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Chronic hyperglycemia downregulates GLP-1
receptor signaling in pancreatic 3-cells via
protein kinase A

Sindhu Rajan '2, Lorna M. Dickson "2, Elizabeth Mathew "2, Caitlin M.0. Orr "»%3, Johanne H. Ellenbroek "2,
Louis H. Philipson "%, Barton Wicksteed "»**"

ABSTRACT

Objective: Glucagon-like peptide 1 (GLP-1) enhances insulin secretion and protects B-cell mass. Diabetes therapies targeting the GLP-1 re-
ceptor (GLP-1R), expressed in numerous tissues, have diminished dose-response in patients with type 2 diabetes compared with healthy human
controls. The aim of this study was to determine the mechanistic causes underlying the reduced efficacy of GLP-1R ligands.

Methods: Using primary mouse islets and the B-cell line MING, outcomes downstream of the GLP-1R were analyzed: Insulin secretion;
phosphorylation of the cAMP-response element binding protein (CREB); CAMP responses. Signaling systems were studied by immunoblotting and
gRT-PCR, and PKA activity was assayed. Cell surface localization of the GLP-1R was studied by confocal microscopy using a fluorescein-tagged
exendin-4 and GFP-tagged GLP-1R.

Results: Rodent B-cells chronically exposed to high glucose had diminished responses to GLP-1R agonists including: diminished insulin
secretory response; reduced phosphorylation of (CREB); impaired cAMP response, attributable to chronically increased cAMP levels. GLP-1R
signaling systems were affected by hyperglycemia with increased expression of mRNAs encoding the inducible cAMP early repressor (ICER)
and adenylyl cyclase 8, reduced PKA activity due to increased expression of the PKA-RIa subunit, reduced GLP-1R mRNA expression and loss of
GLP-1R from the cell surface. To specifically examine the loss of GLP-1R from the plasma membrane a GLP-1R-GFP fusion protein was employed
to visualize subcellular localization. Under low glucose conditions or when PKA activity was inhibited, GLP-1R-GFP was found at the plasma
membrane. Conversely high glucose, expression of a constitutively active PKA subunit, or exposure to exendin-4 or forskolin led to GLP-1R-GFP
internalization. Mutation of serine residue 301 of the GLP-1R abolished the glucose-dependent loss of the receptor from the plasma membrane.
This was associated with a loss of an interaction between the receptor and the small ubiquitin-related modifier (SUMO), an interaction that was
found to be necessary for internalization of the receptor.

Conclusions: These data show that glucose acting, at least in part, via PKA leads to the loss of the GLP-1R from the cell surface and an
impairment of GLP-1R signaling, which may underlie the reduced clinical efficacy of GLP-1R based therapies in individuals with poorly controlled
hyperglycemia.

© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION 1R and GIP-R have been introduced over the past decade to treat type

2 diabetes through the derived benefit of enhanced insulin secretion

Incretins are peptide hormones secreted by intestinal endocrine cells in
response to nutrient stimulation [1]. At the B-cells of pancreatic islets
of Langerhans, incretins act to enhance insulin synthesis and secre-
tion, reduce apoptosis and, at least in rodents, may stimulate -cell
proliferation [2]. These hormones, principally glucagon-like peptide-1
(GLP-1) and glucose-dependent insulinotropic peptide (GIP), bind to
their Gas-coupled receptors, GLP-1R and GIP-R, respectively, and
mediate their insulinotropic and B-cell survival effects largely via
increased intracellular cAMP [2,3]. This cAMP signal is transduced via
the cAMP-dependent protein kinase (PKA) and the exchange proteins
activated by cAMP (EPAC) [2]. Novel therapies targeting the 3-cell GLP-

and the possibility of improved preservation of B-cell mass. Therapies
targeting the GLP-1R have delivered significant sustained benefits to
glucose control and B-cell function out to 4 years of treatment [4—6].
However there is a diminished B-cell response to GLP-1R agonists in
pre-diabetic individuals and patients with Type 2 diabetes [7—10]. This
reduced efficacy of GLP-1R agonists may involve the B-cells them-
selves, either through downregulation of the GLP-1R or of signaling
systems lying downstream of the receptor [11]. Administration of the
GLP-1R agonist, liraglutide, to young db/db mice with only moderate
hyperglycemia provides more robust B-cell responses than in older,
more hyperglycemic mice [12], indicating that hyperglycemia may be a
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contributing factor to the diminished efficacy of GLP-1 agonists in type
2 diabetes. Consistent with this, intensive insulin therapy to normalize
glucose levels preceding GLP-1R administration improves the insulin
secretory response in individuals with type 2 diabetes [13,14],
whereas disruption of glucose homeostasis through the induction of
insulin resistance diminishes the potentiating effects of GLP-1 upon
insulin secretion in human subjects [15]. Understanding the mecha-
nisms by which poorly controlled glucose diminishes GLP-1R signaling
at the B-cell raises the potential for developing strategies to improve
the effectiveness of GLP-1R targeting therapies. Rodent studies have
shown that chronically elevated glucose downregulates both GLP-1R
and GIP-R gene expression in vivo [16,17]. Glucose is also consid-
ered likely to activate PKC isoforms in the B-cell [18], which may be
the stimulus for PKC-mediated phosphorylation of the GLP-1R that
leads to its downregulation [19—21]. Homologous GLP-1R activation
has been shown to downregulate the receptor rapidly [21,22],
consistent with a classical negative feedback system that may be
mediated via cAMP signaling. Glucose raises P-cell cAMP levels
through the activation of calcium-sensitive adenylyl cyclases [23—25].
Recently we reported that hyperglycemia induces expression of the
components of the SUMO (small ubiquitin-related modifier protein)
pathway, which is associated with covalent modification of GLP-1R by
SUMO-1 [26]. This results in downregulation of GLP1-R expression at
the cell surface and impairment of GLP-1R-dependent potentiation of
insulin secretion. Here we extend those findings to show that chron-
ically elevated glucose acts via PKA to reduce GLP-1R signaling
through a SUMO-1-dependent mechanism.

