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Abstract: All vascular implants, including stents, heart valves and graft materials exhibit 

suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of 

biomolecules in the subendothelial space have been shown to play critical roles in local 

regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making 

these attractive candidates for modulation of vascular device biointegration. However, 

classically used biomaterial coatings, such as fibronectin and laminin, modulate only one 

of these components; enhancing endothelial cell attachment, but also activating platelets 

and triggering thrombosis. This review examines a subset of extracellular matrix molecules 

that have demonstrated multi-faceted vascular compatibility and accordingly are promising 

candidates to improve the biointegration of vascular biomaterials. 
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1. Introduction 

With advances in technology, implantable cardiovascular devices such as grafts, stents, pacemakers 

and heart valves are playing an increasingly important role in modern cardiovascular medicine. 

Despite this, biocompatible and clinically effective synthetic materials for cardiovascular devices are 
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currently lacking. Current artificial grafts are predominantly made of either Dacron or expanded 

polytetrafluoroethylene (ePTFE). These artificial materials lack sufficient elasticity, have poor 

interactions with vascular cells, are highly thrombogenic and induce chronic inflammation [1]. 

Re-endothelialization of graft surfaces is retarded by the highly hydrophobic surfaces and smooth 

muscle cells proliferate in response to the inflammatory cascade. Accordingly, current synthetic 

conduit materials fail uniformly in the treatment of peripheral vascular disease within 5 years due to 

thrombosis and uncontrolled cellular infiltration [2,3]. There remains a strong demand for novel grafts 

due to these and other shortcomings.  

The problem of innate incompatibility extends beyond graft materials to other vascular devices such 

as heart valves, pacemaker components and stents. These devices are primarily made of metal alloys, 

which are highly thrombogenic and induce inflammation at the site of implantation. The 

thrombogenicity of metal alloys are highlighted by the need for lifelong anticoagulation in metal heart 

valve recipients [4] and by the worrying propensity for coronary stents to thrombose. While the 

incidence of stent thrombosis for bare metal platforms is relatively low when used with antiplatelet 

therapy, such an event is catastrophic, associated with mortality rates of 25% [5]. Drug eluting stents 

(DES) releasing anti-proliferative agents are highly effective in inhibiting neointimal hyperplasia but 

also profoundly delay healing and re-endothelialization at the stent deployment site [6]. Consequently, 

the safety of DES has come into question [7]. DES are not only susceptible to early thrombotic events 

like BMS, but are also prone to both late (30 days–1 year) and very late (>1 year) stent thrombosis [8]. 

In stable patients with single vessel disease, late stent thrombosis occurs at a constant rate of 0.6% per 

year with no indication that this abates in the long term [9]. However, in real world studies 

incorporating acute coronary syndromes and complex interventions, even higher rates have been 

reported (0.9–3%/year) [10]. Additionally, DES polymer instability has been associated with chronic 

inflammatory and hypersensitivity reactions [11].  

As a consequence of the lack of biocompatible synthetic materials, a key objective of vascular 

bioengineering is the development of new biomaterials with appropriate biological properties that 

mimic that of human arteries. The commonality of vascular implants is the requirement to 

simultaneously modulate multiple biological processes (Figure 1). Injured and diseased vasculature 

routinely has damaged and compromised endothelium, while the inflammatory response triggers hyper 

proliferation of smooth muscle cells (SMCs). In this environment, clotting cascade factors are 

activated and thrombosis is easily initiated. An optimal medical device will encourage rapid 

regeneration of the endothelium; inhibit SMC proliferation and migration while having high 

blood compatibility. 
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Figure 1. The multiple facets of vascular biointegration: (a) A healthy vessel is 

characterized by a complete monolayer of endothelial cells (ECs), quiescent smooth 

muscle cells (SMCs) and hemostasis; (b) In disease, the endothelium is compromised, 

SMCs hyper-proliferate and the clotting cascade is triggered; (c) An ideal implanted 

device will simultaneously enhance EC regrowth, block SMC proliferation and inhibit 

thrombus formation. 

