, respectively; persistently infected cells (M1 and M2): green dashed and solid line, respectively; virus particles (V ): black solid
line. The dynamics of the cellular subpopulations for all other patients are given in Text S1.
doi:10.1371/journal.pcbi.1003871.g005
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estimates that were in the range of 103 virions per cell [54,55] and

suggests that the number of virus-producing cells must be lower

than previously anticipated. Measurements of extracellular virion-

enclosed HIV-1 RNA (Extra) in the study by Fischer et al. [12]

suggest that the number of productively infected cells in peripheral

blood is small which is also reflected in our model fits. In contrast

to other studies that assumed the viral production rate in long-

lived persistently infected cells to be lower than in activated, virus-

producing cells [56], we considered the viral production rates to be

the same in both cell types. However, in our model persistently

infected cells can have occasional transcriptional bursts from Mid
to High, where they can release virus particles before reverting

back to a lower transcriptional state or dying.

Our simulations of the development of different pools of HIV-1-

infected cells are in good agreement with observations in patients.

We find that the total number of HIV-1 DNA positive cells rapidly

build up during the acute stage of infection. A very similar

expansion was found in a recent study that measured the total

number of HIV proviruses in PBMCs during the first weeks of

HIV infection [57]. Also, our predicted ratio of the number of

HIV-1 DNA positive cells during acute and chronic infection is in

the same range as previously reported [33,47]. The study by

Murray et al. [47] further suggested that the level of HIV DNA

continuously increases with duration of infection, reaching its 50%

level at two years after infection. This contradicts earlier findings

of stable levels of HIV-1 DNA positive PBMCs during the natural

course of infection [58]. Our model predicts that the number of

HIV-1 DNA positive PBMCs increases slowly during the first

years of chronic infection and reaches its 50% level at 451 days

after infection, corroborating the findings by Murray et al. [47].

An important question that remains is how many of HIV-1

DNA positive cells are latently or defectively infected. We found

that the fraction of cells becoming defectively infected is

surprisingly high. On the one hand, this could be a result of the

Table 1. Estimated parameters of HIV-1 dynamics.

Parameter Explanation and reference Constraint Estimate (average) Estimate (range) Unit

s Proportion of CD4z T cells
that are target cells

0:1%{10% 1:1% 0:2%{7:0% –

l Production rate of target cells 10{104 68:4 22:1{191:5 cells ml{1 d{1

E Drug effectiveness [23] 85% – – –

b Infection rate 10{8{10{4 1:4|10{6 4:0|10{7{1:4|10{5 ml virion{1 d{1

dT Death rate of target cells and
other infected cells

10{4{1 0:017 0:002{0:087 d{1

dD Death rate of defectively and
latently infected cells
(dD~dL1

~dL2
)

10{6{0:1 8:3|10{5 5:4|10{6{5:9|10{3 d{1

dI6
Death rate of virus-producing
cells (dI6

~dM2
) [72]

1:0 – – d{1

c Clearance rate of free virus
particles [17]

23:0 – – d{1

fD Fraction of I2 that become
defectively infected cells

1%{99% 14:1% 3:5%{49:0% –

fL Fraction of I3 that become
latently infected cells

0:01%{10% 0:4% 0:2%{11:1% –

fM Fraction of I4 that become
persistently infected cells

0:1%{99% 25:0% 2:3%{93:3% –

c1 Transition rate from I1 to I2 [27] 3:0 – – d{1

c2 Transition rate from I2 to I3 [27] 6:0 – – d{1

c3 Transition rate from I3 to I4 [27] 12:0 – – d{1

c4 Transition rate from I4 to I5 [27] 12:0 – – d{1

c5 Transition rate from I5 to I6 [27] 12:0 – – d{1

s1 Transition rate from L1 to L2 10{3{1:0 0:079 0:006{0:284 d{1

s2 Transition rate from L2 to L1

(assumption)
1:0 – – d{1

k1 Transition rate from M1 to M2 10{3{1:0 0:103 0:027{0:683 d{1

k2 Transition rate from M2 to M1

(assumption)
1:0 – – d{1

a Activation rate of latently
infected cells

10{6{0:1 2:7|10{3 5:3|10{5{1:5|10{1 d{1

N Viral burst size of virus-producing
cells infected cells

103{106 2:14|104 3:46|103{2:40|105 virions cell{1

Estimates are given as geometric means including the range over all five patients. Parameters without an estimate (–) were assumed to be fixed during the fitting
procedure. Intermediate values of the logarithmic range of constraint were used as starting values for the model fitting.
doi:10.1371/journal.pcbi.1003871.t001
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assumption that HIV-1 DNA positive cells without viral RNA

transcription remain silent. Some of these cells could actually be

activated and start to produce UsRNA at low levels, i.e., become

cells of the latent class L1. Eriksson et al. [59] measured a 300-fold

difference between the number of latently infected cells as

measured with a viral outgrowth assay and the total number of

HIV-1 DNA positive resting CD4z T cells. However, Ho et al.

