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Abstract

Aerosol optical depth (AOD), which represents the optical attenuation, poses a major threat

to the production activity, air quality, human health and regional sustainable development of

arid and semi-arid areas. To some degree, AOD shows areal air pollution level and pos-

sesses obvious spatio-temporal characteristics. However, long-time sequences and detailed

AOD information can not be provided due to currently limited monitoring technology. In this

paper, a daily AOD product, MODIS-based Multi-angle Implementation of Atmospheric Cor-

rection (MAIAC), is deployed to analyze the spatio-temporal characteristics in Xinjiang Uygur

Autonomous Region from 2000 to 2019. In addition, the importance of influencing factors for

AOD is calculated through Random Forest (RF) Model and the propagation trajectories of

pollutants are simulated through Hybrid Single-Particle Lagrangian Integrated Trajectory

(HYSPLIT) Model. Spatio distribution of AOD presents a tendency that AOD value in north-

ern Xinjiang is low while the value in southern Xinjiang is high. Regions with high AOD values

are mainly concentrated in Tarim Basin. AOD in southern Xinjiang is the highest, followed by

that in eastern Xinjiang and AOD value in northern Xinjiang is the lowest. Seasonal variation

of AOD is significant: Spring (0.309) > summer (0.200) > autumn (0.161) >winter (0.158).

Average AOD value in Xinjiang is 0.196. AOD appears wavy from 2000 to 2014 with its low

inflection point (0.157) appearing in 2005, and then increases, reaching its peak in 2014

(0.223). The obvious downward tendency after 2014 shows that the use of coal to natural

gas (NG) conversion project improves the conditions of local environment. According to RF

Model, NG contributes most to AOD. HYSPLIT Model reveals that aerosol in southern Xin-

jiang is related to the short-distant carriage of dust aerosol from the Taklimakan Desert. Aero-

sol there can affect Inner Mongolia through long-distant transport. Blocked by the Tianshan
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Mountains, fine dust particles can not cross the Tianshan Mountains to become a factor con-

tributing to AOD in northern Xinjiang.

Introduction

As a primary element of the atmosphere, atmospheric aerosol is the generic term of heteroge-

neous system made up of solid and liquid particles suspending in the gas [1], whose mass is

only a billionth of that of the atmosphere. Aerosol will not only influence the global climate

directly [2] and indirectly [3, 4] by taking in and diffusing sun radiation, but is likely to cause

harm to human health by spreading hazardous substance [2, 4, 5]. AOD is one of the funda-

mental optical parameters, which can be taken as an indicator of the level of local air contami-

nation in some degree. Aerosol is used extensively as an uncertain but important indicator of

the research on climate change and radiation equilibrium of atmosphere [6–8]. Therefore,

AOD exerts great influence on climate regionally and even globally, atmospheric radiation

transmission, as well as water circulation [9–11]. In the troposphere, dust aerosols account for

one-third of atmospheric aerosols [12] and the strong heating or cooling effect caused by its

changes will alter the thermal condition of the atmosphere, therefore affecting the dynamic

structure of the atmosphere [13].

In the conventional sense, a main way of AOD acquisition is field exploring, which neither

shows continuity in space nor satisfies the demands of regional study because of restrictions

on the allocation of observation posts faced by ground survey. At present, remote sensing (RS)

technology is a crucial mode to test and supervise aerosol on the strength of AOD [13–22]. As

a cylinder set completion, AOD reflects the load of aerosol column and aerosol’s effect on the

earth radiation budget (An). Owing to its distinct advantages, RS offers an executable way to

acquire AOD with high time resolution on a large special scale, which overcomes problems

such as the absence of ground observation data and spatio inhomogeneity, providing refer-

ences to fully understand the distribution and concentration of aerosol and theoretically sup-

porting regional atmospheric environment control. AOD information searched by using