2. MATERIALS AND METHODS

2.1. Animals

Mice (8—10 weeks old C57BL/6J males) obtained from Harlan Lab-
oratories and housed under conditions approved by the in the Uni-
versity of Chicago IACUC were used for physiological analysis and for
islet isolations. Intraperitoneal glucose tolerance tests were performed
in mice administered either saline or exendin-4 (at 5 pg/kg) 1 h prior to
a bolus of p-glucose (2 g/kg body weight) or in mice which had
received exendin-4 at 4—6 h intervals for the preceding 24 h before
being administered a final dose of exendin-4 1 h prior to a bolus of b-
glucose (2 g/kg body weight).

2.2. Cell culture and islet isolation and transfection

Glucose responsive early passage MING cells (passage <30) used for
all the experiments were grown in DMEM supplemented with 15%
Fetal Bovine Serum (FBS), 100 IU/ml penicillin, and 100 mg/ml
streptomycin and 3—8 (low) or 25 (high) mM glucose. Islets were
isolated from 8 to 10 weeks old C57BL/6J wild-type mice (Jackson
Laboratory, Bar Harbor, ME) following a protocol approved by The
University of Chicago IACUC. Islets, MIN6 and isolated primary cells
were transfected with Lipofectamine 2000 (Life Technologies, cat.
#116688). Culture media were supplemented with exendin-4 at 10 nM
(American Peptide Co. cat. # 46-3-12A), forskolin at 2 pM (Sigma—
Aldrich, cat. # F6886), and H89 at 20 M (Cell Signaling Technologies,
cat # 9844). Cells were infected with adenovirus expressing an acti-
vated catalytic PKA subunit [27] or a mutated, dominant negative PKA
regulatory subunit [28] to manipulate PKA activity according to a
previously described protocol [29].

2.3. FRET analysis

FRET measurement of dynamic changes in CAMP was obtained in cells
transfected with a plasmid expressing Epac-camps [30]. Islets were

266

trypsinized into small primary cell clusters and cultured in RPMI 1640
medium supplemented with 10% FBS, 2 mM L-glutamine, 100 IU/ml
penicillin, and 100 mg/ml streptomycin. Islet cells were co-transfected
with the Epac-camps plasmid and a vector expressing monomeric red
fluorescent protein driven by rat insulin 2 promoter to identify B-cells.
This approach provides inefficient transfection but sufficient co-
transfected cells are obtained to perform the analysis. Live cells
were imaged 48 h post-transfection in KR2 buffer on a Nikon inverted
epifluorescence microscope with a CCD camera. Pancreatic -cells
(Epac-camps and mRFP positive) from multiple transfections had
fluorescence recorded before and during stimulation with 50 nM
exendin-4. Dynamic changes in cCAMP were estimated from the change
in FRET ratio (acquired at 5 s intervals) by MetaFluor software (Uni-
versal Imaging) following direct addition of stimulatory glucose plus
exendin-4 to the culture chamber. GLP-1R/SUMO-1 interactions were
determined by live cell imaging using FRET in MING cells transfected
with GLP-1R-CFP or GLP-1R(S301A)-CFP and SUMO-1-YFP or SUMO-
1(GG)-YFP. Cells were imaged as for analysis of cAMP. Dynamic
changes in protein—protein interaction following addition of 2 UM
Forskolin was observed as a decrease in FRET ratio.

2.4. Cell surface protein biotinylation

Cell surface proteins of MIN6 cells cultured for 24 h at low or high
glucose were biotinylated for 45 min and purified (Thermo Fish-
erScientific EZ-Link Sulfo-NHS-Biotinylation Kit, cat # 21425) from
lysates prepared in RIPA buffer (Santa Cruz Biotechnology, cat # sc-
24948). Biotinylated GFP-tagged GLP-1R receptor (membrane) and
non-biotinylated receptor (cytosolic) were detected using an anti-GFP
antibody (Roche Applied Science, cat # 11814460001).

2.5. ELISA and immunoblotting analyses

Insulin was quantified in the media and lysate from cells cultured under
the relevant conditions for 2 h (ELISA ALPCO, Salem, NH, cat. # 80-
INSMSU-EOQ1). Cyclic AMP was quantified by ELISA (Thermo Scienti-
fic, cat # EMSCAMPL) in lysates from MING cells cultured for 20 h at
low (3 mM) or high (25 mM) glucose, then exposed to high
glucose + exendin-4 (10 nM) for 10 min. Immunoblotting used the
following antibodies: anti-phospho-CREB (Cell Signaling Technologies,
cat # 4276, diluted 1:1000); anti-total CREB (Cell Signaling Technol-
ogies, cat # 4820, diluted 1:1000); anti-PKA-Rlo. (Cell Signaling
Technologies, cat # 5675, diluted 1:1000); anti-PKA Rlle. (BD Trans-
duction Laboratories, cat # 612242, diluted 1:1000); anti-PKA-RIIf3 (BD
Transduction Laboratories, cat # 610625, diluted 1:1000); anti-PKA-
Co. (BD Transduction Laboratories, cat # 610980, diluted 1:1000); anti-
FLAG (Cell Signaling Technologies, cat # 8146, diluted 1:500); B-
catenin (Cell Signaling Technologies, cat # 9562, diluted 1:1000); anti-
tubulin (Cell Signaling Technologies, cat #5346, diluted 1:2000).

