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Dementia is a common and devastating symptom of Parkinson’s disease but the anatomical substrate remains unclear. Some evi-

dence points towards hippocampal involvement but neuroimaging abnormalities have been reported throughout the brain and are

largely inconsistent across studies. Here, we test whether these disparate neuroimaging findings for Parkinson’s disease dementia lo-

calize to a common brain network. We used a literature search to identify studies reporting neuroimaging correlates of Parkinson’s

dementia (11 studies, 385 patients). We restricted our search to studies of brain atrophy and hypometabolism that compared

Parkinson’s patients with dementia to those without cognitive involvement. We used a standard coordinate-based activation likeli-

hood estimation meta-analysis to assess for consistency in the neuroimaging findings. We then used a new approach, coordinate-

based network mapping, to test whether neuroimaging findings localized to a common brain network. This approach uses resting-

state functional connectivity from a large cohort of normative subjects (n¼ 1000) to identify the network of regions connected to a

reported neuroimaging coordinate. Activation likelihood estimation meta-analysis failed to identify any brain regions consistently

associated with Parkinson’s dementia, showing major heterogeneity across studies. In contrast, coordinate-based network mapping

found that these heterogeneous neuroimaging findings localized to a specific brain network centred on the hippocampus. Next, we

tested whether this network showed symptom specificity and stage specificity by performing two further analyses. We tested symp-

tom specificity by examining studies of Parkinson’s hallucinations (9 studies, 402 patients) that are frequently co-morbid with

Parkinson’s dementia. We tested for stage specificity by using studies of mild cognitive impairment in Parkinson’s disease (15 stud-

ies, 844 patients). Coordinate-based network mapping revealed that correlates of visual hallucinations fell within a network centred

on bilateral lateral geniculate nucleus and correlates of mild cognitive impairment in Parkinson’s disease fell within a network cen-

tred on posterior default mode network. In both cases, the identified networks were distinct from the hippocampal network of

Parkinson’s dementia. Our results link heterogeneous neuroimaging findings in Parkinson’s dementia to a common network cen-

tred on the hippocampus. This finding was symptom and stage-specific, with implications for understanding Parkinson’s dementia

and heterogeneity of neuroimaging findings in general.
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Introduction
Dementia is a common and debilitating aspect of Parkinson’s

disease: 50% of patients will develop dementia within

10 years of diagnosis (Williams-Gray et al., 2013), and it car-

ries significant societal and economic burden (Spottke et al.,

2005; Leroi et al., 2012) with high levels of frailty and nurs-

ing home admissions (Fredericks et al., 2017; Weir et al.,

2018). Identifying the neuroanatomical substrate of

Parkinson’s disease with dementia (PD dementia) could aid

prognosis and treatment development. Unfortunately, this

neuroanatomical substrate remains unclear.

One possibility is that PD dementia stems from the

hippocampus, a region known to play a critical role in

memory and in other forms of dementia (Fox et al.,

1996; Seeley et al., 2009; Darby et al., 2019). Memory

problems are frequently the first subjective cognitive com-

plaint in Parkinson’s disease (Noe et al., 2004) and are a

prominent component of PD dementia (Whittington

et al., 2000; Bronnick et al., 2007; Muslimovic et al.,

2007; Reid et al., 2011; Wang et al., 2015), forming part

of the diagnostic criteria for PD dementia (Emre et al.,
2007). In patients with PD dementia the hippocampus

shows a higher density of Lewy pathology (Harding and

Halliday, 2001; Apaydin et al., 2002; Arnold et al.,
2013; Hall et al., 2014), reduction in cholinergic activity

(Hall et al., 2014) and progressive atrophy with disease

progression (Aybek et al., 2009; Weintraub et al., 2011,

2012; Morales et al., 2013; Kandiah et al., 2014; Mak

et al., 2015; Gee et al., 2017; Mihaescu et al., 2018).

However, the role of the hippocampus in PD dementia

remains uncertain for several reasons. First, although mem-

ory problems are an early subjective complaint (Noe et al.,
2004), objective testing usually shows early deficits in

visuospatial and executive function (Janvin et al., 2006a;

Williams-Gray et al., 2013; Kalbe et al., 2016). At this

stage, patients are often considered as having PD with

mild cognitive impairment (PD-MCI) (Emre et al., 2007;

Kehagia et al., 2013). Although 90% of these patients will

eventually progress to PD dementia, worse visuospatial

deficits, not memory deficits, are associated with rapid

progression (Williams-Gray et al., 2013; Weil et al., 2017).

Second, most PD dementia patients have co-morbid symp-

toms such as visual hallucinations, whose neural substrate

is also unclear but is unlikely to localize to the hippocam-

pus (Fenelon et al., 2000; Gallagher et al., 2011). Finally,

PD dementia is associated with Lewy pathology and atro-

phy throughout nearly the entire brain (Hurtig et al.,
2000; Braak et al., 2005; Irwin et al., 2012).

Neuroimaging studies of PD dementia have been particu-

larly heterogeneous (Lanskey et al., 2018), with atrophy

or hypometabolism reported in frontal (Song et al., 2011;

Melzer et al., 2012), temporal (Melzer et al., 2012;

Pagonabarraga et al., 2013), parietal (Melzer et al., 2012;

Pereira et al., 2014), occipital (Melzer et al., 2012) and in-

sular cortices (Mak et al., 2014) as well as numerous
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subcortical regions (Melzer et al., 2012; Foo et al., 2017;

Schneider et al., 2017). Different meta-analyses of the

coordinates reported by these studies have also been incon-

sistent (Minkova et al., 2017; Mihaescu et al., 2018).

