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B Cells and Tertiary Lymphoid Structures: Friends or Foes

in Cancer Immunotherapy?
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Tumor cells pose a challenge to the adaptive immune system,and ~ immune response at sites of chronic inflammation. TLSs in tumors
its key cell types, T and B cells, have frequently been associated with  display substantial heterogeneity, ranging from cell aggregates to
an improved prognosis. The success of immune checkpoint block-  mature structures with an active germinal center. Recent studies
ade has confirmed the relevance of T cells. However, the role of B have provided insights into initiation, cellular and spatial compo-
cells is increasingly recognized, and highlighted in this review. sition, and function of TLS in a variety of cancer types; however,
Recent data suggest that tumors contain a diverse set of B cells  several critical issues still need to be resolved. Currently, initial
reflecting different developmental states and exerting functions  reports are discerning the role of TLSs in immunotherapy, with the
such as antigen presentation, antibody production, and regulatory = majority of studies observing TLSs to confer favorable patient
effects. Further, B cells are frequently located in tertiary lymphoid ~ outcome. Finally, TLS induction in tumors is evaluated, with the
structures (TLS), which are immune cell niches that sustain an  therapeutic aim to reactivate the host immune response.

Introduction unraveling the impact of tumor-associated B cells and TLSs support a

In malignant tumors, cancer cells actively crosstalk with the host
immune system and the surrounding stroma cells to promote con-
tinuous growth. During the last decade, it has become exceedingly clear
that targeting or taking advantage of the immune system is a highly
feasible therapeutic option for many cancers. In particular, re-
activating tumor-specific T cells by blocking immune checkpoint
molecules, using PD-1 and CTLA4-blocking antibodies has opened
anew avenue of treating patients with cancer. The search for predictive
biomarkers to immune checkpoint blockade (ICB) within the scientific
community is extensive. One of the most promising biomarkers
associated with improved clinical response to ICB is the presence of
B cells and tertiary lymphoid structures (TLS) in pretreatment tumor
tissue. However, the exact mechanism on how TLSs improve T-cell
fitness, if antibody-producing B cells are essential, and which cells are
crucial for these processes, is still unknown.

In this review, we first discuss normal B-cell development and
explore the different B cell types existing in tumors and TLSs. We then
elaborate on the findings on how tumor-associated TLS are formed
and differentiated. In addition, a section on the immunosuppressive
functions of regulatory B cells (Breg) is included. Finally, we focus on
the clinical implications of TLSs in tumors, especially in the light
of several seminal studies that identified a predictive role of TLSs to
ICB. This review summarizes the current understanding of the under-
lying mechanisms of TLS formation in tumors. The recent studies
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crucial role in cancer immunology.

The Role of B Cells in Tumors

B-cell development

Human B cells derive from the common lymphocyte progenitor
lineage and split in B-1 and B-2 cells. B-1 cells have limited B cell
receptors (BCR) specificity and are associated with innate immune
system processes. B-2 cells, which are the conventional B cells, migrate
from the bone marrow to the spleen to differentiate to marginal B cells
that remain in the spleen and follicular B cells that move on to populate
the lymph nodes. B cells pass the pro-B and pre-B-cell stages to become
immature/naive B cells. Thereby, the heavy chain undergoes recom-
bination and, together with a surrogate light chain forms the pre-BCR
in pre-B cells. Then, the light chain by recombining the kappa light
chain, or in the case of autoreactivity recombination of the lambda
light chain, completes the BCR (1). Upon contact with their cognate
antigen, B cells further undergo affinity maturation and class switch
recombination (CSR) and can develop into either memory B cells or
antibody-producing plasma cells. Affinity maturation occurs in ger-
minal centers of lymph node follicles and involves somatic hypermu-
tation (SHM) of the BCR sequence to increase antigen specificity. The
gene AICDA that drives SHM also induces CSR, by which the BCR
isotype is changed from IgD/M to IgG/A/E. IFNy promotes the IgG,
and TGFp promotes the IgA isotype (1). Antibodies exert antitumor
functions by activation of the complement system; natural killer cells
and macrophages can bind to antibodies via Fc receptors to attack
tumor cells, and dendritic cells can use antibodies to internalize
antigens for presentation. In addition, B cells can also capture and
internalize antigens with their BCR to present the antigens to CD4
(via MHC-II) and CDS8 cells (via MHC-I). Overall, the functional
repertoire of B cells is thought to consist of antibody production,
presentation of antigens, and the release of cytokines and cytotoxic
effector molecules.