[60] showed a substantial fraction of noninduced proviruses in

cells that have been stimulated in a viral outgrowth assay are

replication-competent. They found that that the frequency of

intact noninduced proviruses was at least 60-fold higher than the

frequency of proviruses induced in a viral outgrowth assay. The

median frequency of cells with intact non–induced proviruses per

HIV-1 DNA positive resting CD4z T cells was estimated at 3.7%

[60]. In our simulation, the fraction of latently infected cells

(L1zL2) in all HIV-1 DNA positive cells (DNAz) is 1.8% (140.4/

7608) during chronic infection. The striking correspondence of

these numbers suggests that our mathematical model realistically

describes the dynamics of the latent reservoir. Since the

subpopulation of L1 is much larger than L2, the majority of

latently infected cells consist of PBMCs that contain solely HIV-1

UsRNA (Low), indicating that this transcriptional subclass is a

good marker for viral latency.

This study provides an important step towards a more

quantitative understanding of the dynamics of HIV-1 in vivo, in

particular of the generation and maintenance of latently infected

cells. A better understanding of the number of latently infected

cells during acute infection is crucial for evaluating and predicting

the outcome of early treatment and eradication strategies. Early

cART treatment has been suggested to facilitate long-term control

of HIV-1 [61] and studies have shown that it results in lower viral

load levels during chronic infection [62]. Although the effects on

viral load might only be transient [63], early treatment can prevent

the expansion of viral cellular reservoirs in peripheral blood [33].

More recent strategies aim towards depletion of this reservoir [9],

preferably during acute infection [64]. Predicting the chances of

such eradication strategies critically depends on the ability to

accurately quantify the pool of latently infected cells at various

time points during HIV-1 infection. Our study supports the

experimental finding that the latent reservoir becomes rapidly

established during the first months of infection, and shows that the

reservoir represents a significant proportion (w1%) of all HIV-1

DNA positive PBMCs during chronic infection. In addition, our

mathematical model realistically describes the dynamics of

different HIV-1-infected subpopulations of cells which will be

useful for projecting the effects of eradication strategies.

Materials and Methods

Patient data
We used previously published data from five chronically HIV-1-

infected therapy naive patients that initiated cART using reverse

transcriptase and protease inhibitors (patient numbers: 103, 104,

110, 111, 112) [12]. Plasma HIV-1 RNA (copies per ml) and

CD4z T cells (per ml) were measured at several time points during

the first 48 weeks of cART. PBMCs were purified at weeks 0, 2, 4,

8, 12, 24 and 48 after the start of cART as described in Fischer et

al. [65]. Serial dilution of PBMCs and patient matched PCR

quantification of HIV-1 RNA species and DNA was performed as

described elsewhere in detail [12,13,66,67]. The freeze-thaw

nuclease digestion method to differentiate between intracellular

and virion encapsidated HIV-1 RNA has also been previously

described in detail [4,33]. HIV-1 RNA or DNA positive cell

fractions measured as cells per 106 PBMCs were converted to

number of cells per ml of blood by multiplying with the number of

PBMCs per ml. This ultimately lead to the stratification of cells to

five (partially overlapping) subclasses [12]:

N DNAz: PBMCs containing HIV-1 DNA

N Low: PBMCs containing solely HIV-1 UsRNA

N Mid: PBMCs containing only HIV-1 MsRNA-tatrev or

MsRNA-nef

N High: PBMCs containing elevated levels of both HIV-1

MsRNA-tatrev and MsRNA-nef

N Extra: PBMCs carrying virion-enclosed HIV-1 RNA

For the subclass DNAz, we make the assumption that there is

only one proviral DNA copy per infected cell [68].

Mathematical model
We devised a new virus dynamics model (Figure 3) which is

adapted from previously published models [19,25,26,30]. The

various subpopulations of infected cells were stratified according to

their HIV-1 DNA and RNA content. The model can be described

by the following set of ordinary differential equations (ODEs):

dT

dt
~l{(1{E)bVT{dT T , ð1Þ

dI1

dt
~(1{E)bVT{(c1zdI1

)I1, ð2Þ

dI2

dt
~c1I1{(c2zdI2

)I2, ð3Þ

Figure 6. Development of the latently infected cell pool during
acute and chronic of HIV-1 infection. The pool of latently infected
cells (L1+L2) is shown as a red line, the number of HIV-1 DNA positive
cells as a blue dash-dotted line and the plasma HIV-1 RNA as a black
dashed line. The average parameter estimates from Table 1 were used
for the model simulation. The gray areas represent two standard
deviations around the mean of the number of HIV-1 DNA positive cells
in patients that initiated cART during acute and chronic infection [33]
(for details, see Text S1).
doi:10.1371/journal.pcbi.1003871.g006
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dI3