MODIS has the advantage of global distribution, whose coverage seems to be a daily or contin-

uous occurrence, estimating aerosol’s characteristics in Xinjiang region, and finding the limi-

tation of estimated algorithm [23]. MODIS products were applied to analyze seasonal

dynamics of photometric characteristics of aerosols in East Asia from 2000 to 2005 [24], while

most studies on AOD were on a rough spatio resolution scale and very few studies were based

on arid and semi-arid regions. Besides, there was a concern over the accuracy of inversion

products. No observation data was used to evaluate these products especially in areas lack of

data (such as Xinjiang). Therefore, it is essential to conduct product verification and product-

based spatio-temporal analysis. MCD19A2 is used to study AOD with high resolution in Xin-

jiang, because MCD19A2 data integrates TERRA and ACQUA together and adopts MAIAC

algorithm, which has the characteristics of high resolution, wide range and high accuracy of

inversion (reaching 1km). Obtaining AOD data in Xinjiang can not only make up for the

shortage of long time series of AOD data in the north-western of China, but also provide data

persistence for the studies on the spatio-temporal changes of AOD in Xinjiang in the future.

Xinjiang Uygur Autonomous Region (briefly named Xinjiang) in northwest China is a por-

tion of the sandstorm zone in Central Asia, which is among the major origins of dust aerosols

[25]. Xinjiang is situated at the hinterland of the Eurasia. With the economic development of

northwest China, severe air pollution caused by human activities and industrial development
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makes atmospheric environment in Xinjiang become worse and worse. Since 2013, the coal-

to-NG conversion project in Xinjiang has helped curb pollution, but the situation still remains

grim. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) inversion shows that

the altitude of the dust aerosol layer in the Taklimakan Desert is 4–5 km, and the vertical dis-

tribution of color ratio and particle depolarization indicates that dust is important [26]. In

2016, the air pollution in southern Xinjiang presented obvious characteristics of seasonal vari-

ability and spatio pattern. Besides, the concentrations of PM10 and PM2.5 sharply increased

because of sandstorms [27]. PM10 was the major pollutant influencing quality of the western

air in China [25]. Atmospheric dust-fall study in Urumqi showed total suspended particulate

(TSP) was the major pollutant, which was brought to this region by north-west wind in spring

and summer [28]. Various aerosols exist in Duschanbe, Tajikistan, obviously affecting climate

in Central Asian, Tianshan Mountains, Tibet Plateau and the rest of the world [29]. The

increase of aerosol load in Central Asia is caused by the influence of precipitation and dust on

aerosols from arid regions. The biggest contribution of mixed aerosols is created in spring and

summer [30]. These results show that contribution of dust to aerosol in Xinjiang and Central

Asia is significant, and the spread and migration of aerosol affect the whole Xinjiang and Cen-

tral Asian, which is of practical significance. However, research on spatio-temporal distribu-

tion and driving force analysis of long-time AOD in southern Xinjiang, northern Xinjiang and

eastern Xinjiang is limited. Therefore, studies on spatio-temporal variation of aerosol in Xin-

jiang, AOD trajectory simulation and driving force analysis in areas with high aerosol contri-

bution will have significant influence on climate change and ecological environment in

adjacent regions of northwestern China and central Asia.

This paper targets for (1) studying spatio-temporal characteristics of aerosol in Xinjiang

(southern Xinjiang, northern Xinjiang and eastern Xinjiang) from 2000 to 2019, (2) ranking

the importance of AOD influencing factors combined with multiple influencing factors, (3)

stimulating AOD trajectory distribution in areas with high AOD values, and (4) exploring cor-

related features of aerosol in Xinjiang.

Study area and data collection

Study area

The natural area of Xinjiang (73˚400E~96˚230E, 34˚220N~49˚100N) consists of southern Xin-

jiang, northern Xinjiang, and eastern Xinjiang (https://eol.jsc.nasa.gov/SearchPhotos/). North-

ern Xinjiang is from the south of Northern Altai Mountains to Tianshan Mountains including

Junggar Basin, Lli Valley and other areas. Southern Xinjiang includes the south of Tianshan

Mountain and the north of Kunlun Mountain, mainly dominated by Tarim Basin, Tarim

River and Taklimakan Desert. Eastern Xinjiang is mainly to the east of Hami city, Balikun,

Tokeson and other six counties and cities, and adjacent to Jiuquan City, Gansu Province.