B-cell states and functions in cancer

B cells in the tumor microenvironment (TME) span many B-cell
states, with particular rich insights coming from single-cell RNA
sequencing (scRNAseq) efforts. In melanoma, B cells were divided
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into four groups: one unswitched (IgD+), two switched (IgD-), and
one plasma cell group. Protein analyses, including CD27/CD38/IgD
markers, could confirm these B-cell groups (2). B cells from the Jerby-
Arnon scRNAseq dataset (3) segregated by the expression of surrogate
light chain IGLL5 and activation marker CD69 genes, while at the
same time, early B-cell stage genes were abundantly expressed (4).
In both melanoma datasets, plasma cells constituted only a small
fraction of the B cells. In breast cancer, Hu and colleagues observed
naive B cells, memory B cells, and smaller clusters of plasma cells
and germinal center cells. B cells mostly expressed IgM and IgG.
Interestingly, tumor-associated B cells had higher levels of SHM
and were more clonally expanded than B cells from peripheral
blood. Memory B cells as well as plasma cells could share VD]
sequences, that is, having clonal origin, and plasma cells in addition
could share SHM sequences, that is, being clonal (5). In a mouse
model of triple-negative breast cancer, scRNAseq identified one
large unswitched B-cell group, a small switched AICDA+ group,
and one small plasma cell group (6). Finally, in lung adenocarci-
noma, scRNAseq data revealed a small germinal center B-cell group,
with expression of AICDA, BCL6, and CD86, as well as a follicular
B-cell group. Interestingly, a CD4 T-cell group resembled T follic-
ular helper (Tth) cells expressing CXCR5, BCL6, and PD-1 (7).

In human papillomavirus (HPV)-positive head and neck cancer, the
scRNAseq data of B cells converged on plasma cells (XBPI+,
PRDMI1+, SDCI+, CD20—), germinal center cells, and activated cells
which did not display prominent markers. In this regard, HPV viral
antigens may recruit different B-cell sets as in neoantigen-based tumor
immunity (8). Another specialized function of B cells has been
observed in ovarian cancer, where B cells and plasma cells preferen-
tially express IgA, which is directed at antigens but also is internalized
by tumor cells via PIGR in an antigen-independent fashion. This
internalization sensitizes the tumors for T-cell attack (9). In bulk
tumors, a comprehensive study investigated the hypervariable CDR3
sequences and BCR isotypes in a pan-cancer analysis (10). They found
BCR sequences to overall consist of 60% IgG, 35% IgA, and 4% IgM
isotypes. Interestingly, hardly any IgD was found which is in contrast
to scRNAseq data. IgG isotypes presented with elevated SHM levels.
Clusters of clonally related BCRs often shared different IgG isotypes,
particularly between G1 and G3 isotypes, suggesting a shift between G1
and G3 isotypes during immune response, whereby the Gl isotype
potentially triggers a more cytotoxic response (11). Isotype sharing
between IgA and IgG was found to be rare (10). Tumor antigens
targeted by antibodies consist of mutated and wild-type amino acid
sequences. Humoral responses against a number of antigens, such as
mutated p53, have been described (12). Further, antibodies derived
from immortalized ovarian cancer B cells were found to bind to many
secreted and extracellular domain-containing proteins (9). However, a
comprehensive catalog of antigens targeted by B cells in the tumor
tissue is still needed.

In summary, although tumor-associated B-cell states are cancer
type-dependent, frequently an unswitched naive-like state and a
switched state with more or less memory-like phenotype are observed.
In addition, rare populations of proliferating germinal center cells, as
well as plasma cells have been identified. Also, the understanding of
isotype distribution and clonal relationship of B cells is increasing.
However, the exact functional role of these relatively roughly described
B-cell states in the TME and which antigens these B cells are reactive to,
is still elusive.