2.6. Measurement of RNA levels by qRT-PCR

RNA was isolated from MIN6 cells (Qiagen RNEasy). Equimolar RNA
from each sample was reverse transcribed using the First Strand cDNA
Synthesis kit (Life Technologies). qPCR was performed using 20 ng of
cDNA from replicate samples and the FAST SYBR Master Mix (Life
Technologies). Samples were run on an iCycler with MyiQ module
(BioRad). Expression was determined by comparative CT, relative to
the 18S rRNA internal control (Life Technologies). Primers (Table 1)
were designed using Primer3 software.

2.7. PKA activity assay
PKA activity was measured in lysates prepared from in MIN6 cells
cultured for 20 h at low (3 mM) or high (25 mM) glucose using a
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Table 1 — Oligonucleotide primer pairs used for qRT-PCT analysis of mRNA

levels.

Target RNA Forward primer Reverse primer

ICER TGAAACTGATGAGGAGACTGACC AGTTGCTGGGGACTGTGC

AC8 GAGGAATCCCTGGGAGGAT TCCTCAGGCTGCTTAATCAAA
PKA-Cou CAAGCAGAAGGTGGTGAAGC CCAGCTACATACTCCATGACCAT
PKA-Rlou GTTATTCAGCAAGGTGATGAAGG TGGCTGCTCTGGGTGTTC
PKA-Rllou ATCCAAGGGTGGTTCATCC TGCTCGTCAGTTTTGACAATCT
PKA-RIIB GCGTTCAACGCTCCAGTTA GCAAGCCTCTTGCAATCTGT
GLP-1R A TTGGCTTCAGACACTTGCAC CCATCCCACTGGTGTTGC
GLP-1R B CAGCGCATCTTCAAGCTGTA CCGATAGCAAAGAGAATGGGC
GLP-1R C ACTCTCCTTCACTTCCTTCCA GACACTTGAGGGGCTTCATG

method previously described [31]. Briefly, 10 pg aliquots of MING
lysate were incubated with the kinase substrate, kemptide, CAMP at
the indicated concentration, and [32P]yATP for 10 min. Reaction mixes
were applied to P10 membranes and washed in phosphoric acid.
Membranes were scintillation counted to determine the amount of 32P
incorporated into protein. Values were corrected for non-specific 32p
incorporation by including control samples incubated in the presence
of the PKA inhibiter, PKI. This assay measures PKA activity dependent
upon added (exogenous) cAMP that reflects PKA subunit expression
and does not reflect PKA activity dependent upon cellular cAMP levels.

2.8. Fluorescein-tagged exendin-4 binding assay

MING cells were fixed with 2% PFA for 5 min, washed 3 times in PBS
and incubated with 100 nM fluorescein tagged exendin-4 (Anaspec
Inc., cat # 63899) and 0.2 mg/ml BSA for 20 min. Cells were imaged
on a Leica STED SP5 laser scanning confocal microscope (Leica
Microsystems, Wetzlar, Germany). Integrated density was calculated
with ImageJ software. Fluorescein-tagged-Exendin-4 binding was
quantified in a colorimetric assay using a monoclonal HRP conjugated
anti-fluorescein antibody (Jackson Immuno Research, 200-032-037).
Upon addition of a colored substrate (Roche, cat # 11484281001) the
signal was measured at 450 nm.

2.9. Statistical analyses

Data, expressed as mean =+ SD, were analyzed by unpaired Student’s
t-tests, one-way ANOVA, and two-way ANOVA with Bonferroni post hoc
tests using GraphPad Software. P < 0.05 was considered significant.

3. RESULTS

3.1. High glucose downregulates [3-cell responses to GLP-1
receptor activation

Pancreatic B-cells secrete insulin in response to elevated glucose
concentrations [32—34]. Insulin secretion was stimulated with high
glucose, and this was further potentiated with the GLP1-R agonist,
exendin-4, in both primary mouse islets and in the immortalized B-cell
line, MIN6. However, islets and MING cells chronically maintained at
high glucose in vitro showed a significantly reduced potentiation of
glucose stimulated insulin secretion in response to GLP-1R activation
with exendin-4 (Figure 1A, B).

Elevation of cAMP in B-cells activates PKA, a major target of which is
the cAMP-response element binding protein, CREB, which becomes
phosphorylated at serine 133. In lysates of cells chronically maintained
at low glucose, CREB phosphorylation at serine 133 was shown by
immunoblotting to be induced in response to elevated glucose alone
and more potently in response to elevated glucose plus exendin-4
(Figure 2A). In contrast, MIN6 cells maintained chronically at high
glucose failed to phosphorylate CREB after exendin-4 stimulation. To
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determine the time course of these events, MING cells were cultured at
low glucose then switched to high glucose for 1—20 h and the ability of
exendin-4 to induce CREB phosphorylation determined (Figure 2B).
Remarkably, CREB phosphorylation was found to be impaired within an
hour of culturing at high glucose. Conversely, to determine the time
course of the restitution of the CREB phosphorylation response, cells
were maintained in high glucose and then transferred to low glucose.
CREB phosphorylation in these cells was not responsive to glucose
plus exendin-4 prior to 10 h and was not fully restored until 20 h,
consistent with a hysteresis effect in this system (Figure 2C).