 

1.1. Vascular Biomimicry  

Classically, materials exhibiting biocompatibility perform their function without eliciting an undue 

host response or resulting in adverse clinical outcomes [12]. However, this paradigm has shifted 

recently beyond inertness, requiring biocompatible materials to facilitate beneficial cell and tissue 

interactions. In this context, the design of new vascular devices should aim to promote rapid and 

appropriate healing. A balance needs to be reached between low thrombogenicity, rapid  

re-endothelialization and arresting the infiltration and proliferation of SMC’s. An ideal vascular 



J. Funct. Biomater. 2012, 3   

 

 

572

implant would be non-thrombogenic even when in contact with the circulation and in the absence of 

platelet inhibition.  

Biomimetics or imitation of natural methods and processes has been identified as a means of 

significantly improving the biocompatibility of vascular materials. Biomimicry strategies in the context 

of vascular devices have been diverse including: whole organ tissue scaffolds [13], host derived vascular 

grafts [14] and biomolecule coatings with cell interactive characteristics [15]. Previous attempts to 

develop bioactive coatings for vascular implants have been limited by overly simplistic approaches, often 

focusing on modulating one facet of biocompatibility (e.g., endothelialization alone) at the expense of 

others. For example, despite having favorable endothelial cell interactions, collagen, fibronectin and 

laminin are thrombogenic [16–18]. Additionally, vitronectin, collagen (III and IV) and fibronectin 

promote smooth muscle cell migration [19,20]. Peptides mimicking cell-binding motifs in fibronectin 

(RGD) and laminin (YIGSR) are also widely used, but suffer the same shortcomings as their parent 

proteins, failing to achieve multi-faceted effect [21,22]. Similarly, phosphorylcholine (PC), based on a 

naturally occurring cell membrane lipid, was observed in vitro to be non-thrombogenic when used as a 

stent coating [23]. In vivo, PC failed to encourage endothelialization and ultimately had no effect on the 

rate of stent thrombosis [24]. Overall, a successful biomimicry approach will extend beyond emulation of 

a single desirable vascular property and more broadly seek to address a balance between favorable cell 

interactions and reducing thrombogenicity. 

1.2. Candidate Biomolecules from the Vessel Wall  

A range of biomolecules involved in the regulation of thrombosis and cell signaling are found in the 

vessel wall. The extracellular matrix (ECM), a complex collection of diverse proteins that form an 

organized network to which cells adhere [25], comprises the underlying structural component of 

vessels. The ECM modulates cell behavior [26] and signaling [27] and is responsible for the structural 

support of tissues. The ECM of the vasculature is primarily composed of collagens for structure, 

elastin for recoil, various glycoproteins (including microfibrils) for adhesion and proteoglycans and 

glycosaminoglycans, which provide many diverse functions. 

Elastic fibers are major ECM assemblies that provide elasticity and resilience. These contain 

primarily elastin, in combination with fibrillin-1 and co-localized with fibulin-5 [28]. Both fibrillin-1 

and fibulin-5 enhance endothelial cell stability and inhibit SMC migration [29]. The elastin rich 

internal elastic lamina is also a notable structural feature of large arteries, critical in preventing the 

infiltration of SMCs. The basement membrane, recognized as an essential mediator of cell 

homeostasis, provides structural support to endothelial cells and regulates their behavior. This  

sheet-like structure contains numerous proteins including type IV collagen, laminins, small 

glycoproteins such as nidogen/entactin, and heparin sulphate proteoglycans such as perlecan [30]. 

Here, perlecan is of particular interest as it is implicated in cell binding and proliferation, growth factor 

regulation [31] and the inhibition of thrombosis [32]. 

Despite the wide variety of proteins present in the extracellular matrix and basement membrane, 

many have features that are not desirable for use as a biomaterial coating, as discussed for collagen and 

fibronectin above. The ideal candidate biomolecule would enhance healing and endothelialization, 

reduce smooth muscle cell hyperproliferation caused by inflammation and be non-thrombogenic. 
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Overall, there is a subset of biologically relevant candidates with the potential to improve implant 

biointegration. These include elastin, fibrillin-1, fibulin-5 and perlecan (Figure 2), which have all been 

shown to play important development or regulatory roles in the vasculature, while simultaneously 

influencing re-endothelialization, inhibiting smooth muscle cells and deterring thrombosis (Figure 2). 

We discuss these four promising candidates in further detail below. 

Figure 2. Candidate biomolecules and their relative locations in the vessel wall, 

highlighting their proximity to ECs, SMCs and the vessel lumen.  