Moreover, several studies also describe Bregs that secrete IL10, IL35,
and TGF, tend to have BCRs of the IgA isotype, and exert immu-
nosuppressive functions. Bregs were not explicitly observed in scRNA-
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seq data, but have instead been identified by protein analyses using
surface makers. However, in contrast to the defining FOXP3 expres-
sion by regulatory T cells (Treg), Bregs do not display a uniform surface
marker or transcription factor. The surface markers that have been
used range from immature markers, such as CD1D and CD5, to
markers of effector stages, such as CD27 (13). Consequently, a variety
of Breg subsets have been reported and are thought to emerge from
various stages of B-cell development (14). The Breg subsets between
mice and human tumors are likely also differing. In human tumors,
Bregs have been observed in several cancer types, including gastric
cancer, hepatocellular carcinoma, head and neck cancer, pancreatic
cancer, breast cancer, and colon cancer (13, 14). To support an
immunosuppressive TME, Bregs have been suggested to induce Treg
polarization, inhibit T-cell effector functions and cross-talk with other
immune cells (13), yet the precise interplay in the TME remains to be
resolved. Also, it is not clear whether Bregs are localized in immune
niches within the tumor or are more scattered throughout the tumor
parenchyma. Bregs have been associated with a poor prognosis (15, 16),
which is in contrast to the general positive role of B cells in the majority
of cancer types. In addition, circulating Bregs in peripheral blood have
been linked to poor outcome in patients treated with ICB (17).
Together, Bregs have been described in several tumor types, however,
their role needs to be further specified.

How TLSs Are Developed in Tumors

Inducers, organizers, and chemokines

TLSs are ectopic aggregates of immune cells with similarities to
secondary lymphoid organs (SLO). The presence of a B-cell zone and
T-cell zone is required for TLS definition. However, other cell types
such as dendritic cells, high endothelial venules (HEV), or fibroblasts
can also be accrued to the TLS (Fig. 1; ref. 18). TLSs have been reported
in chronic inflammation, autoimmune disease, organ transplantation,
and, importantly in cancer, and are supposed to act as niches for
immune processes such as antigen presentation and antibody pro-
duction. SLOs develop at predetermined sites by the interaction of a
lymphoid tissue inducer cell (LTi) with alymphoid tissue organizer cell
(LTo). In lymph nodes, the LTi cell is an innate lymphoid cell 3. The
LTo cell is a mesenchymal cell that later differentiates into follicular
dendritic cells (FDC) and fibroblastic reticular cells (FRC). For TLS
located in tumors these cells are surrogated, and the exact cell of origin
is not clearly resolved in humans. In a mouse tumor model that
presents with TLS, the surrogate LTi were found to be T cells and B
cells, both expressing LTA, whereas the surrogate LTo were PDPN"
fibroblasts expressing the receptor LTBR (19). The expression of the
key chemokines CXCL13, and CCL19/CCL21 further attracts CXCR5
(receptor to CXCL13) and CCR?7 (receptor to CCL19 and CCL21)
positive cells to the site (20). CXCR5-expressing cells are composed of
B cells and T follicular helper (Tth) cells, but of note, a subset of Tth
cells has been reported to be CXCRS5 negative (21). CCR? is expressed
on a wider range of T-cell subsets, yet of a more naive-like pheno-
type (22). CXCL13 is expressed by FDCs in SLOs, whereas this role is
likely taken by T cells in TLS (23, 24). CCL19 and CCL21 are expressed
by FRC in SLOs, which presumably are surrogated in tumor TLS,
whereby CCL21 is thought to stem from endothelial cells (25). For
instance, in lung cancer, CCL19 was predominantly expressed by the
LAMP3" dendritic cells and CCL21 was restricted to PDPN™ lym-
phatic vessels (26). It is however possible that different surrogate cells
are used by the TME of various cancer types. In addition, HEV within
TLSs express peripheral node addressin (PNAd) that home in immune
cells expressing the receptor SELL (CD62L; ref. 27). Furthermore,
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Figure 1.