An assumption underlying many conventional neuroi-

maging studies is that abnormalities should localize to

specific brain regions in order to explain specific symp-

toms (Eickhoff et al., 2009). However, some symptoms

may localize better to brain networks, rather than specific

brain regions (Fox et al., 2005; Dickerson and Sperling,

2009; Seeley et al., 2009). We have used this approach

to link lesions found in disparate brain regions that pro-

duce similar symptoms to a common brain network, a

technique known as lesion network mapping (Boes et al.,
2015; Fox, 2018; Joutsa et al., 2018a). Recently, we vali-

dated an extension of lesion network mapping termed co-

ordinate-based network mapping (Darby et al., 2019).

We showed that heterogeneous neuroimaging findings in

Alzheimer’s disease map to a common brain network,

centred on the hippocampus (Darby et al., 2019). This

result was specific compared to neurodegenerative dis-

eases that are not characterized by memory decline.

Here, we apply this technique to PD dementia. We hy-

pothesize that: (i) coordinate network mapping will reveal a

common network involved in PD dementia centred on the

hippocampus; (ii) this network will be specific compared

with the highly co-morbid symptom of visual hallucinations;

(iii) this network will be specific compared to PD-MCI

which is an earlier stage of PD dementia more commonly

characterized by visuospatial or executive dysfunction.

Materials and methods

Search strategy

We identified studies reporting neuroimaging abnormal-

ities in patients with Parkinson’s disease dementia and

with mild cognitive impairment by performing a search

of the PubMed databases for papers published between 1

January 1985 and 4 June 2018. Four sets of keywords

were used: Parkinson or Parkinson’s; dement*, dementia,

mild cognitive impairment or MCI; MRI or magnetic res-

onance imaging combined with voxel-based morphom-

etry, VBM or struct*; and PET, fludeoxyglucose (FDG)-

PET or single photon emission computed tomography

(SPECT), restricted to human studies. A similar search

was performed to identify relevant studies on visual hal-

lucinations in Parkinson’s disease and included hallucina-

tions, Parkinson’s disease, MRI and FDG-PET or SPECT,

as above. The reference lists of relevant review articles

were then hand searched for potential missed studies.

Inclusion and exclusion criteria

The meta-analyses included only articles that (i) involved

patients with Parkinson’s disease and dementia (or

hallucinations), with PD dementia defined as a dementia

syndrome that developed in the context of established

Parkinson’s disease (Emre et al., 2007); (ii) reported coor-

dinates for atrophy (using VBM or cortical thickness

measures) or hypometabolism (FDG-PET or SPECT) be-

tween the relevant patient groups; (iii) used comparisons

between the symptom in question and Parkinson’s

patients without that symptom; (iv) reported whole-brain

results for these changes; (v) coordinates were reported in

stereotactic space (montreal neurological institute (MNI)

or Talairach). We excluded the following: (i) studies ex-

clusively reporting changes in dementia with Lewy

Bodies; (ii) studies without direct comparisons between

patient groups (e.g. brain regions correlating with cogni-

tive scores); (iii) non-original or duplicate studies; (iv)

studies that confined their search within specific regions

of interest; (v) studies that reported no differences be-

tween patient groups; (vi) case reports; (vii) studies that

did not report coordinates or where reported coordinates

diverged significantly from reported locations. (See Fig. 1

for flow diagrams for the searches and Tables 1–3 for

included studies for each of the searches.)

Data extraction and demographics

Data were extracted from each of the identified studies

using a predefined data extraction form, to include infor-

mation on author, publication year, sample size, demo-

graphics, clinical information, modality and coordinates.

Talairach coordinates were converted into MNI coordi-

nates using the automated transformation provided with

GingerALE (http://www.brainmap.org/ale/), unless the

study specified that the original analysis was conducted

in MNI space and converted post hoc into Talairach

space, in which case we used the conversion provided by

MNI to Talairach converter programme (http://sprout022.

sprout.yale.edu/mni2tal/mni2tal.html).

We tested for significant demographic differences such

as age and Hoehn and Yahr using two-tailed Welch’s

t-tests or Mann-Whitney-Wilcoxon tests for non-normally

distributed data. P< 0.05 was accepted as threshold for

statistical significance. Analyses were performed in R

(https://www.r-project.org/).

Activation likelihood estimation
meta-analyses

We used GingerALE 2.3.6 (http://brainmap.org/ale) to per-

form an activation likelihood estimation meta-analysis for

Parkinson’s dementia compared with Parkinson’s without

cognitive involvement using standard methods (Eickhoff

et al., 2009, 2012). In brief, a 3D Gaussian probability

distribution is generated centred on each individual study

coordinate, and modified by the sample size from each

study. This enabled us to estimate the uncertainty sur-

rounding each coordinate. These distributions were then

combined across all the studies for the relevant
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comparison to produce activation likelihood estimate

maps. We used the threshold of P< 0.05 false discovery

rate (FDR)-corrected to determine significance and also

tested convergence against a null distribution of 1000

simulated datasets with identical numbers of foci experi-

ments and subjects with the foci randomly distributed. For

these meta-analyses, cluster-forming threshold was set at

P< 0.001 and cluster-level inference threshold at P< 0.05.

The same approach was used to perform separate activa-

tion likelihood estimation meta-analyses for Parkinson’s

with and without visual hallucinations; and Parkinson’s-

MCI (PD-MCI) compared with Parkinson’s without cogni-

tive involvement. We also directly compared studies of PD

dementia to those of PD hallucinations and PD-MCI,

using the same statistical methods described above.

Coordinate-based network mapping

Next, we used a recently validated technique termed co-

ordinate-based network mapping (Darby et al., 2019) to

test the hypothesis that neuroimaging findings from stud-

ies of PD dementia would localize to a common brain

network. This technique is modified from lesion network

mapping, a technique used to test whether brain lesions

map to a common brain network (Darby et al., 2017;

Horn et al., 2017). For each neuroimaging study, we cre-

ated 4 mm spherical seeds at the reported coordinates.