Since the response to exendin-4 is in large part mediated via CAMP,
the ability of B-cells maintained chronically at low or high glucose to
respond to exendin-4 by generating cCAMP was determined. Using a
FRET-based reporter, Epac-camps [30], CAMP levels in islets and MING
[B-cells maintained at low glucose responded robustly to the addition of
exendin-4 (Figure 3A,B). However, in islets and MING cells chronically
exposed to high glucose, the cAMP response was impaired. Since the
FRET assay measures the relative change in CFP/YFP ratio it cannot be
determined whether the reduced response of cCAMP levels to GLP-1R
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Figure 1: Chronic high glucose impairs insulin secretory responses. Primary
mouse islets (A) and MING cells (B) were cultured chronically at low glucose (white
bars) or high glucose (black bars). Islets and MING cells pre-cultured at low glucose
were either left at low glucose (LG) or switched to high glucose in the absence (HG) or
presence of exendin-4 (HG + E). Islets and MING cells pre-cultured at high glucose
were either left at high glucose (HG) or had exendin-4 added to the medium (HG + E).
Insulin values were expressed as a percentage of the cellular insulin content
(*, P < 0.05; ns, not significant by 1-way ANOVA).
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Figure 2: Chronic high glucose impairs CREB phosphorylation activation. The
phosphorylation of the cAMP-response element binding protein (pCREB) in lysates of
MIN6 cells in response to high glucose + exendin-4 (HG + Ex) for 15 min was
determined by immunoblotting. MING cells were pre-cultured chronically (20 h) either at
low or high glucose. Immunoblotting was controlled by blotting for total CREB (tCREB)
and tubulin. (A). MIN6 cells were chronically maintained at low or high glucose then
treated for 15 min with low glucose (LG), high glucose (HG) or high glucose in the
presence of the GLP-1R agonist exendin-4 (HG + Ex). (B). MIN6 cells were switched
from low glucose to high glucose for the time indicated (0—20 h) to determine the
time-course of the loss of the CREB phosphorylation response. (C). MING cells were
switched from high to low glucose for the time indicated (0—20 h) to determine the
time-course of the restoration of the CREB phosphorylation response.

activation is due to a high basal level or a reduced response of CAMP
generation. To determine actual cCAMP concentrations we used a CAMP
ELISA (Figure 3C). In MING cells pre-cultured at low glucose, glucose
stimulated a rise in CAMP concentrations and this was potentiated by
exendin-4. However, in MIN6 cells chronically maintained at high
glucose, cAMP levels were elevated above those seen in cells main-
tained at low glucose and these cells glucose showed a diminished
response to the addition of exendin-4. The potentiation of CAMP levels
in response to exendin-4 was only 40% in cells maintained chronically
at high glucose versus 80% in cells maintained at low glucose
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Figure 3: Chronic hyperglycemia reduces the cAMP response to exendin-4. The
generation of CAMP was studied using a FRET-based cAMP reporter in isolated islets
(A) and MING cells (B) or by cAMP ELISA in MING cells (C). Changes in cAMP were
measured using the Epac-cAMP FRET biosensor during a 5 min low glucose period
after which high glucose with exendin-4 was added to the culture chamber (A, B).
Change in FRET ratio values in the low glucose versus high glucose plus exendin-4
periods were expressed relative to time = 0 values. Changes in Epac-cAMP FRET
following high glucose plus exendin-4 addition were analyzed by t-tests (data
expressed as mean =+ SD; P < 0.0001, n = 7—9). The levels of CAMP were measured
using a cCAMP ELISA in MING cells pre-cultured for 20 h at low or high glucose. The
levels of CAMP were measured 10 min after addition of high glucose (HG) or HG with
exendin-4 (HG + E). Data was analyzed by 1-way ANOVA; with *** indicating
P < 0.001. n = 5—-14).

(Figure 3C). These data show that chronically elevated glucose raises
intracellular cAMP, which is associated with a diminished cAMP
response to exendin-4.

3.2. Hyperglycemia acts at multiple levels to reduce GLP-1R
signaling

The preceding data show that although cAMP levels are elevated under
hyperglycemic conditions, the ability of the B-cells to respond with
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increased insulin secretion and CREB phosphorylation is impaired. This
indicates that components of the GLP-1R signaling system are altered
by hyperglycemia. Glucose can increase cAMP via a rise in calcium,
which activates the calcium sensitive adenylyl cyclase 8 [35,36].
Quantitative RT-PCR analysis of the levels of the mRNA encoding AC8
were elevated 3.3-fold (Figure 4A), consistent with the increased cAMP
levels in response to hyperglycemia. Previously, it has been reported
that chronic exendin-4 activation of the GLP-1R induces ICER (induc-
ible CAMP early repressor), a negative regulator of CREB binding to CRE
DNA sequences [37]. Here ICER mRNA was elevated 5.0-fold by
chronic (20 h) exposure of MING cells to hyperglycemia (Figure 4B),
consistent with both exendin-4 and hyperglycemia acting to raise
CAMP levels.
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The cAMP signal is transduced largely via the cAMP-dependent protein
kinase, PKA. PKA activity and PKA subunit expression were analyzed to
determine whether hyperglycemia had direct effects upon PKA. Ly-
sates prepared from MING cells chronically cultured at high glucose
showed a significant (53%) reduction in PKA activity, in the presence of
100 nM cAMP, compared to lysates prepared from MIN6 cultured at
low glucose (Figure 4C). Measurement by qRT-PCR of mRNAs
encoding PKA catalytic (PKA-C) and regulatory subunits (PKA-R)
showed a significant change only for PKA-RIa (Figure 4D). Consistent
with this, protein levels of the PKA-Rloe subunit were elevated in
response to high glucose, while PKA-C, PKA-Rllo. and PKA-RIIP were
unaffected (Figure 4E). To determine whether the GLP-1R itself is
downregulated, we used fluorescein-tagged exendin-4 to quantify
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Figure 4: Hyperglycemia down-regulates GLP-1R signaling. MING cells cultured chronically at low or high glucose were analyzed for effects of hyperglycemia upon GLP-1R
signaling systems. RNA was prepared for qRT-PCR analysis (A, B, D, G) or protein lysates were prepared for PKA activity assays (C) and immunoblotting (E). RNA expression of
adenylyl cyclase 8 (AC8; A), the inducible cAMP early repressor (ICER; B), the PKA subunits (PKA-Ca., Rla., Rllo,, and RIIf; D) and the GLP-1R (G) was determined by gqRT-PCR.
Lysates prepared from MING cells cultured at low glucose (LG; white bars) or high glucose (HG; black bars) were analyzed for: (C) PKA activity in the presence of 100 nm added
cAMP and (D) for expression of the PKA subunits PKA-Ca., Rle, Rllo. and RII} by immunoblotting, with 8-tubulin presented as a loading control. (F) MING cells chronically cultured at
low or high glucose were fixed in 4% PFA, and the binding of fluorescein-tagged exendin-4 quantified using an anti-fluorescein-HRP antibody. Binding was quantified as the