Model of TLS development. TLSs span a gradient of complexity, from more immature cell aggregates to mature structures with a germinal center. Several subsets of B
and T cells have been observed; their functional role, recruitment, and spatial distribution is currently investigated. DC-LAMP = DC-LAMP+ dendritic cell. Adapted

from an image created with BioRender.com.

activated fibroblasts create a chemokine niche where antigen presen-
tation between immune cells is enabled. This niche is further reen-
forced by CXCL13 expression (25). Together, a specific set of cells and
chemokines seems to orchestrate TLS formation in cancer; however,
the detailed mechanism and variation depending on the TME context
is still to be resolved.

Germinal center

In lymph nodes, a primary follicle consists of unswitched naive B
cells, which upon antigen exposure can turn into a secondary follicle
with an oligoclonal germinal center. The germinal center consists of a
dark zone (DZ) and a light zone (LZ). The B cells cycle between the
zones along the chemokine gradient of CXCL12 and CXCL13 using the
respective receptors CXCR4 and CXCR5. In the DZ, the B cells
proliferate and undergo SHM, whereas in the LZ, the B cells internalize
high affinity antigens and compete for stimulus from Tth cells via CD40
and ICOSLG. Repeating these cycles, B cells with BCRs of increased
antigen affinity are selected, which can further turn into memory B cells
or antibody-producing plasma cells (28). In tumor TLS, germinal
centers and antibody production are also observed (29), however at
varying frequencies (4, 30). The master gene of GC initiation and DZ
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orchestration BCL6, as well as AID/AICDA (SHM and CSR) and K167
(GC proliferation) were also reported to be expressed in TLS (31).

Heterogeneity of TLSs

TLSs have been observed in a large number of cancer types so
far (32-37), even in immune poor cancers such as glioma (38). Yet,
TLSs are remarkably heterogeneous, within a cancer type as well as
across the cancer spectrum. Numerically, TLS abundance can vary
considerably between early and late disease stage depending on tumor
type (37). For metastatic sites, TLS densities also depend on tumor type
and can even be absent, for example, TLS were not detected in brain
metastases in a breast cancer study (39). TLS at both primary and
metastatic sites tend to confer good outcomes to patients. However,
heterogeneity of TLS composition at primary and various metastatic
sites, also within the same patient, clearly requires more investigations.
In melanoma, TLSs have been found in varying degrees of matura-
tion (40), with presence of a germinal center being considered as the
most mature type of TLS (Fig. 1). As B cells are consistently sur-
rounded by T cells in melanoma, yet, morphology, maturity level, and
GC formation of TLSs is highly varying (4). Remarkably, melanoma
tumors with germinal center-like TLSs coexisted with TLSs of a more
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immature morphology (4). It has been suggested that TLSs lacking a
mature GC may be described by the term “lymphoid aggregate”;
however, this concept is undermined by a wider gradient of TLS
heterogeneity observed in tumors. In a sarcoma study, due to pro-
nounced heterogeneity, TLSs were divided into early, primary-, and
secondary follicle-like TLS, of which 61% were early TLS (30). This
subdivision was initially proposed for TLSs from colorectal cancer (41)
and was also applied in urothelial cancers (42). A recent study
suggested that an additional immune cell niche exist in tumors. TCF7"
CD8 T cells colocalized with the antigen presentation complex MHC-
IT in certain regions, which resembled more T-cell zones of lymph
nodes rather than TLSs (43). Together, TLSs consist of a gradient from
rather loose B- and T-cell aggregates to complex structures with a
mature germinal center.