We added these seeds together to produce one combined

seed for each study (Eickhoff et al., 2009; Yarkoni et al.,
2011; Darby et al., 2019). We then identified the net-

work of brain regions functionally connected to the seed

Figure 1 Systematic literature search and study selection. Neuroimaging studies of Parkinson’s disease (PD) dementia, PD with visual

hallucinations and PD-MCI were selected in accordance with PRISMA guidelines. *Three studies included both PD dementia and PD-MCI

comparisons.
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using a connectome database from 1000 normal subjects

(Yeo et al., 2011; Holmes et al., 2015). We thresholded

each connectivity map at t� 7 (corresponding to family-

wise error (FWE) voxel-based correction P< 10�6)

(Joutsa et al., 2018b) to derive a network map for each

study. These binarized maps were then overlapped to

identify network connections common to the greatest

number of studies of PD dementia. We performed this

analysis across the entire brain, as well as for an a priori

region of interest (ROI) in the hippocampus, defined

using the publically available SPM anatomical toolbox

(http://www.fz-juelich.de/inm/inm-1/DE/Forschung/_docs/

SPMAnatomyToolbox/SPMAnatomyToolbox_node.html)

(Amunts et al., 2005). We also computed functional con-

nectivity between each study’s coordinates and this a pri-

ori hippocampal ROI using our 1000 subject normative

connectome. Pearson’s correlations coefficients were con-

verted to a normal distribution using Fisher’s r to z

transform then averaged across our 1000 subjects. We

tested for significance of this connection across studies

using permutation testing in R (one-sample, two tailed,

P< 0.05). We used one-tailed significance testing for this

ROI analysis given our a priori hypothesis that coordinates

Table 1 Clinical characteristics and scanning modalities of studies of Parkinson’s dementia (PDD) versus

Parkinson’s without cognitive involvement (PD)

First author Modality N N Age Age

PD

MMSE

PDD

MMSE

PD

H&Y

PDD

H&Y

PD

UPDRS

PDD

UPDRS

PDPDD PD PDD

Total

n 5 175

Total

n 5 210

(1) Beyerb,c VBM 16 20 73.5 72.5 19.4 28.2 3 2.4

(2) Burtonb VBM 26 31 72.3 75.2 18.9 26.4 36.4 25.8

(3) Geec VBM 23 10 71.6 69.4 27.3 28.9 14.4 15.3

(4) Goldmanb VBM 24 26

(5) Kleinc FDG-PET 8 9 62 67 21 28.4 2 3 24 25

(6) Leeb VBM 16 16 69.9 68.3 19.6 27.3 2.6 1.7

(7) Nagano-Saitob,c VBM 9 17 67.3 65.4 16.1 27.9 3.3 3.1

(8) Songb VBM 18 23 72 69.1 18.1 28.6 32.1 16.9

(9) Tangb,c FDG-PET 10 30 61.4 61.9 23.2 28.5 2.5 1.8 30.7 23

(10) Xia VBM 12 12 69.3 65.6 23.4 28.1 3 1.8 44 14.3

(11) Yongb FDG-PET 13 16 73.4 64.2 15.4 27.3 3.2 2.1

Summary

(mean(SD))

16 (6) 19 (8) 69.3 (4) 67.8 (4) 20.2 (4)a 28.0 (0.8)a 2.8 (0.5) 2.3 (0.6) 30.3 (10) 20.1 (5)

aWilcox test shows significant difference between groups (Other comparisons are not significantly different).
bIndicates established criteria were used to define PD dementia. Extended neuropsychological testing was used in the remaining studies.
cIndicates the study matched PDD and PD groups for motor stage.

FDG-PET, fluorodeoxyglucose positron emission tomography; H&Y, Hoehn and Yahr; MMSE, mini-mental state examination; PDD, Parkinson’s disease dementia; SPECT, single pho-

ton emission computed tomography; UPDRS, Unified Parkinson’s disease rating scale score (part III, motor); VBM, voxel-based morphometry.

Table 2 Clinical characteristics and scanning modalities of included studies of Parkinson’s hallucinations

First author Modality N PDVH N PD Age

PDVH

Age

PD

MMSE

PDVH

MMSE

PD

H&Y

PDVH

H&Y

PD

UPDRS

PDVH

UPDRS

PDTotal

n 5 168

Total

n 5 234

(27) Boeckerb FDG-PET 8 11 72.88 70.56 25.75 26.82 46.25 32.73

(28) Gasca-Salasb FDG-PET 9 12 70.7 70.8 27 25.9 16.1 17

(29) Goldmanb VBM 25 25 75.4 74.8 25.1 23.9 3 3 43.5 39

(30) Leeb VBM 10 21 69.4 66.2 27.6 28.2 2.2 1.8 22.5 16.4

(31) Oishi SPECT 24 41 69.5 68.6 25.1 26.5 3.3 3

(32) Pagonobarragab VBM 15 27 64.1 66.3 135a 136a 1.9 1.9 21.7 18.6

(33) Ramirez-Ruis VBM 18 20 27 29.1 3.2 2.5 29.3 24.5

(34) Shinb VBM 46 64 71.3 70.7 25.2 25.7 24.1 21.6

(35) Watanabeb VBM 13 13 66.6 63.6 27.9 90 2.9 2.4 23.4 28.6

Summary

(mean (SD))

19 (12) 26 (17) 70.0 (4) 68.9 (3.5) 26.3 (1) 26.9 (2) 2.8 (0.6) 2.4 (0.5) 28.8 (11) 24.8 (8)

aMatis dementia rating supplied.
bIndicates established criteria were used to define PD hallucinations.