dt
~(1{fD)c2I2{(c3zdI3

)I3, ð4Þ

dI4

dt
~(1{fL)c3I3zaL2{(c4zdI4

)I4, ð5Þ

dI5

dt
~(1{fM )c4I4{(c5zdI5

)I5, ð6Þ

dI6

dt
~c5I5{dI6

I6, ð7Þ

dM1

dt
~fM c4I4zk2M2{(k1zdM1

)M1, ð8Þ

dM2

dt
~k1M1{(k2zdM2

)M2, ð9Þ

dL1

dt
~fLc3I3zs2L2{(s1zdL1

)L1, ð10Þ

dL2

dt
~s1L1{(azs2zdL2

)L2, ð11Þ

dD

dt
~fDc2I2{dDD, ð12Þ

dV

dt
~NdI6

I6zqM2{cV : ð13Þ

CD4z target cells, T , are produced at rate l and can become

infected by virus particles, V , at rate b. E denotes treatment efficacy,

where E~0 before the start of antiretroviral therapy. Newly infected

cells move through the intracellular eclipse phase, where I1 denotes

the stage of reverse transcription, I2 the stage of proviral integration,

and I3 to I5 subsequent stages with increasing transcriptional activity.

After the intracellular eclipse phase, activated, virus-producing cells,

I6, start to release free virus particles with a total viral burst size N.

Some of the cells during the intracellular eclipse phase can become

defectively infected cells, D, latently infected cells, L1, or persistently

infected cells, M1. While we assume that defectively infected cells

remain transcriptionally silent, both latently and persistently infected

cells can exhibit transcriptional bursts that rise their transcriptional

profile from Low to Mid and Mid to High, respectively. Latently

infected cells in an elevated transcriptional state L2 can become

activated at rate a or move back to the lower transcriptional state L1.

Similarly, persistently infected cells that are highly transcriptionally

active M2 can release free virus particles at rate q before they revert to

a state of lower transcriptional activity or die. di and c describe cell

death and viral clearance rates, respectively.

Due to the complexity of the full model, we make a number of

simplifying assumptions. First, we assumed several of the cell death

rates to be the same: the death rates of virus-producing cells

dM2
~dI6

and the death rates of defectively and latently infected

cells dD~dL1
~dL2

. The death rates of infected cells that are not

virus-producing and do not solely belong to a resting phenotype,

such as defectively and latently infected, were kept the same as the

death rate of target cells (dI1
~dI2

~dI3
~dI4

~dI5
~dM1

~dT ).

Second, the viral production rates in both virus-producing cells (I6

and M2) are kept the same, i.e., NdI6
~q. Note, however, that

persistently infected cells (M2) have a lower burst size than

activated, virus-producing cells (I6) because they can revert to a

non-productive state (M1). The default model described above is

compared to a number of alternative models with different

assumptions of the viral life cycle (Text S1).

Model fitting
The default model contains 22 parameters of which 10 are fixed

to previously used values from the literature or based on

assumptions (Table 1). The remaining 12 parameters were

constrained based on literature values and consensus and we used

the geometric mean of the restricted range as starting values when

fitting the model to data. This proved to be a good strategy for

estimating the model parameters. The set of ODEs were solved

numerically in the R software environment for statistical

computing [69] using the function ode from the package deSolve
[70]. The 12 model variables were initiated with the target cells at

their steady-state (T(0)~l=dT ), V (0)~1 copy per ml, and all

other variables being zero. We assumed that the chronic state of

infection is reached after 1000 days (about three years), set E~0:85
[23] and further integrated the system during the time on cART

(336 days).

The concentration of free virus V was measured directly but several

of the infected cell populations contribute to the different subclasses of

PBMCs (Figure 3): DNAz~I2zI3zI4zI5zI6zM1zM2z
L1zL2zD, Low~I1zI3zL1, Mid~I4zL2zM1, High~

I5zI6zM2 and Extra~I6zM2. We further assume that target

cells, T , correspond to a fraction, s, of all CD4z T cells. All 12

parameters (11 model parameters and one scaling parameter) were

estimated by fitting the model to the data of each patient

individually and minimizing the sum of squared residuals (SSR)

between the prediction of the model and the data (taking the natural

logarithm). All data points were weighted equally. However, the

higher number of data points for free virus compared to cellular

subclasses (e.g., Extra) forced the model to fit the virus concentra-

tion better than the other variables. We used the minimization

algorithm by Nelder & Mead [71] that is implemented in the

function optim and the parallel package for parallel computation.

The algorithm by Nelder & Mead is very robust in finding local

optima. As a sensitivity analysis, we used different starting values for

the parameters and the method SANN that is a variant of simulated

annealing. Simulated annealing usually performs better in finding

global optima but is relatively slow. In both cases, we found the best-

fit parameter estimates to be the same or very similar to our default

fitting strategy. Parameter estimates are presented as geometric

means including the ranges over all five patients. Code files can be

obtained freely upon request from the corresponding author.

Supporting Information

Text S1 This file contains the calculation of the proportion of

cell types, the definition and results of the alternative models, the

fits of the default model to the data from the four other patients,

and the calculation of HIV-1 DNA positive cells from the study by

Schmid et al. [33].

(PDF)
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