Cellular composition of TLS

TLS have been called from hematoxylin and eosin stains, or to
improve evidence, from immunostaining mainly using the markers
CD20, CD3, CD8, PNAd, or DC-LAMP (37). In addition, gene
expression signatures that link the transcriptome to TLS presence
have been generated (34, 44). Nonetheless, a large number of questions
remains to be resolved regarding the composition and tumor-
immunity functions of TLS. Thus far, B and T cells have been the
main focus in the context of tumor-associated TLS. However, despite
some initial insight, it remains unclear which B-cell states interact with
which T-cell states. What is the frequency and precise role of Tregs,
Tth, and other CD4+ T-cell subsets observed in TLSs? How is
tumor cell killing by CD8 T cells modified by TLSs? Many of the
additional cell types are not well explored in the context of TLSs.
LAMP3 (DC-LAMP) expressing dendritic cells (DC) located in the
T-cell-rich area of TLS promote T-cell responses (45). As these cells
also derive from conventional DCs (46), it is unclear whether also
FDCs have a prominent role as in lymph nodes. FDCs located within
B-cell follicles have been reported using CD21 and CD23 staining,
however, these receptors are not optimal markers as they can also be
expressed by B cells (2, 47). FRCs may be surrogated by resident
fibroblasts in tumor-associated TLSs. How the resulting fibroblast nets
differs from those in the lymph node and how this modifies the
interaction between immune cells, remains to be determined. Tingi-
ble-body macrophages, a GC-specific cell type, may also be presentin a
subset of TLSs. Also, HEV's have been reported (48, 49); however, it is
unclear how lymphocyte recruitment is coordinated. In particular, a
spatial map of cell types at high resolution would be illuminating. Such
attempts to explore spatial transcriptomics are based on sequencing or
imaging platforms (50). The methods are currently refined and
promise to reveal TLS architecture in unprecedented detail.

Clinical Relevance of B Cells and TLS

The role of B cells and TLS for patient prognosis has been
under considerable investigation in a variety of cancer types,
with their presence predominantly conferring good outcomes to
patients (4, 30, 51-57), for a comprehensive review see Kinker and
colleagues (1). In addition, the well-known positive prognostic effect of
T cells is stronger when B cells are present (58). So far, the impact of B
cells and TLS in ICB is less well studied, yet several recent reports
support a predictive role (Table 1).

Notably, three seminal studies recently published by Nature com-
prehensively described the importance of TLS in the context of
ICB (2, 4, 30). Helmink and colleagues found B-cell-specific genes
to be among the most discriminatory genes between responders and
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nonresponders in a neoadjuvant ICB-treated melanoma cohort [PD-1
or PD-14+CTLA4 inhibitors (CTLA4i)]. Moreover, a predefined B-cell
signature (59) and TLS density were increased in responders both at
baseline and early on-treatment samples. In an additional presurgical
ICB trial of renal cell carcinoma, B-cell signature and TLS density were
elevated in responders. The melanoma trial also revealed that respon-
ders contained more abundant and diverse BCR sequences, and in a
subset of patients suggested a higher proportion of memory B cells in
tumors of responders than nonresponders (2). Next, Petitprez and
colleagues comprehensively reanalyzed gene expression data from
sarcoma specimens to find five groups, thereof group “E” tumors
displayed the highest immune cell signature expression and were
associated with a favorable prognosis. In an independent cohort,
group “E” tumors were linked to the presence of TLS. In a further
clinical trial cohort using sarcoma tumors at baseline of PD-1 inhibitor
(PD-1i) treatment, group “E” patients were enriched in responders to
ICB (30). Finally, our group observed that the CD20" B-cell subset
conferred a favorable prognosis to patients with metastatic melanoma.
CD20+ B cells were in all cases surrounded by T cells and formed
TLSs of varying maturity levels. Interestingly, in scRNAseq data,
B-cell-rich tumors had an increase of naive TCF7-expressing CD4
and CD8 T cells, indicating an influx of naive T cells to the TLS. We
established a TLS signature consisting of 9 genes, which was highly
correlated to the expression of TLS hallmark and B-cell genes. In
four ICB-treated melanoma cohorts, consisting of two CTLA4i-
treated cohorts and two cohorts based on PD-1i treatment, a high
score of the TLS signature in pretreatment samples was associated
with favorable patient outcome (4).