Located in the North Temperate Zone, Xinjiang possesses “temperate continental climate”,

which is mainly characterized by “cold in winter and hot in summer, wide daily and annual

temperature range, and rare annual precipitation”. Its latitude across the north and south is

15˚. Due to the significant difference of terrain elevation, southern Xinjiang is warmer than

northern Xinjiang, and western Xinjiang is drier than eastern Xinjiang. Being far from the sea

and affected by its terrain, Xinjiang rarely receives moisture from the Pacific and Indian

oceans, whose precipitation mainly results from moisture from the Atlantic Ocean brought by

west wind, and a bit of moisture from the Arctic Ocean.
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MCD19A2-MODIS AOD data

There are 36 discrete spectrum bands in the MODIS sensor, from 0.41 to 14.5μm, covering a

geographical range of 1200 km×1200 km, and its spatio resolution is 1 km. Combining

MODIS Terra and Aqua, MCD19A2 (https://ladsweb.modaps.eosdis.nasa.gov/) is a kind of

MAIAC terrestrial AOD secondary grid product, which is able to extract AOD data of ocean

and land efficiently and accurately, and is applicable for bright undersurfaces such as desert,

plateau and arid areas [31]. MODIS aerosol data products loaded by using the AOD day-to-

day product information of MCD19A2 were projected for conversion and tessellation through

the MRT tool. Daily mean value was used to synthesize AOD data monthly to ensure that the

surface reflectance was more realistic. Mean value of effective pixels was calculated taking pixel

as its processing unit (ignoring the filling value and error value). First, vector data was applied

to cut out the regional unit of Xinjiang, and then corresponding annual value, monthly value

and quarterly value were obtained. Finally, the plot with ArcGIS 10.3 was performed (ESRI,

Redlands, California, USA).

Statistical yearbook data

According to previous studies, aerosol was mainly limited by weather conditions, transporta-

tion, energy structure and other human-related causes [32–34]. Therefore, given the natural

and human influence, 10 main parameters were chosen consisting of temperature(T), precipi-

tation(P), sunlight hour (SH), heating coal consumption (HC), motor vehicle ownership

(MVO), number of private cars (NPC), natural gas usage (NG), total industrial consumption

(TIC), population (PL), and urban green space (UGS) as key parts affecting atmospheric aero-

sol concentration. All the data applied in this paper was from China City Statistical Yearbook

(http://www.stats.gov.cn/tjsj/ndsj/) and Xinjiang Statistical Yearbook.

Ground-based AOD data

A CE-318 sun sky lunar multispectral photometer is situated at Atmospheric Environment

Observation and Experiment Station of Taklimakan Desert, which belongs to China Meteoro-

logical Administration and is 200 kilometers away from the deep area of Taklimakan Desert

(38˚580N, 83˚390E, 1090 m above the sea level), as is shown in Fig 1.

This study was carried on AOD observations by using 8-waveband CE-318 sun sky lunar

multispectral photometer (Cimel Electronique, France). And this instrument can measure

solar and sky radiation with higher precision, consisting of aerosol bands with 440nm, 670nm,

870nm, and 1020nm, water-vapour band with 936-nm, and three polarization bands with

870-nm. Each channel has a bandwidth of 10 nm. AOD data on the ground corresponded to

the average figure of 30 min around the satellite transmission time. This information was

applied to calculate the AOD value of 550nm band through Angstrom Exponent, and was in

comparison with the AOD value of MODIS products, so as to contain validation information

of MODIS products. The calculation of AOD values is as below:

t ¼ bε� a;

AOD is the τ (ε) and Angstrom exponent is the α that is the ratio of big or small particles in

the aerosol ingredient, and Angstrom turbidity coefficient is the β which is used to make the

aerosol concentration measurement in the atmosphere.
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The Angstrom exponent computing calculation is as below:

a ¼
ln½tðl1Þ=tðl2Þ�

lnðl1=l2Þ

AOD is the τ (λ). The wavelengths is and λ1 and λ2 (nm).