integrated density of HRP activity (Student’s ttest, P < 0.0001, n = 4).
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GLP-1R at the plasma membrane. This assay revealed a dramatic 5-
fold reduction in cell surface expression of the GLP-1R after chronic
exposure to elevated glucose levels (Figure 4F). However, a previous
study has reported that expression of the mRNA encoding the GLP-1R
is itself downregulated by hyperglycemia [17]. To determine whether
we could observe a similar downregulation, gRT-PCR was performed
on cDNA samples prepared from MING cells cultured for 20 h at low
(3 mM) or high (25 mM) glucose. Three oligonucleotide primer pairs,
covering different regions of the GLP-1R coding region (Table 1), were
used to address the possibility of multiple transcripts arising from the
GLP-1R gene [38]. Each oligonucleotide pair showed a similar pattern,
with the GLP-1R mRNA level reduced by about 50% within an hour of a
shift from low to high glucose (Figure 4G). These data show that
chronic high glucose, which elevates cAMP, attenuates the ability of 3-
cells to respond to GLP-1R activation through multiple alterations of the
GLP-1R/cAMP/PKA signaling system, including both gene expression
and subcellular localization. However, it is unclear whether the loss of
GLP-1R from the plasma membrane solely follows the decrease in
GLP-1R gene expression, or whether additional regulatory mecha-
nisms are involved.

3.3. The GLP-1R is lost from the plasma membrane with
hyperglycemia

To determine whether mechanisms independent of decreased GLP-
1R mRNA are responsible for the reduced expression of GLP1-R at
the plasma membrane, the receptor was removed from the control of
its endogenous promoter. To achieve this, a plasmid construct was
prepared in which a GFP-tagged version of the GLP-1R was
expressed under the control of the CMV promoter, allowing visuali-
zation of the receptor as a GLP-1R-GFP fusion protein. In MING cells
maintained under low glucose conditions GLP-1R-GFP was localized
to the plasma membrane. In contrast, in cells maintained at high
glucose the receptor was predominantly intracellular (Figure 5A),
consistent with the data presented above (Figure 4F) that shows loss
of fluorescein-tagged exendin-4 binding to the endogenous receptor.
Glucose induces generation of cAMP, which activates PKA in
pancreatic beta cells [23—25,39]. We hypothesized that glucose,
acting via cCAMP, induces PKA to down-regulate GLP-1R expression at
the cell surface. We tested this hypothesis by evaluating the effect of
PKA blockade. Accordingly, treatment of MING cells with high glucose
in the presence of the PKA inhibitor, H89, blocked the depletion of
GLP-1R-GFP at the plasma membrane (Figure 5A). On the other hand,
activating adenylyl cyclases would be expected to act oppositely and
enhance the disappearance of GLP-1R from the cell membrane. We
indeed found that expression of a constitutively active PKA subunit
(PKA-CaRQ) [27] resulted in the severe reduction of plasma mem-
brane localization of the GLP-1R under low glucose conditions, when
the receptor is normally present there (Figure 5B). Furthermore, cells
cultured in the presence of forskolin, to activate adenylyl cyclases,
also exhibited a loss of GLP-1R from the cell surface (Figure 5C). The
forskolin effects were more pronounced than the effect of high
glucose alone, consistent with the potent effects of forskolin to raise
cAMP. The involvement of PKA was further supported by the
observation that the PKA inhibitor, H89, prevented the effect of for-
skolin to deplete GLP-1R-GFP at the plasma membrane (Figure 5C).
Likewise, inhibition of PKA activity through the expression of a
dominantly negative PKA-Rloe subunit (PKA-RIAB) [31] prevented
loss of GLP-1R-GFP from the cell surface (Figure 5C). These data
show that the activation of PKA correlates with reduced localization of
the GLP-1R to the cell surface, and that blocking PKA activity pre-
vents this change.
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3.4. Loss of GLP-1R from the plasma membrane requires a PKA/
SUMO interaction

To determine whether PKA acts directly upon the GLP-1R to cause its
loss from the cell surface, three PKA consensus phosphorylation site
serine residues (serine 193, serine 301 and serine 433) were indi-
vidually mutated to alanine residues in the GLP-1R-GFP construct. Cell
surface proteins were biotinylated and separated by streptavidin af-
finity purification from MING cells maintained at low or high glucose for
20 h. Lysates from the biotinylated fraction (plasma membrane) or the
non-biotinylated fraction (cytosolic) were analyzed by immunoblotting
for GFP (Figure 6A). In MIN6 cells infected with wild type GLP-1R
sequence, GFP immunoreactivity was largely in the membrane frac-
tion at low glucose (73 =+ 7.2% at the membrane) and largely in the
cytosolic fraction at high glucose (16.7 =+ 0.3% at the membrane;
Figure 6A), consistent with the data presented above. Mutation of
serine residues at 193 and 433 of the GLP-1R similarly showed
localization of the receptor to the plasma membrane at low glucose
and with the cytosolic fraction at high glucose (membrane localization
71.2 + 1.8% and 65.3 + 1.6% at low glucose, 28.4 + 10.4 and
20 + 6.2% at high glucose, respectively). However, mutation of serine
301 resulted in the loss of this regulation, with the receptor largely
found at the cell surface regardless of glucose concentration (mem-
brane localization 63.9 + 3.1% at low glucose versus 69.1 + 3.3% at
high glucose; Figure 6A,B).