Additional evidence of the impact of B-cell and TLS presence in the
context of immunotherapy is presently emerging (Table 1). Thus, a
signature of plasmablast-like B cells correlated with good outcomes to
ICB in patients with melanoma (60). In pretreatment samples of alung
adenocarcinoma cohort, a B-cell signature correlating with the pres-
ence of TLS, was associated with a favorable outcome to ICB treat-
ment (61). In a neoadjuvant PD-1i trial of resectable non-small cell
lung cancer (NSCLC) cases, TLS and plasma cells were prevalent in the
regression beds of responders (62). Moreover, in a bladder cancer trial
of neoadjuvant PD-L1i/CTLA4i combination therapy, a higher TLS
density in pretreatment tumor tissue correlated with favorable out-
comes (63). In a further bladder cancer trial of preoperative PD-1i/
CTLA4i combination therapy, TLS area did not correlate with
response at baseline, however TLS induction was increased in on-
treatment samples of responders (42). A further study on advanced-
stage bladder cancer found that CXCL13 expression is correlated with
the presence of TLS and predicts favorable outcomes of PDL1i
therapy (64). Finally, in a study that screened plasma from patients
of various cancer types before ICB treatment, the protein most
predictive of poor outcome, leukemia inhibitory factor (LIF), was
negatively correlated to TLS presence (65). Interestingly, TLS density
and size correlated with increased immune reactivation after PD-1
blockade in ex vivo patient derived tumor fragments, which in turn
predicted patient response to PD-1i treatment (66). Recently, Van-
hersecke and colleagues investigated pretreatment samples using PD-
1i or PD-L1i therapy (n = 328) across a range of cancer types, with a
larger portion from patients with lung cancer. Overall, 32% of samples
contained TLSs, and TLSs were present in all cancer types (67). The
presence of TLS was associated with good outcomes independent of
CD8 T-cell density and PD-L1 expression. TLS presence also corre-
lated with a good outcome in two validation cohorts (67). Notably, as
ICB treatment is currently given at late localized or advanced disease
stage, the majority of the described studies detected TLS from
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Table 1. Initial studies discerning the effect of B cells and TLS on ICB treatment outcome.

Number of Impact
Author (Year) Cancer type ICB treatment patients Main finding outcome Ref
Helmink et al. Melanoma, Neoadjuvant/presurgical 21 (melanoma), B-cell signature and TLS density Positive 2
(2020) Renal PD-1i or PD-1i+CTLA4i 28 (renal) are elevated in responders
Cabrita et al. Melanoma PD-1i and/or CTLA4i 186 (4 cohorts) High TLS signature score is associated Positive 4
(2020) with favorable outcomes
Petitprez et al. Sarcoma PD-Ti 47 TLS-linked molecular group "E" is Positive 30
(2020) enriched in responders
Cottrell et al. NSCLC Neoadjuvant PD-Ti 20 TLS and plasma cells are enriched in  Positive 62
(2018) regression beds of responders
Budczies et al. Lung PD-1i or PD-L1i 43 TLS-linked B-cell signature is Positive 61
(2021) adenocarcinoma associated with favorable
outcomes
Griss et al. (2019) Melanoma PD-Ti 51 Plasmablast signature is associated  Positive 60
with favorable outcomes
de Jonge et al. Melanoma CTLA4i 22 Circulating IL6/TNFa. B cells are Negative 17
(2021 associated with poor outcomes
Gao et al. (2020) Urothelial cancer Neoadjuvant 26 TLS density pretreatment is Positive 63
PD-L1i+CTLA4i associated with favorable
outcomes
van Dijk et al. Urothelial cancer Preoperative 24 TLS enrichment on-treatment is Positive 42
(2020) PD-Ti+CTLA4i associated with response
Groeneveld et al.  Urothelial cancer PD-L1i 348 TLS-linked CXCL13 expression Positive 64
(202D correlates with favorable outcomes
Loriot et al. (2021) Pan-cancer PD-Ti or PD-L1i based 59 TLS anti-correlated plasma LIF is Positive 65
associated with poor outcomes
Voabil et al. (2021) Pan-cancer PD-Ti 33 TLS correlate to ex vivo immune Positive 66
reaction and patient response
Vanhersecke et al. Pan-cancer PD-1i or PD-L1i 328 (discovery Presence of mature TLS is associated Positive 67

(2021) (39% NSCLC)

cohort)

with favorable outcomes

metastatic sites. Together, evidence from several cancer types is now
accumulating that TLS in pretreatment samples confers favorable
patient outcome from ICB.