Random Forest model

Random Forest (RF) model is a tool for studying algorithm, which is applied in category and

regression using the concept of holistic learning to integrate multiple decision trees. The RF

algorithm can cope with high-dimensional data and can be applied in gather. This model

includes many numbers of trees [35]. RF selection is used to choose partition variables of the

minimized set for regression, whose output is the mean value of all decision-making trees [36,

37]. RF uses multi-variate and several specimens, sorts the determinant of variables, and pro-

vides relative significance [38]. Besides, as for out-off- balanced samples, RF can balance the

error and prevent it from overfitting and decreasing generalization error. AOD is a dependent

variable. 10 concomitant variables consisting of temperature(T), precipitation(P), sunlight

hour (SH), heating coal consumption (HC), motor vehicle ownership (MVO), number of pri-

vate cars (NPC), natural gas usage (NG), total industrial consumption (TIC), population (PL),

Fig 1. Location of study area (The red is the highest value and dark blue represents the lowest value. Map is created using ArcGIS version

10.3. Xinjiang Uygur Autonomous Region is downloaded from The Gateway to Astronaut Photography of Earth website (https://eol.jsc.nasa.

gov/SearchPhotos/) Map credit: Jinglong Li).

https://doi.org/10.1371/journal.pone.0253942.g001
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and urban green space (UGS) are independent variables (T, P, SH are natural factors, and the

others are human factors). Within the framework of RF model, concomitant variables are used

to evaluate AOD value, and the significance of concomitant variables is obtained.

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)

model

Hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) is a useful instrument to

set up the domain of space of air parcels to the receptor places [39–43]. This model possesses

complete modes of transport, diffusion and settlement to deal with various input field of mete-

orological elements, diversified physical processes and different pollutant discharge sources,

which is widely used in the analysis of air pollutant transportation [41, 44, 45]. Based on HYS-

PLIT model, the forward and backward trajectory simulation of the high-value AOD region in

Xinjiang was carried out to get the source and spread of AOD in this region. The software and

data were downloaded from the NOAA website (http://www.ready.noaa.gov/documents/

Tutorial/html/install_win.html and http://arlftp.arlhq.noaa.gov/pub/archives/gdas1/).

Results and analysis

MODIS product verification

The results of MODIS aerosol product (MCD19A2) were matched with the measured data of

CE-318 solar photometer for accuracy verification. Generally speaking, ground-based observ-

ing has the quality of high-precision and is extensively applied to AOD verification [46, 47].

Decisive coefficient (R2), root mean square error (RMSE) and mean absolute error (MAE)

indicators are applied to value the implementation of the estimates. As is shown in Fig 2, the

continuity of ground AOD data and the MODIS AOD data are better than ever, which have

high coefficient of association (R = 0.953), conclusive coefficient (R2 = 0.90) and low root-

mean-square error (RMSE = 0.023) and MAE (0.058). Fitted curve and 1:1 curve have good

coincidence, especially in the low value range. So far, MODIS AOD products have been caught

on and used by a lot of scholars [48–50].

Characteristics of the spatio distribution of AOD

Spatio distribution of AOD in different years in Xinjiang is shown in Fig 3. AOD in eastern

Xinjiang and northern Xinjiang kept the value uniformly low from 2000 to 2019. AOD in

southern Xinjiang kept the value high from 2000 to 2019 due to the high contribution of dust

particles in Taklimakan Desert to AOD. Fig 5a shows the relevant statistical information of the

spatio distribution of AOD in Xinjiang. AOD appeared wavy from 2000 to 2019, during

which, there was a slight rise and a gradual decline from 2000 to 2005 (0.171–0.206–0.158);

low inflection point (0.158) appeared in 2005, and then AOD obviously increased. Maybe this

is related to the promotion and deployment of the economic development strategy as well as

the increase of coal-fired heating (burning fossil fuels) throughout Xinjiang. After 2014, AOD

revealed a significant fall, which may result from the strengthened environmental awareness of

local people and the macro-control policies of “energy saving and emission reduction”, “pres-

ervation of environment” and “low-carbon trip” proposed by local government. Xinjiang

includes southern Xinjiang, northern Xinjiang and eastern Xinjiang according to its natural

regions. AOD in southern Xinjiang presents high AOD distribution possibly because it is

located beside the Taklimakan Desert in Tarim Basin. AOD around the Desert has a tendency

to increase as it is a concentrated area for sand aerosol. High contribution of sand aerosol is

caused by the local dry weather with sparse rainfall, especially annually 157-day dust weather
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accompanied by dust storms and wind whirl. AOD value in northern Xinjiang and eastern

Xinjiang remained low and were lower than the average AOD value from 2000 to 2019, which

possibly has a connection with less sand disturbances and higher regional vegetation coverage.