SUMO proteins are covalently conjugated to target proteins in order to
modify their function. Previously, we showed that glucose increases
expression of SUMO-1 in B-cells, resulting in the intracellular retention
of the GLP-1R through covalent SUMO-1modification (SUMOylation) of
the receptor [26]. To determine whether SUMOylation and PKA
phosphorylation of GLP1-R were linked, a CFP-tagged GLP-1 receptor
(GLP1-R-CFP) and a YFP-tagged SUMO-1 (SUMO-YFP) were co-
expressed in MING cells. Upon the addition of forskolin, the CFP/YFP
fluorescence ratio decreased, indicating increased interaction between
GLP-1R-CFP and SUMO-1-YFP (Figure 6C). We then examined the
effects of SUMO(GG)-YFP, a conjugation deficient SUMO-1 mutant in
which a stop codon introduced at G96 removes the last 4 amino acids,
which are essential for covalent modification of target proteins. This
truncated construct abolished the change in CFP/YFP ratio in response
to forskolin. Similarly, the GLP1-R-CFP with the S301A mutation was
unable to interact with SUMO-YFP in response to forskolin, indicating
the specificity of cAMP dependent increase in interaction between
GLP-1R-CFP and SUMO-1-YFP (Figure 6C). Consistent with these data,
over-expression of SUMO using an mCherry-tagged SUMO-1 led to
intracellular retention of the GLP1-R-GFP in MING cells maintained at
low glucose (Figure 6D). Expression of SUMO(GG), to prevent
SUMOylation of target proteins, or the GLP1-R(Ser301A)-GFP, to pre-
vent PKA phosphorylation of the GLP1-R, abolished both forskolin and
SUMO-1 overexpression-induced intracellular retention of GLP-1R.
These results indicate that the phosphorylation of serine 301 by PKA
promotes SUMOylation of the GLP1-R, thereby resulting in intracellular
localization of the receptor under chronic high glucose conditions.

3.5. Chronic GLP-1R activation downregulates GLP-1R signaling

The data presented above show that the activation of PKA by glucose
downregulates GLP-1R expression at the plasma membrane. This
indicates that other stimuli of the cAMP/PKA signaling system are also
likely to lead to loss of the GLP-1R from the cell surface. Since GLP-1R
activation itself raises cAMP and activates PKA [2,40], chronic
exposure to GLP-1R agonists should also reduce cell surface GLP-1R
and impair downstream signaling. Consistent with this hypothesis,
chronic exposure of MIN6 cells cultured at low glucose in the
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Figure 5: PKA activity correlates with loss of GLP-1R from the cell surface. MIN6 cells were transfected with a GFP-tagged GLP-1R (GLP-1R-GFP) expressed under the control
of the constitutive CMV promoter. (A) GLP-1R-GFP transfected MIN6 cells were cultured at low glucose (3 mM; LG) or high glucose (25 mM; HG) for 4 h in the presence or the
absence of the PKA inhibitor, H89 (HG + H89). GFP was visualized in green, nuclei stained with dapi (blue) and -catenin immune-stained to mark the plasma membrane (red). (B)
GLP-1R-GFP transfected MING cells were infected with a recombinant adenovirus expressing a constitutively active PKA catalytic subunit (caPKA). Cells were cultured at low
glucose (LG), and the localization of the GLP-1R-GFP was determined by fluorescence microscopy. Cells infected with the caPKA adenovirus were identified using an antibody
against the FLAG-tag of the caPKA (red). (C) GLP-1R-GFP transfected MING cells were cultured for 4 h at high glucose (HG) with: forskolin (Fsk), to raise CAMP levels through the
activation of adenylyl cyclases; H89, to inhibit PKA; or expression of a dominantly negative PKA regulatory subunit (dnPKA). GLP-1-GFP was visualized in green, nuclei by staining

with dapi (blue), and the FLAG-tag epitope on the dnPKA in red.

presence of the GLP-1R agonist exendin-4, led to the dramatic loss of
fluorescein-tagged exendin-4 binding to the cell surface (Figure 7A).
Consistent with this being due to PKA activity, MING cells expressing
the GLP-1R-GFP and exposed to exendin-4 in the present of high
glucose, had GFP expression restored to the plasma membrane upon
the addition of the PKA inhibitor, H89 (Figure 7B). These data indicate
that chronic exendin-4 mediated PKA activation should, like chronic
hyperglycemia, reduce the effects of GLP-1R activation upon insulin
secretion.
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To test this hypothesis in vivo, mice were chronically administered
exendin-4 (5 pg/kg body weight) at 4—6 h intervals for 24 h, and an
acute exendin-4 bolus was administered 1 h prior to a 3 g/kg i.p.
glucose challenge (Chronic-Ex4 mice). Control mice were administered
saline throughout this period and then were administered either the
acute exendin-4 (Acute-Ex4 mice) or another saline bolus (Saline
Control mice) 1 h prior to the glucose challenge. Acute-Ex4 mice
exhibited potentiated insulin release, compared to Saline Control mice,
most notably at 2 min after glucose administration (Figure 7C). This
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Figure 6: GLP-1R serine 301 mediates the glucose-dependent membrane downregulation. (A) MIN6 cells expressing wild type GLP-1R-GFP or the mutant gfp-tagged
receptors S193A, S301A, or S430A, were chronically cultured at low glucose (LG) or high glucose (HG) before cell surface proteins were biotinylated and purified by strepta-
vidin affinity. Biotinylated (membrane) and non-biotinylated (cytosol) proteins were immunoblotted for GFP and quantified by densitometry (A. t-test, P = 0.002, n = 3). (B) MIN6
cells infected with either the wild type GLP-1R-GFP or the S301A mutated GLP-1R-GFP were chronically maintained at high glucose and GLP-1R-GFP localization determined by
fluorescence microscopy. (C) Determination of GLP-1R/SUMO-1 interaction using FRET of CFP-tagged GLP-1R (GLP-1R-GFP) and YFP-tagged SUMO-1 (SUMO-YFP); Blue, MING
cells expressing wild type GLP-1R-GFP and wild type SUMO-1-mCherry; Red, MING cells expressing wild type GLP-1R-GFP and SUMO-GG mutant SUMO-1-mCherry; Green, MING
cells expressing S301A mutant GLP-1R-GFP and wild type SUMO-1-mCherry. Data collected from 8 to 10 cells on multiple plates. (D) Fluorescence microscopy image of MING cells
cultured at low glucose showing localization of GLP-1R-GFP (wild type or S301A mutant, green) with the expression of SUMO-1-mCherry (wild type or SUMO-GG mutant, red).