FDG-PET, fluorodeoxyglucose positron emission tomography; MMSE, mini-mental state examination; PDVH, Parkinson’s disease with visual hallucinations; SPECT, single photon

emission computed tomography; UPDRS, unified parkinson’s disease rating scale score (part III, motor); VBM, voxel-based morphometry.

No significant differences between groups for any of these comparisons.
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from PD dementia studies should be positively connected

to the hippocampus.

Specificity of network localization
for Parkinson’s disease dementia

To test for symptom specificity, we repeated the above

analyses using studies of PD visual hallucinations, defined

as the presence of visual hallucinations in the context of

Parkinson’s disease, where patients with visual hallucina-

tions were directly compared with patients with PD with-

out hallucinations. To test for stage specificity, we

repeated the above analyses using studies of PD-MCI.

PD-MCI was defined as cognitive deficits in the context

of established Parkinson’s disease not of sufficient severity

to impair functional independence (Petersen et al., 2001;

Winblad et al., 2004; Litvan et al., 2012). Studies were

selected that directly compared patients with PD-MCI

with Parkinson’s and no cognitive involvement.

Network connectivity maps from studies of PD halluci-

nations or studies of PD-MCI were statistically compared

to network maps from studies of PD dementia on a

voxel-wise basis using permutation testing within FSL

PALM (two-tailed, voxel-based FWE correction P< 0.05).

Permutation testing with voxel-based FWE correction for

multiple comparisons reduces the risk of false positives

(Eklund et al., 2016) and is consistent with best-practice

recommendations for neuroimaging (Poldrack et al.,

2017). To maximize sensitivity, this voxel-wise analysis

was restricted to a mask defined by our a priori hippo-

campal ROI. Functional connectivity between study coor-

dinates and our a priori hippocampal ROI was also

computed and compared using permutation testing within

R (https://www.r-project.org/) (two sample, one tailed,

P< 0.05). We used one-tailed significance testing for this

ROI analysis given our a priori hypothesis that coordi-

nates from PD dementia studies should be more con-

nected to the hippocampus than studies of PD visual

hallucinations or studies of PD-MCI.

In a post hoc analysis, we also tested for specificity of

our PD visual hallucination findings to the lateral genicu-

late nucleus (LGN). For this analysis, an LGN ROI was

generated using 18 mm spheres centred on previously

described coordinates (Burgel et al., 2006). Note that un-

like our hippocampus ROI, our LGN ROI was not speci-

fied a priori, but selected post hoc based on the results

of our whole-brain network mapping of PD visual

hallucinations.

Data availability

The data on which this study is based were all obtained

from published and publically available reports (see

Tables 1–3 for details).

Table 3 Clinical characteristics and scanning modalities of included studies of PDMCI versus Parkinson’s disease

with no cognitive involvement

First author Modality N PD-MCI N PD Age

PD-MCI

Age

PD

MMSE

PD-MCI

MMSE

PD

H&Y

PD-MCI

H&Y

PD

UPDRS

PD-MCI

UPDRS

PDTotal

n 5 355

Total

n 5 489

(12) Beyerc VBM 8 12 77.4 69 25.9 29.4 2.6 2.3

(13) Dantia Freesurfer 18 18 66.5 60.6 26.4 28.7 1.6 1.3

(14) Garcia-Garciaa FDG-PET 28 21 71.5 67 28 29.5 2.9 2.6 17.7 16.4

(15) Hosokaid FDG-PET 13 27 67.6 65.7 27.1 27.9 2.7 2.5 22.4 18.5

(16) Huangc FDG-PET 18 18 62.4 59 27.1 28.2 3.6 3.1 34.9 29.2

(17) Lyooc FDG-PET 18 20 65.5 62 27 29 2.3 2.3 25.5 22

(18) Maka VBM 24 66 68.99 63.48 26.91 28.36 1.81 1.91 19.96 17.44

(19) Maka Cortical

thickness

39 66 69.4 62.9 28.1 29.1 2.1 1.9 29 25.3

(20) Nobilic SPECT 15 15 71.5 70.8 27.3 28.7 22.9 15.3

(21) Pagonobarragad Freesurfer 26 26 73.3 71.5 128e 134e 2 2.2 21 24

(22) Pereirab Freesurfer 33 90 63.4 59.4 25.7f 28.1f 2 2 21.5 19.6

(23) Seguraa Freesurfer 47 43 67.72 60.77 28.68 29.47 17.79 13.16

(24) Songc VBM 27 23 71.3 69.1 25.8 28.6 18.6 16.9

(25) Tanga FDG-PET 20 30 61.9 61.9 28.4 28.5 2.1 1.8 30 23

(26) Zhangc VBM 21 14 63.8 58.5 28.85 29.07 1.77 1.42

Summary

(mean (SD))

24 (10) 33 (23) 68.1 (4)* 64.1 (4)* 27.3 (1)* 28.8 (0.5)* 2.3 (0.6) 2.1 (0.5) 23.4 (5) 20.1 (5)

*Significant difference between groups. (Other comparisons are not significantly different).
aEstablished criteria used to define PD-MCI (Litvan et al., 2012).
bClose approximation of established criteria used to define PD-MCI.
cPrevious criteria used to define PD-MCI (Petersen et al., 2001).
dAlternative method used to define PD-MCI (Clinical Dementia Rating score of 0.5).
eMatis dementia rating supplied.
fMOCA supplied.