Fig 4 shows the monthly spatio distribution of AOD. High AOD value in Xinjiang appeared

in April (0.351) and its low value appeared in December (0.148). Fig 5b shows that the monthly

change of AOD in Xinjiang appeared an obvious “unimodal” curve. The 12-month change

rule of AOD value in southern and eastern Xinjiang appeared “sharp rise—significant decline

—slow decline” (0.156–0.551–0.147; 0.136–0.236–0.135), generally consistent with the chang-

ing trend in Xinjiang (0.150–0.351–0.149). Both reached their peaks in April because of large

numbers of windy and dusty days. Monthly AOD in northern Xinjiang changed little, due to

Fig 2. MODIS AOD product datum is compared with filed observations by solar photometers. The green line is the 1:1 line, the red line

is the regression line and the black dashed lines indicate the 95% confidence range.

https://doi.org/10.1371/journal.pone.0253942.g002
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the fact that Xinjiang Development Center is located in northern Xinjiang where policies are

better implemented and regional environment are better protected. One interesting phenome-

non found was that Tianshan Mountains blocked the regions of northern Xinjiang and south-

ern Xinjiang so that dust from southern Xinjiang could not cross Tianshan Mountains to

affect AOD value in northern Xinjiang, and only spread around Tarim Basin. As a result, the

aerosol in Xinjiang was lower in the north and higher in the south.

Seasonal time series of AOD

The year is divided into four seasons based on the temperature change. March, April and May

belong to spring, June, July and August make up summer, and so on [51]. Fig 6 shows the aver-

age seasonal spatio distribution of AOD from 2000 to 2019. High AOD value areas in spring

Fig 3. Spatio distributions of AOD of 2000–2019 (The red is the highest value and dark blue represents the lowest value. Map is created using

ArcGIS version 10.3. Xinjiang Uygur Autonomous Region is downloaded from The Gateway to Astronaut Photography of Earth website (https://

eol.jsc.nasa.gov/SearchPhotos/) Map credit: Jinglong Li).

https://doi.org/10.1371/journal.pone.0253942.g003
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were in southern Xinjiang (0.476), accounting for 42.8 percent of four seasons, and the AOD

value in summer was 0.267, autumn 0.207 and winter 0.163, which decreased successively.

AOD in northern and eastern Xinjiang remained low. High AOD value in spring was related

to the dust in this season. In addition, as southern Xinjiang region was affected by the Taklima-

kan Desert, there were more windy days in spring. Wind speed accelerated the movement of

mobile dunes so that dust particles in the atmosphere spread faster. Fig 7 shows the relative sta-

tistics information of seasonal AOD distribution. AOD value reached its maximum in spring

(0.309), accounting for 37.2 percent. High temperature, good transparency and increased sur-

face vegetation coverage in summer results in a decline in the number of aerosols getting into

the atmosphere from the surface. The decrease of AOD in autumn was different from that in

Fig 4. Spatio distribution of average AOD in different months (The red is the highest value and dark blue represents the lowest value.

Map is created using ArcGIS version 10.3. Xinjiang Uygur Autonomous Region is downloaded from The Gateway to Astronaut Photography of

Earth website (https://eol.jsc.nasa.gov/SearchPhotos/). Map credit: Jinglong Li).

https://doi.org/10.1371/journal.pone.0253942.g004
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Fig 5. (a)The dynamic alteration of AOD in the research of region from 2000 to 2019, and (b) spatio spread of the mean AOD in different

months from 2000 to 2019.

https://doi.org/10.1371/journal.pone.0253942.g005

Fig 6. Seasonal mean AOD distribution (The red is the highest value and dark blue represents the lowest value. Map is created using ArcGIS

version 10.3. Xinjiang Uygur Autonomous Region is downloaded from The Gateway to Astronaut Photography of Earth website (https://eol.jsc.nasa.

gov/SearchPhotos/). Map credit: Jinglong Li).

https://doi.org/10.1371/journal.pone.0253942.g006
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summer. Controlled by subtropical high for a long time, it was with stable conditions and

good diffusion conditions. AOD showed a tendency of steep decline from spring to winter.