enhanced insulin release led to significantly enhanced glucose toler-
ance (Figure 7D). In contrast, Chronic-Ex4 mice showed a significant
loss of the potentiation of insulin secretion by exendin-4 (P < 0.01, 2-
way ANOVA Bonferroni post-tests), and their glucose tolerance was
poorer than that observed in mice receiving exendin-4 acutely
(P < 0.0001, 2-way ANOVA). These data show that the insulinotropic
effect of GLP-1R signaling is diminished after chronic activation of
cAMP signaling in vivo. Moreover, the data are consistent with the
in vitro observation that chronic exendin-4, acting via PKA, decreases
GLP-1R expression at the cell surface.

4. DISCUSSION

The beneficial effects of cyclic AMP signaling upon B-cell function and
mass have been the basis for the development of therapies that
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activate the GLP1-R. Hyperglycemia was shown to downregulate GLP-
1R signaling in animal models of diabetes [17]. Consistent with this,
targeting the GLP1-R in the setting of poorly controlled diabetes has
consistently shown impaired efficacy in B-cell responses [7—9]. The
data presented here provide a possible explanation for this phenom-
enon. Chronic hyperglycemia was shown to downregulate responses
to exendin-4 at the B-cell, with reduced insulin secretion, a diminished
cAMP response and impaired phosphorylation of CREB. This was a
rapid effect, leading to suppression of CREB phosphorylation within
one hour, consistent with previous analysis of GLP1-R downregulation
[21]. The effects of hyperglycemia upon the B-cells were found to lie at
multiple points of the GLP-1R signaling system. The repressor of CREB
activity, ICER, was induced; PKA activity was suppressed; the GLP-1R
mRNA fell rapidly; and exendin-4 binding to the plasma membrane
was reduced. This reduced binding of exendin-4 was found to be due
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Figure 7: Chronic exposure of 3-cells to the GLP-1R agonist exendin-4. (A) MIN6 cells were chronically cultured (20 h) at low glucose in the absence (LG) or the presence
(LG + Ex4) of the GLP-1R agonist exendin-4, fixed and incubated with fluorescein-tagged exendin-4 to bind cell surface (but not internal) GLP-1R. (B) MING cells transfected with
GLP-1R-GFP were cultured for 4 h at high glucose with exendin-4 in the absence (HG + Ex) or the presence of H89 (HG + Ex + H89), and GLP-1R-GFP localization was determined
by fluorescence microscopy (green). Cells were stained for 3-catenin to mark membranes (red) and dapi to identify nuclei (blue). (C) To determine the in vivo effects of chronic
exendin-4 exposure, male mice were administered exendin-4 at 4—6 h intervals for 24 h or were administered saline at each time-point (controls). Mice were then given a 5 pug/kg
body exendin-4 dose and an hour later a 3 g/kg intraperitoneal glucose bolus. Plasma insulin levels were measured for 15 min following the glucose challenge (C) and blood
glucose levels for 120 min (D). Data were analyzed by 2-way ANOVA with Bonferroni post hoc tests. *, P < 0.05; ***, P < 0.001. n = 6—8 mice for both C and D).

to loss of GLP1-R from the plasma membrane, which required PKA
activity.

Expression of an activated PKA catalytic subunit [27] replicated this
effect, while a dominant negative PKA subunit [28] blocked the glucose
dependent loss of GLP-1R from the plasma membrane. Mutation of
serine 301 of the GLP-1R to alanine, which lies within a PKA
consensus site, also prevented loss of the receptor from the plasma
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membrane at high glucose. FRET-based analysis of MING cells showed
that SUMO-1 interacted with GLP-1R in response to forskolin. Over-
expression of SUMO, which promotes SUMOylation of target proteins
[41,42], mimicked the effects of constitutive PKA activity in promoting
the loss of the receptor from the plasma membrane at low glucose.
Consistent with these data, the S301A mutation of the GLP-1R abol-
ished the ability of the receptor to interact with SUMO-1 in response to
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rising CAMP. Likewise expression of a mutated SUMO protein (SUMO-
GG), which is unable to covalently modify target proteins, abolished this
interaction. Previously, we found that the GLP-1R is SUMOylated and
that SUMO proteins and the E2 conjugating enzyme, ubc9, are upre-
gulated upon chronic glucose exposure [26]. In addition, several
studies have shown an association between PKA phosphorylation and
SUMOQylation of proteins [43,44], including the similar downregulation
of Bo-adrenergic signaling by PKA-mediated SUMOylation of PDE4D5
that activates its phosphodiesterase activity [45]. Thus, we propose a
model whereby activation of adenylyl cyclase by glucose raises CAMP
to activate PKA leading to phosphorylation of GLP1-R on serine 301,
which promotes SUMOylation of the receptor and its loss from the
plasma membrane.