FDG-PET, fluorodeoxyglucose positron emission tomography; H&Y, Hoehn and Yahr; MMSE, mini-mental state examination; PD-MCI, Parkinson’s disease with mild cognitive impair-

ment; SPECT, single photon emission computed tomography; UPDRS, Unified Parkinson’s disease rating scale score (part III, motor); VBM, voxel-based morphometry.
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Results

Heterogeneous neuroimaging
findings for Parkinson’s dementia
are linked to a common network
centred in the hippocampus

We identified 11 studies that reported neuroimaging

abnormalities in patients with PD dementia (total

n¼ 175) compared to PD without cognitive impairment

(total n¼ 210, Table 1). All studies used established

criteria to diagnose Parkinson’s diease (Calne et al.,
1992; Hughes et al., 1992; Larsen et al., 1994), and

the majority (8 out of 11) used established criteria

to define PD dementia (American Psychiatric

Association, 1996; Emre et al., 2007). Between groups,

there was no significant difference in age (t(18)¼ 0.8,

P¼ 0.46), disease stage (H&Y, t(11)¼�1.9, P¼ 0.085),

or motor function (unified Parkinson’s disease rating

scale (UPDRS) III, t(�2.2)¼ 7, P¼ 0.063), but a large

difference in cognition as expected [mini-mental state

examination, W¼ 98, P¼ 0.00032]. Cognitive scores in

the PD dementia group were similar across studies

(mean mini-mental state examination 20.2, SD 3.6).

Neuroimaging findings from these studies were

highly heterogeneous (Fig. 2A and C). Using standard

meta-analytic methods, no voxels or clusters appeared

more often than expected by chance. Only 4/11 studies

(36%) contributed to the most consistent finding, which

was in the right insula (MNI coordinates 41.5, 6.8,

�17.7).

Next, we tested whether these heterogeneous neuroi-

maging findings localized to a common brain network.

For each study, we generated a 4-mm sphere at each

reported coordinate to obtain a study-specific map of

abnormalities related to Parkinson’s dementia. We then

identified the network of brain regions functionally con-

nected to each study-specific map using a large

(n¼ 1000) normative connectome. Each network map

was thresholded (t� 7, FWE P< 10�6), binarized, then

overlapped to identify regions common to all or most

studies (Fig. 2D). Applying this approach to the 11

studies of PD dementia in a whole-brain analysis, we

found over 90% reproducibility, with peak network

overlap in the right hippocampus (Fig. 2D). The second

highest peak was in the left hippocampus (>80% of

studies). Both areas of peak overlap fell within our a

priori hippocampal ROI, and connectivity to this ROI

was significant across studies of PD dementia (t¼ 3.0,

P¼ 0.01). In summary, although neuroimaging studies

of atrophy and hypometabolism in PD dementia

reported heterogeneous coordinates, these coordinates

were part of a common brain network centred on the

hippocampus.

Specificity of network localization
compared to visual hallucinations in
Parkinson’s disease

To determine whether network localization to the hippo-

campus was specific to the symptom of dementia in PD,

we performed a separate meta-analysis of hallucinations.

We identified nine studies reporting atrophy or hypome-

tabolism in patients with PD hallucinations (total

n¼ 168) compared with PD without hallucinations (total

n¼ 234, Table 2). All studies used UK Brain Bank crite-

ria to define Parkinson’s disease (Hughes et al., 1992)

and 7 of the 9 studies used established methods to define

the presence of visual hallucinations (Cummings, 1997;

Ravina et al., 2007; Goetz et al., 2008). All except two

studies (Ramirez-Ruiz et al., 2007; Lee et al., 2017) con-

trolled for cognition. Between groups there was no sig-

nificant difference in age (t(14)¼ 0.59, P¼ 0.56), disease

stage (H&Y, t(10)¼ 1.0, P¼ 0.34), or cognition (mini-

mental state examination, t(12)¼�0.7, P¼ 0.48).

We found that using standard methods for meta-ana-

lysis, neuroimaging results were heterogeneous (Fig. 3A).

No consistent clusters were found, either across studies of

PD hallucinations or when comparing studies of PD hal-

lucinations with studies of PD dementia.

When we applied the same coordinate network map-

ping approach we used for dementia to studies of PD

hallucinations, we again found that the vast majority of

studies (89%) mapped to a common brain network.

However, this time the peak network overlap was the lat-

eral geniculate nuclei (LGN) in the thalamus, not the

hippocampus (Fig. 3B). Directly testing for specificity of

hippocampal connectivity for PD dementia, we found

that coordinates from studies of PD dementia were more

connected to voxels in the right hippocampus (Fig. 3C,

P< 0.05 FWE-corrected) and more connected to our a

priori hippocampal ROI (z¼�1.75, P¼ 0.04, one-tailed

permutation test, Fig. 3D) compared to studies of PD

hallucinations.

A post hoc analysis tests for specificity of LGN con-

nectivity for PD hallucinations (versus studies of PD de-

mentia) found that coordinates from studies of PD

hallucinations were more connected to voxels in the right

LGN (P< 0.05 FWE-corrected) and to an anatomically

defined ROI in bilateral LGN (z¼ 1.91, P¼ 0.028, one-

tailed permutation test).

Network localization reveals
separate networks involved at
milder stages of cognitive
involvement in Parkinson’s disease

Next, we examined whether network localization would

reveal separate networks according to stage of cognitive
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Figure 2 Heterogeneous neuroimaging findings in Parkinson’s disease dementia are part of a common brain network centred

on the hippocampus. (A) Study coordinates. Location of coordinates for each study of Parkinson’s dementia compared with Parkinson’s

without cognitive involvement. Spherical seeds were generated at each reported significant coordinate for each study of PD dementia, then

added together to create one map of neuroimaging findings for each study. Numbers refer to the study number as listed in Table 1. (B) Study

network maps. Regions significantly connected to each study’s neuroimaging findings were calculated using a large (n ¼ 1000) normative

connectome, creating a network map for each study (FWE-corrected P < 10�6). Locations of network connectivity for each study of Parkinson’s

dementia compared with Parkinson’s without cognitive involvement. (C) Study coordinates overlap. Combined location of all coordinates across

all studies of PD dementia shows pronounced heterogeneity. Each study is represented by a different colour. (D) Network overlap map.