The downward tendency in southern Xinjiang and eastern Xinjiang was consistent with that

in the whole Xinjiang region, but the most obvious decline appeared in southern Xinjiang

(0.476–0.163), which was also related to the sand and dust weather in spring in Tarim Basin.

East of southern Xinjiang and eastern Xinjiang were high AOD value regions with strong

winds, resulting in the eastern Xinjiang subject to dust transport and pollutant emission in

spring, and it reached a high value (0.211), which was also consistent with the previous analysis

results. Surprisingly, as we found, AOD in northern Xinjiang reached high value (0.156),

accounting for 27.6 percent of the whole season. This was because the cold air blocked by the

north side of Tianshan Mountains accumulated near Tianshan Mountain in this area, exacer-

bating the cold and causing central heating in the region to start before October 10 each year.

Correspondingly, heavy coal burning for regional heating caused severe air pollution in

winter.

The importance of natural and perceived factors

Major reasons affecting Xinjiang can be summarized as natural and human factors. 10 aggre-

gative indicators were applied to study the principal consideration influencing AOD change.

RF model was used to analyze the above 10 chosen indicators of quantitative assessment, and

the result was shown in Fig 8a. The result showed that NG was the most significant human fac-

tor, accounting for 14.65 percent, and P was the most significant natural factor, accounting for

13.65 percent. In Fig 8b, the correlation coefficient of NG was as high as 0.36, with a significant

positive correlation. The precipitation had an obvious negative correlation, reaching 0.27,

which showed that NG and precipitation produced the greatest influence on AOD. Due to the

cold weather in winter and early spring, the heating supply starts on October 10 and ends on

April 15. Although the coal to NG conversion project reduces the local air pollution, NG burn-

ing discharges SO2, CO, NOX and other pollutants. Therefore, high contribution of AOD is

also reasonable. Temperature and SH affected AOD by indirectly influencing the formation of

clouds and decomposition of particulate matter. TIC directly reduced particulate matter

Fig 7. (a) Spatio distribution of the average AOD in each season (spring, summer, autumn, and winter) from 2000 to 2019, and (b) varying

degrees of seasonal AOD variations.

https://doi.org/10.1371/journal.pone.0253942.g007
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entering the atmosphere to affect AOD, HC, MVO and NPC and other factors, thus having a

direct or indirect effect on AOD. Population and UGS affected AOD by disturbing the local

climate indirectly.

Characteristics of the contaminant potential transport pathways

The study was on the grounds of meteorological data set from the National Center for Envi-

ronmental Prediction (NCEP) and reanalysis data around the globe of the Global Data Assimi-

lation System (GDAS), consisting of pressure, horizontal and vertical wind speeds,

temperature, and relative humidity. MeteoInfo was used to stimulate the forward and back-

ward trajectory of atmospheric pollutants, and potential source and transportation path of pol-

lutants in spring of 2014 in southern Xinjiang was obtained. Major steps were as follows: first,

the longitude and latitude for the starting position was determined. In this study the geograph-

ical position of the hinterland of the Taklimakan Desert (38.58 N, 83.39 E) in southern Xin-

jiang was the target location of the backward track and the beginning location of the forward

track. Second, a beginning time limit of simulation was set. This paper simulated trajectory of

the season with high AOD value (from March to May) in southern Xinjiang. Third, time and

height for the stimulation were set up. The interval was 6 hours from the initial time, namely,

the 48-hour forward and backward trajectory was simulated at 00:00, 06:00, 12:00, and 18:00

every day. 500 m was selected for the simulation height, as near-layer wind appeared at the

height of 500m, and the mean flow field features of the boundary layer and then the average

flow field features of the boundary layer and the mass transportation characteristics of gas in

the near layer could be further reflected [52].