This model also accommodates the activation of PKA by other
mechanisms. Chronic GLP-1 administration, which has been shown to
downregulate B-cell responses in vitro and in vivo [21,46—49], is also
likely to act via the activation of PKA and fits the classical endocrine
paradigm of negative feedback regulation. In support of this, chronic
exendin-4 administration to MING cells led to loss of GLP-1R from the
plasma membrane and in mice led to a diminished ability to respond
with potentiated insulin release to an exendin-4 stimulus. Since
negative feedback regulation of homeostatic endocrine systems is a
well-established paradigm, it is likely that other B-cell Gas-coupled
receptors are downregulated by a similar mechanism. It is also likely
that the activation of other Gais-coupled receptors will raise cAMP and
activate PKA to downregulate the GLP-1R. Although these data reveal
both a decrease in PKA activity in response to hyperglycemia and a role
for PKA activity in the loss of the GLP-1R from the plasma membrane,
these findings are not incompatible. PKA signaling is highly com-
partmentalized [50], and so whole cell reduction in PKA activity need
not be reflective of localized signaling complexes. Moreover, the assay
used here to measure PKA activity is an in vitro assay that uses cell
lysates and measures PKA activity in response to exogenously added
cAMP [31]. This assay provides a reflection of the kinase activity as a
product of the concentration of the added cAMP, and the catalytic and
regulatory subunits present in the lysate. Thus, these PKA assay data
should be interpreted primarily as supporting the observed increase in
PKA-Rlo. expression. The increase in PKA-Rlo subunit expression is
likely to lead to the redistribution of PKA catalytic subunits to PKA-Rlo:
complexes at the expense of PKA-RII containing signaling complexes.
PKA-RI and PKA-RII subunits are differentially distributed to A-kinase
anchoring complexes, where they regulate distinct cellular processes
(Supplementary Figure 1 and [51,52]). PKA regulatory subunits inhibit
the kinase activity of the catalytic subunits and so increased PKA-Rlo.
expression may decrease PKA activity, although PKA-RI subunits have
a high affinity for cAMP, thereby lowering the cAMP threshold for PKA
kinase activation of PKA-RI holoenzymes compared to PKA-RII holo-
enzymes. However, the overall finding that increase PKA-Rla
expression is associated with decreased PKA activity is consistent with
genetic deletion of the PKA-RIa. subunit in mice and in individuals with
Carney complex, who have PKA-Rla. inactivating mutations, leading to
increased PKA activity and enhanced insulin release [53].

GLP1-R based therapies were initially developed to treat diabetes
mellitus through improved B-cell function and protection of B-cell
mass. These therapies have sustained efficacy in reducing circulating
glucose and improving B-cell function [4—6]. However, their ability to
reduce weight and lower glucagon levels, combined with their limited
efficacy in promoting PB-cell function in individuals with type 2 dia-
betes, has led to speculation that their effects lie largely outside the -
cell [54]. This is supported by studies suggesting improved glucose
control in individuals with type 1 diabetes who lack residual B-cell
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function [55,56]. In addition, chronic GLP-1 administration suppresses
its potentiation of the insulin secretory response but the inhibitory
effect upon glucagon levels is preserved [47]. Thus, it is unclear
whether the benefits to glucose control and B-cell function in the
setting of type 2 diabetes lie in the effects of GLP-1R therapies upon
the B-cell directly or via an improved environment for 3-cell function or
both. The data presented in this study indicate that therapeutically
targeting the GLP-1R to gain the benefits of cCAMP signaling upon the
B-cell faces the problem of loss of efficacy by downregulation via this
same cAMP pathway. Whether this can be mitigated simply by alter-
nate or intermittent treatment strategies should be explored. The study
of Larsen and co-workers [47], showing that removing a GLP-1 infu-
sion for 8 h restored the insulin secretory response, indicates a
possible route for effective use of these therapies. However, that same
study highlights that continuous infusion of GLP-1 delivers more
sustained benefits to glucose control. Moreover, since the study was
conducted over 7 days it may not exhibit the long-term benefits to -
cell function that appear to accrue over a longer timeframe [4]. In
addition, GLP-1R therapies may best be used when glucose is
moderately well controlled, either early in the pre-diabetic state or
through the initial use of other therapies, for example insulin [13,14].
Although GLP1-R agonists were developed for their effects upon the -
cell they have considerable glucose lowering effects at other tissues,
including acting centrally to promote satiety, affecting gastric emptying
and suppressing inappropriately elevated glucagon levels. The reten-
tion of the glucagon suppressive effects of GLP-1R agonists, even
when the B-cell response has been lost by chronic activation, indicate
that the inhibitory effects of GLP-1 therapies upon glucagon secretion
may not be downregulated by the same mechanism.

In summary, this study shows that alteration of receptor levels is a
likely mechanism for the reduced efficacy of incretin therapies in type
2 diabetes. The indication that this may be a broadly applicable
mechanism of Gas-coupled receptor regulation raises an issue that
warrants further examination in the development of therapies that
target these receptors. Novel therapy administration regimes that
involve intermittent or cyclic receptor stimulation may be able to
minimize such downregulation. Alternatively, other strategies to raise
cAMP may prove more effective at the -cells, such as inhibition of
Gai-coupled receptors or finding specific targets downstream of
cAMP/PKA. The benefits of activating CAMP signaling are one of the
most attractive pathways for therapies targeting the B-cell. They
provide the potential of glucose dependent enhancement of insulin
secretion, combined with protection of B-cell mass. In addition, extra-
pancreatic effects contribute to obtain weight loss and improved blood
sugar control. These effects warrant further examination and optimi-
zation to improve the potential of therapies to derive benefits to the -
cells to treat diabetes.
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