Network maps from each study were overlaid to identify functional connections common to the greatest number of studies in a whole-brain

analysis. Over 80% of studies were functionally connected to the bilateral hippocampus. Section at z ¼ �16 is shown.
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involvement in Parkinson’s disease. We identified 15 stud-

ies examining differences in atrophy or hypometabolism

between people with PD-MCI (total n¼ 355) and those

with Parkinson’s disease and no cognitive impairment

(total n¼ 489, Table 3). Thirteen out of 15 studies used

established criteria for Parkinson’s disease diagnosis

(Hughes et al., 1992; Larsen et al., 1994; Gelb et al.,

1999) and 13 out of 15 studies used recent (Litvan et al.,
2012) or previous (Petersen et al., 2001) criteria for PD-

MCI. Despite these different methods, there was relatively

little variability in mini-mental state examination scores

across the studies (PD-MCI 27.3 (SD 1.0), Parkinson’s

disease without cognitive involvement 28.8 (SD 0.5)).

Between groups, PD-MCI patients were older (t(28)¼ 2.5,

P¼ 0.018)) and showed worse cognition (t(18)¼4.7,

P< 0.001), but did not differ in terms of disease stage

(H&Y, t(22)¼ 0.8, P¼ 0.42) or motor disability (UPDRS

III, t(22)¼ 1.6, P¼ 0.12; Table 3).

Standard meta-analysis techniques again revealed

heterogeneity of neuroimaging findings across studies

(Figs 4A and 5), with no significant coordinates at either

FDR or cluster inference levels of correction. Only 3/15

studies (20%) contributed to the most consistent clusters.

Using coordinate network mapping, over 80% of stud-

ies showed connectivity to posterior nodes of the default

mode network (DMN), with peak overlap in lateral

temporal cortex (Fig. 4B). Directly testing for specificity

of hippocampal connectivity for PD dementia versus PD-

MCI, we found that coordinates from studies of PD de-

mentia were more connected to voxels in the right hippo-

campus (P< 0.05, FWE-corrected, Fig. 4C) and more

connected to our a priori hippocampal ROI (z¼�2.2,

P¼ 0.013, one-tailed permutation test, Fig. 4D) compared

to studies of PD-MCI.

Importantly, PD-MCI and PD dementia are a spectrum

of cognitive involvement, and therefore, as well as finding

differences between studies of PD-MCI and PD dementia

in hippocampal regions, we would expect to see similar-

ities in other networks. We therefore examined our net-

work maps for PD dementia and PD-MCI at lower

thresholds and found many similarities, with both PD de-

mentia and PD-MCI showing network overlap in poster-

ior nodes of the DMN (Fig. 4E). As such, while the peak

network overlap was different, and significantly different

in the hippocampus, at lower thresholds similar networks

were apparent.

Discussion
We show that neuroimaging findings in Parkinson’s de-

mentia are heterogeneous across different studies, but are

Figure 3 Heterogeneous neuroimaging findings in Parkinson’s disease hallucinations are part of a different brain network than

PD dementia, centred on the lateral geniculate nucleus. (A) Combined location of all coordinates across all studies of Parkinson’s with

visual hallucinations shows pronounced heterogeneity. Each study is represented by a different colour. (B) Connectivity maps (across the whole

brain) for each study of PD hallucinations were generated and overlaid, showing network overlap in the lateral geniculate nuclei bilaterally.

Section shown is at z ¼ �4. Blue circles indicate location of lateral geniculate nucleus based on published coordinates (Burgel et al., 2006). (C)

Direct comparison of network maps generated from studies of PD dementia and PD hallucinations shows specificity of hippocampal connectivity

to studies of PD dementia. Map is masked to the hippocampi and FWE-corrected P < 0.05. Section shown is at z ¼ �16. (D) Connectivity to

our a priori ROI in the hippocampus was significantly stronger for studies of PD dementia compared to studies of PD hallucinations. Coordinate

and network maps for all studies can be viewed in Fig. 5. * P < 0.05; PDD, Parkinson’s disease dementia; PDVH, Parkinson’s disease with visual

hallucinations.
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Figure 4 Heterogeneous neuroimaging findings in Parkinson’s disease MCI are part of a network centred on posterior nodes

of the default mode network. (A) Combined location of all coordinates across all studies of Parkinson’s mild cognitive impairment (PD-MCI)

shows pronounced heterogeneity. Each study is represented by a different colour. (B) Connectivity maps for each study of PD-MCI were

generated and overlaid, showing peak network overlap in the lateral temporal cortex. Section shown is at z¼�18. (C) Direct comparison of

network maps generated from studies of PD dementia and PD-MCI shows specificity of hippocampal connectivity to studies of PD dementia.

Map is masked to the hippocampi and FWE-corrected P < 0.05. Section shown is at z¼�14. (D) Connectivity to our a priori ROI in the

hippocampus was significantly stronger for studies of PD dementia compared to studies of PD-MCI. (E) At lower network overlap thresholds,

there are similarities between PD-MCI and PD dementia. This suggests that posterior nodes of the DMN are affected in both PD-MCI and PD

dementia, and that at later stages, once PD dementia takes hold, hippocampal networks are affected. Sections shown are at z¼ 30, z¼ 21,

z¼�7 and z ¼ �16. Coordinate and network maps for all studies can be viewed in Fig. 5. * P < 0.05; PDD, Parkinson’s disease dementia; PD-

MCI, Parkinson’s disease with mild cognitive impairment.
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Figure 5 Coordinate maps and network maps for Parkinson’s Hallucinations and for PD-MCI. (A) Location of coordinates and of

network connectivity for each study of Parkinson’s with hallucinations compared with Parkinson’s without hallucinations. (B) Location of

coordinates and of network connectivity for each study of PD-MCI compared with Parkinson’s without cognitive involvement. Numbers refer to

number of study in Tables 2 and 3.
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part of a common brain network centred on the hippo-

campi. This result was symptom-specific, as visual hallu-

cinations mapped to a different network centred on the

lateral geniculate nucleus. This finding was also stage-spe-

cific, as neuroimaging findings in PD-MCI mapped to a

network centred on the lateral temporal cortex and pos-

terior brain regions.