Based on the airflow spatio similarity in the HYSPLIT model, cluster analysis method was

used to analyze the potential transport path of pollutants in southern Xinjiang, and estimate

Fig 8. (a) Random Forest (RF) model simulation AOD renderings, (b) relevant coefficient between AOD and various variables in

Xinjiang.

https://doi.org/10.1371/journal.pone.0253942.g008
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potential transport direction and proportion of the trajectory. From Fig 9, it can be seen that

fine dust particles contributed the most (accounting for 66.8%) when air quality was poor in

spring in southern Xinjiang, which was mainly affected by internal dust sources. This is a sig-

nificant aspect of the poor air quality in spring, as it is a season of high wind speed and fre-

quent sandstorms. Pollutants in eastern Xinjiang accounted for 29.92%, and the dust sources

outside were mostly Central Asian dust sources (3.28%), most of which were short distance

transports. Grain diameter of particles reaching southern Xinjiang gradually decreased with

the increase of the transportation distance.

The air parcel trajectories in southern Xinjiang were spread to the southwestern region,

northwestern region and eastern region, accounting for 34.84%, 37.7% and 27.47% respec-

tively. Pollutants moving to the southwest accounted for 34.84%, which was the shortest from

its origin. These pollutants were mainly centered in a lower level above the origin surface, and

the height of diffusion was about 1.5 km which settled in surrounding area. Within two days,

the air parcels may influence eastern Xinjiang and some parts of Inner Mongolia. The wider

the influenced ranges of the diffusion trajectory were, the lower the probability of occurrence

was. The Tarim Basin was low in elevation (800–1300 m), and dust aerosols could only diffuse

and transport in the interior due to the difference in height. Interestingly, 37.7 percent of diffu-

sion trajectory moved from the west to the northwest in the medium term, but failed to enter

northern Xinjiang due to the block of Tianshan Mountains with an average altitude of 5,000

meters.

Fig 9. Analysis of the air parcel track from southern Xinjiang in the spring of 2014. (a) backward track and (b) forward track. (The lines in the figure

represent paths and the colors represent percentages of clustering. The software is downloaded from http://www.ready.noaa.gov/documents/Tutorial/

html/install_win.html.. Map credit: Jinglong Li).

https://doi.org/10.1371/journal.pone.0253942.g009
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Discussion

Spatio resolution rate of MCD19A2-MODIS AOD data reached 1km, making up for the defi-

ciency in dark target way and deep blue algorithm. For the surface of dark target, the dark tar-

get way has the quality of high precision. The accuracy of light color is better than that of dark

color. But no matter whatever forms of aerosol, products need to be tested and verified, as

there is an underestimation of remote sensing products, which can be commonly seen. Remote

sensing data was only used to imitate or retrieve the actual surface and could not be in accor-

dance with the actual value, which was also the primary source of errors, so the remote sensing

goods needed to be verified. MOD08 products were applied to relative research on Taklimakan

Desert [24]; however, by comparison with the observed values, there were also underestimates.

Products in this study are more specific.

Monitoring of the ground in real time can fully reflect the changing tendency and spatio

distribution of air quality within a certain range. Traditionally, analysis and study on atmo-

spheric aerosol includes real-time ground monitoring. It is difficult for this method to meet

the research needs because it can only reflect the variety and distribution features of AOD on a

small scale near the monitoring site, and it is also hard to realize spatio real time continuity

besides the high data acquisition cost. Remote sensing technology can make up for it and solve

the problems of short of measured data and unbalance spatio distribution, and is characterized

by greater efficiency, larger scale and less cost. It shows the distribution features, diffusion and

propagation path of large-scale atmospheric pollutants, so that we may get large-scale AOD

data with high temporal resolution [53, 54]. AOD is a day-to-day composite product data set,

which is synthesized by using the daily mean value, thus well avoiding the influence of external

environment and making the data more reliable.

AOD is significantly affected by different environmental factors. Analysis of AOD spatio-

temporal showed that AOD level reached its maximum in spring. In fact, AOD level in spring

was high and changeable, which mostly had to do with the uncertainty of windy weather and

ground features. Spring is characterized by warmer land, melting snow, more exposed and

loosen soil, as well as windy weather which allows dust to float on the exposed soil and particle

to increase concentration in the air. Given the above reasons, we need to quantify AOD in

such situation in future studies.