So far, it is unclear how TLSs govern antitumor immunity under
ICB treatment. Indeed, PD-L1 is not only expressed by tumor cells, but
also by macrophages (68), dendritic cells (69), and other cells. Sim-
ilarly, PD-1 expression is not exclusive to cytotoxic T cells, but has been
found on macrophages (70), and relevantly, on Tth cells (71) and B
cells (72), suggesting that ICB may directly activate TLS. Notably,
elevated immune cell expression (73), including B cells (2), was
detected in on-treatment melanoma samples of ICB responders.
However, further mechanistic insight on the role of these immune
cell compartments is needed. Moreover, it is interesting that ICB was
suggested to change the composition of peripheral blood B cells (74).
Also, ICB plus radiotherapy increased GC formation in the tumor-
draining lymph node in a murine model of HPV-related cancer (75).
Furthermore, PD-1i treatment induced the expansion of CD8 T cells
that was not observed before treatment, indicating that ICB response is
driven by incoming T cells (76). While more evidence is needed, TLS
may be instrumental to restart antitumor defense during ICB treat-
ment by mounting a fresh adaptive immune response using incoming
B and T cells.

Therapies Targeted at B-Cell Activation
and TLS Induction

Given the premise that ICB works better in the context of B-cell-
and TLS-rich tumors, the development of therapies that activate B
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cells and support the induction of TLS are highly desirable and can
potentially improve the clinical outcome after ICB. However, our
current limited understanding of TLS induction, formation, and
maintenance have severely hampered the development of effective
strategies. So far, strong and reproducible evidence on strategies
that can strengthen B cell and TLSs in human cancers are lacking.
Nonetheless, early investigations with promising findings have
been described.

In preclinical models the administration of LIGHT-VTP, a com-
pound with a dual ability to modulate tumor blood vessels and induce
the formation of TLS, improved the sensitivity to ICB of immuno-
therapy-resistant rodent tumors (77). The combined treatment
induced intratumoral activation of cytotoxic T cells leading to
improved survival. The antitumor effects could be further improved
when combined with anticancer vaccination. In apparent contrast with
these findings, in another study, agonistic CD40 therapy induced TLS
in preclinical models of glioma; however as a trade-off, this therapy
markedly induced suppressive CD11b+ B cells which in turn impaired
responses to ICB (38). Overall, these studies demonstrate that TLS
formation can be induced even in the brain, and warrant further
investigation into combinatorial strategies with TLS-inducing agents
plus established immunotherapeutics such as ICB.

Another attractive strategy is to activate B cells with conventional
treatments. In a recent study, following tumor-directed radiation, B
cells in the tumor-draining lymph node had increased expression of
MHC-II which may improve their APC function (75). In two inde-
pendent studies, cancer vaccines have shown the ability to induce TLS:
in HPV 16-positive cervical cancer, therapeutic vaccination targeting
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HPV16 E6/E7 antigens induced organized TLS structures in the
stroma subjacent to residual intraepithelial lesions, despite modest
detectable responses in circulating T lymphocytes (78). In another
study conducted in patients with pancreatic adenocarcinoma,
an allogeneic granulocyte-macrophage colony-stimulating factor
secreting vaccine given in combination with low dose cyclophos-
phamide induced TLS with a distinct Th17 signature (79). Fur-
thermore, neoadjuvant chemotherapy has been found to affect B-
cell populations in a breast cancer study (80). These studies
demonstrated that B-cell activation and TLS formation can be
achieved with treatments that are not directly designed to achieve
this outcome.

Currently, the potential of generating inducible TLS with sophis-
ticated technologies including novel biomaterials is a matter of con-
tinuous investigation, with highly promising preliminary results
achieved in preclinical models [reviewed in (81)].

In summary, B-cell activation and TLS formation can be induced
therapeutically. However, these findings appear still far from the
reproducibility and robustness required for entering the mainstream
of cancer treatment.

Perspective

TLS have been recognized as a key component of antitumor
immunity. A deeper understanding of TLS development and function
in tumors at the single cell and spatial level is expected to yield insights
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