Network localization of
heterogeneous neuroimaging
findings

Our finding that neuroimaging abnormalities in

Parkinson’s dementia localize to a connected brain net-

work, rather than one specific brain region, is consistent

with an accumulating literature on network localization

of neuropsychiatric symptoms (Boes et al., 2015; Fox,

2018; Joutsa et al., 2018a) and neurodegenerative dis-

eases (Seeley et al., 2009; Zhou et al., 2012). Recently,

we validated a new method for testing whether heteroge-

neous neuroimaging coordinates across different studies

localize to a connected brain network (Darby et al.,

2019). The current study further validates and extends

this method, showing specificity for highly co-morbid

symptoms (PD dementia versus PD hallucinations) and

specificity for disease stage (PD dementia versus PD-

MCI). These results suggest that coordinate-based net-

work mapping may help address a variety of neuroimag-

ing questions that have proven difficult to address with

conventional methods.

Parkinson’s dementia and
hippocampal networks

If heterogeneous neuroimaging findings in PD dementia

were going to localize to any brain network, a network

centred on the hippocampus makes sense. Clinically,

memory is always affected in patients with PD dementia

(Bronnick et al., 2007; Muslimovic et al., 2007; Reid

et al., 2011), and memory tests best distinguish PD de-

mentia from Parkinson’s disease (Kiesmann et al., 2013).

Pathologically, the hippocampus shows more Lewy bodies

(Harding and Halliday, 2001; Apaydin et al., 2002;

Arnold et al., 2013; Hall et al., 2014) reduced cholinergic

activity (Hall et al., 2014), and progressive volume loss

in PD dementia (Hwang et al., 2013; Pagonabarraga

et al., 2013; Zarei et al., 2013; Rektorova et al., 2014).

Despite this evidence, the importance of the hippocam-

pus in PD dementia has been a source of debate (Emre

et al., 2007; Irwin et al., 2012; Hall et al., 2014;

Aarsland et al., 2017). In particular, neuroimaging studies

have reported abnormalities in numerous brain regions

outside the hippocampus (Burton et al., 2004; Klein

et al., 2010; Song et al., 2011; Melzer et al., 2012). The

current results help reconcile this debate, showing that

these heterogeneous neuroimaging abnormalities are part

of a common brain network, centred on the

hippocampus.

Parkinson’s dementia, Alzheimer’s
disease and hippocampal networks

Our results implicating a hippocampal network in PD de-

mentia aligns with other studies implicating a hippocam-

pal network in Alzheimer’s dementia (Seeley et al., 2009;

Crossley et al., 2014; Darby et al., 2019). There are sev-

eral possibilities for this convergence. One possibility is

that the patients with PD dementia included in the above

neuroimaging studies have co-morbid Alzheimer’s demen-

tia, leading to a similar network localization. PD demen-

tia is thought to be clinically and neuropathologically

distinct from Alzheimer’s disease (Aarsland et al., 2005;

Farlow and Cummings, 2008; Irwin et al., 2017).

However, in later disease stages the amnestic component

can be similar (Janvin et al., 2006b; Bronnick et al.,
2007; Emre et al., 2007), and PD dementia is

characterized by amyloid and tau-related pathology in

addition to alpha-synuclein (Compta et al., 2011; Irwin

et al., 2017). As such this possibility cannot be excluded.

A second possibility, and the one we favour, is that PD

dementia and Alzheimer’s disease are distinct disorders

with distinct pathologies, but either pathology can involve

the hippocampal network and cause dementia. In

Alzheimer’s disease, hippocampal networks are affected

early, leading to early amnestic symptoms followed by

dementia. In contrast, Parkinson’s disease affects other

networks first (especially posterior nodes of the DMN

(Tessitore et al., 2012; Hou et al., 2016)), but once hip-

pocampal networks are affected, the patient develops

memory impairment and dementia. Our finding of higher

specificity for the right hippocampus, which is linked

with spatial rather than verbal memory (Ezzati et al.,

2016), would also be consistent with the higher propen-

sity for spatial rather than verbal memory changes in PD

dementia (Noe et al., 2004).

Finally, it is important to consider whether our conver-

gent localization in Alzheimer’s disease and PD dementia

could be an artefact of our network mapping technique.

Our technique will be biased towards identification of

network hubs connected to the greatest number of other

brain regions. However, this is unlikely to explain the

current results as other nodes in the DMN are equally if

not more connected to other brain regions compared to

the hippocampus (Buckner et al., 2009). Second, network

localization to the hippocampus is specific to disorders of

memory impairment, including Alzheimer’s disease and

PD dementia. Neuroimaging coordinates from studies of

other neurodegenerative diseases (Darby et al., 2019), co-

morbid symptoms in PD dementia such as visual halluci-

nations (Fig. 3), or even PD-MCI, an earlier stage of PD

dementia which involves minimal memory impairment

(Fig. 4), fail to show network overlap in the

hippocampus.
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Network localization of Parkinson’s
hallucinations to the lateral
geniculate nuclei

Although initially included as a control for PD dementia,

our findings in PD hallucinations are important in their

own right. Heterogeneous neuroimaging abnormalities in

PD hallucinations were part of a common network cen-

tred on the LGN. A central role of the LGN in visual

hallucinations in PD has been hypothesized since the

1930s (de Morsier, 1936, 1938; Carter and Ffytche,

2015) and supported by more recent evidence (Diederich

et al., 2014). Intriguingly, our previous work on brain-

stem lesions causing visual hallucinations also implicated

the LGN (Boes et al., 2015), suggesting a common net-

work localization for visual hallucinations independent of

the underlying aetiology (stroke versus Parkinson’s

disease).