HYSPLIT model was applied to simulate the forward and backward track of the AOD high

value region. It was found that major AOD contribution source area was in Taklimakan Desert

in the Tarim Basin where there were frequent windy and sandy days throughout the year, espe-

cially in the spring. The local wind power would produce thermal differences when the local

temperature increased. Uniform heating and temperature differences led to strengthening tur-

bulent exchange. When wind speed increased to a certain threshold, more sands and dust

would enter the air, resulting in an increase in aerosol concentration. Dust aerosol contributed

little to northern Xinjiang as the dust particles in the upper air were blocked by the Tianshan

Mountains with an average altitude of 5000 meters. The transportation of dust aerosols was

restricted by height. Therefore, the major aerosol contribution sources in northern Xinjiang,

southern Xinjiang and eastern Xinjiang need to be quantified respectively in the future.

At present, how to take valid and efficient measures to prevent further aggravation of air

pollution has attracted the attention of the academia and the government. Serious air pollution

will do harm to human health, and even restrict the regional sustainable development. This

paper used RF model to conduct analysis of driving force of AOD in Xinjiang and found UG

and precipitation produced a server influence on AOD. In recent years, China has given prior-

ity to the development of various industries in Xinjiang. As the central region of the Silk Road

economic belt of “One Belt and One Road”, Xinjiang has witnessed the continuous growth of
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coal mining, coal power, coal chemical industry, petroleum and natural gas chemical industry

as well as non-ferrous metal mining and processing, which have actually caused air pollution

in Xinjiang. Air pollution can increase morbidity of disease of respiratory system, and even

lead to death, which is a huge threat to people’s life and property safety [55, 56]. Correlation

analysis showed that AOD was proportional to NG. AOD in Xinjiang showed a downward

trend, which was possibly related to the implementation of coal to NG conversion project.

Although coal burning is no longer the dominant factor affecting air quality, other factors

have also played a direct or indirect role. The development of Xinjiang has also caused pollu-

tion to the local environment. Therefore, we should not only rely on decisions by government

but also establish the sense of protecting environment. Government needs to actively fund and

study the new energy, change the energy structure, vigorously promote new energy, formulate

laws and regulations to reduce industrial pollution emissions, rationally optimize the emission

system of all kinds of vehicles, reduce tail gas emissions, advocate low-carbon travel, substan-

tially abate the generation of pollution, and maximize the improvement of air quality. The gen-

eral public should actively respond to the government’s calls on low-carbon travel, frequently

participate in “planting and greening” and other activities, more importantly, establish their

environmental awareness.

Conclusion

The variation of AOD in Xinjiang is regional. The highest AOD value was found in southern

Xinjiang. The AOD value in spring of southern Xinjiang (0.476) was significantly higher than

that of northern Xinjiang (0.151) and eastern Xinjiang (0.156), and the AOD value in four sea-

sons was significantly higher than that of other study regions. AOD in northern Xinjiang

reached its highest value in winter (0.156). In addition, the maximum range of AOD in spring

was more obvious than that in any other seasons.

The average value of AOD in Xinjiang was 0.196, showing a wavy trend. From 2000 to

2005, AOD showed a downward trend (0.206–0.158), and then increased significantly (0.228).

After 2014, AOD showed a stable downward trend. Through RF model analysis, AOD in Xin-

jiang is affected by different natural and human factors, and the main result is the joint action

of natural and human factors. NG is the most significant influencing factor (14.65%), followed

by P (13.65%). Other influencing factors also affect AOD directly or indirectly.

HYSPLIT model is applied to imitate the forward and backward trajectory of the spring in

the region with high AOD value (southern Xinjiang). Aerosol in southern Xinjiang is related

to the short distance transport of dust aerosol from the Taklimakan Desert. These dust aerosols

can affect the Inner Mongolia region of China through long distance transport. The Tianshan

Mountains can block the transport and contribution of dust aerosols to northern Xinjiang.
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