A potential mechanistic model for the role of the LGN

in hallucinations centres on two modes of signalling: a

tonic mode, and a burst mode (Jones, 2009). During

tonic mode, LGN cells are relatively depolarized and the

LGN acts as a relay between retina and visual cortex.

During burst mode, thalamic cells become hyperpolarized

and are more likely to be enhanced by feedback from

higher cortical regions. Intriguingly, this state occurs dur-

ing drowsy inattentiveness, the same state linked with

hallucinations (Llinas and Steriade, 2006).

Note that our results implicating the LGN do not pre-

clude the involvement of other brain regions in PD hallu-

cinations, such as the DMN (Shine et al., 2014; Yao

et al., 2014; Shine et al., 2015). In fact, one recent theory

suggests that thalamic denervation to regions such as the

LGN may reduce DMN inhibition resulting in visual hal-

lucinations (Xuereb et al., 1991; Ricciardi et al., 2015;

Onofrj et al., 2017).

Although PD-associated visual hallucinations are associ-

ated with cognitive impairment (Barnes and David,

2001), almost all studies of PD hallucinations controlled

for cognition, and across studies, cognition was not

poorer in PD patients with visual hallucinations. Recent

reports also reveal that hallucinations can be seen at ear-

lier stages of PD in the absence of cognitive involvement

(Pagonabarraga et al., 2016), consistent with separate

underlying processes or neuroanatomical substrates.

Network localization reveals
involvement of posterior nodes of
the default mode network in
Parkinson’s mild cognitive
impairment

Our finding that neuroimaging abnormalities in PD-MCI

localize to a network centred on posterior nodes of the

DMN is consistent with clinical evidence that the earliest

cognitive deficits in PD involve visuospatial processing

(Williams-Gray et al., 2013; Weil et al., 2017). Lewy-

related pathology in posterior brain regions increases the

risk of dementia in PD (Toledo et al., 2016), loss of con-

nectivity in the DMN correlates with cognitive perform-

ance in Parkinson’s disease (Tessitore et al., 2012;

Karunanayaka et al., 2016) and reduced DMN functional

connectivity is seen in lateral temporal nodes as well as

posterior brain regions in patients with PD-MCI (Hou

et al., 2016). Importantly, posterior DMN involvement

was seen in both PD-MCI and PD dementia, consistent

with the notion that these are part of the same spectrum

of disease. Our findings are consistent with a model of

cognitive impairment in PD that starts in posterior nodes

of the DMN, causing early visuospatial deficits and MCI

that eventually progresses to involve the hippocampal

network as well, causing memory impairment and PD de-

mentia. Such a model is consistent with the network

propagation theory of neurodegenerative disease (Seeley

et al., 2009) and prion-like spread of alpha-synuclein

(Zhou et al., 2012).

Our findings are also consistent with the PD-related

cognitive pattern identified by Eidelberg and colleagues

using functional imaging (Huang et al., 2007; Hirano

et al., 2012). This pattern of metabolic activity correlates

with cognitive function in non-demented people with PD

(Mattis et al., 2011), with reduced activity in prefrontal

and parietal regions. This pattern bears strong resem-

blance to the network we identified in PD-MCI (see

Fig. 4).

Limitations

There are several limitations to consider in our study.

The numbers of studies included for each analysis are

relatively small, particularly for PD dementia (n¼ 11)

and Parkinson’s hallucinations (n¼ 9). These low study

numbers undoubtedly contribute to the negative results of

our activation likelihood estimation meta-analyses and

those of other groups (Minkova et al., 2017). Similarly,

we used only one activation likelihood estimation meta-

analysis technique. Other meta-analysis techniques have

been applied in PD dementia and could produce different

results (Pan et al., 2013; Mihaescu et al., 2018). Finally,

due to these low study numbers, we used liberal one-

tailed statistics for some analyses (e.g. connectivity of PD

dementia coordinates versus PD hallucination coordinates

to our a priori hippocampal ROI). We believe this was

justified given clear a priori hypotheses regarding the dir-

ection of the finding; however, this result should be inter-

preted with caution until replicated. Note that the

majority of our findings, including our voxel-wise analy-

ses of hippocampal connectivity, were significant using

standard two-tailed statistics. It is also important to note

that studies with different numbers of coordinates did not

dominate the analysis, as the coordinates for each study

were used as a single (multi-location) seed.
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A second limitation is clinical and study heterogeneity.

For example, PD hallucinations can co-occur with cogni-

tive impairment (Barnes and David, 2001) and PD-MCI

can involve a range of cognitive domains (Litvan et al.,

2012). However, key clinical factors were controlled

across studies: studies of PD dementia and PD-MCI con-

trolled for motor impairment and disease stage, while

studies of PD hallucinations controlled for cognition.

Moreover, any heterogeneity across studies should bias

us against the current findings of common network

localization.

Finally, we used a normative connectome to link het-

erogeneous neuroimaging findings, similar to prior work

from our lab (Darby et al., 2018, 2019; Fox, 2018).

However, one could argue that a connectome derived

from Parkinson’s disease patients should work better for

linking neuroimaging findings in Parkinson’s disease

patients. Although intuitive, prior studies suggest that

using disease-specific connectomes has minimal effect on

network mapping results, and if anything weakens results

due to worse signal to noise inherent in patient-based

connectomes (Horn et al., 2017; Weigand et al., 2018).
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