 

2. Candidate Biomolecules 

2.1. Fibrillin-1 

Microfibrils are an important component of elastic fibers, providing both mechanical and cell 

interactive properties. Across tissue types it is proposed that microfibrils are present at the beginning 

of elastogenesis and act as a scaffold for tropoelastin, the soluble precursor of elastin, deposition and 

assembly [33]. They are adjacent to tropoelastin producing cells and parallel to the developing fiber [34]. 

While the specifics of their role in assembly are not known, microfibrils have been described as having 

a bead-on-a-string appearance [35], while there is also evidence of small filaments that span between 

the adjacent microfibrils [36] suggesting some lateral assembly interaction. Microfibrils are primarily 

composed of glycoproteins from the fibrillin family and microfibril-associated glycoprotein (MAGP)-1 

and -2. Fibrillin-1 and -2 have so far been implicated as key microfibrillar components, both are found 

extracellularly, with different but coincident patterns of expression. Of the three fibrillins so far 

identified, fibrillin-1 has particular importance to the cardiovascular system, while fibrillin-2 and -3 are 

highly expressed in lung tissue and cartilage, though with differential expression patterns [37]. 

Fibrillin-1 is a 350 kDa cysteine-rich glycoprotein which has been shown to be particularly important 

in elastic fiber development [38] and wound repair [39]. It contains 47 epidermal growth factor (EGF) 

domains, of which 43 are calcium binding (cbEGF)-like domains, and 7 eight-cysteine-containing TB 

motifs. It is currently theorized that tropoelastin deposition on the microfibril is directed toward the 

inter-bead region and corresponding concentrations of fibrillin-1 [40], implying an important signaling 

role in elastic fiber assembly. It interacts strongly with cells via a canonical arginine-glycine-aspartic 

acid (RGD) motif, as well as with other ECM proteins including decorin, versican and tropoelastin [41].  

The importance of fibrillin-1 to the vasculature is demonstrated by autosomal dominant mutations 

in the fibrillin-1 gene known to cause Marfan Syndrome (MFS) [42]. This disorder has significant 
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skeletal and pulmonary complications, but manifests in the vasculature as aortic aneurysm and 

weakened heart valves, linked to reduced microfibrillar integrity and vascular mechanics. Marfan 

patients also exhibit EC dysfunction implying a role for fibrillin-1 in anchoring and signaling to this 

cell type. Fibrillin-1 knockout mice, used to model MFS also demonstrate progressive fragmentation of 

their aortic elastic lamellae, fragmentation of microfibrils in other tissues and EC detachment, 

providing further evidence for its importance [43]. This disease state also points to an important 

biological role for fibrillin-1 in regulating the bioavailability of transforming growth factor beta (TGF-β), 

a critically import cell regulatory molecule [44]. 

Studying the biological effects of fibrillin-1 in vitro has benefited from a molecular biology 

approach, recombinantly producing discreet domain segments. Details of this approach and the fragment 

nomenclature have been previously published [45]. Fibrillin-1 constructs spanning the full-length protein 

have assisted in elucidating important cell interactive regions, such as the RGD present in PF8/PF9 [45], 

as well as the contribution of surrounding stabilizing domains [46]. 

Fibrillin-1 binds to a range of cell types including endothelial cells, smooth muscle cells and 

fibroblasts. This interaction is mediated by αvβ3 and α5β1 integrins binding to the single RGD motif 

found in fibrillin-1 [47]. Polar residues surround the RGD sequence, making it highly likely to be 

solvent exposed and accessible for binding interactions. Fibrillin-1 fragments containing the RGD 

sequence, such as PF8 and PF9 (and constructs such as PF14 which combine PF8 and PF9) are 

suggested to be responsible for promoting endothelial cell proliferation via this mechanism. However, 

the binding interaction is complex, requiring contributions from upstream cbEGF domains to position 

the RGD sequence to achieve full adhesion and signaling [46]. This is exemplified in the differential 

binding behavior seen between PF9 (RGD only) and PF14 constructs (RGD and surrounding 

domains), with only PF14 actively signaling into human umbilical vein endothelial cells [48]. The 

enhanced signaling mediated by PF14 was directly shown to enhance endothelial cell proliferation and 

migration. These findings are consistent with data from fibrillin-1 null mice, which show thinner and 

disorganized elastic lamellae leading to a detached endothelial lining [49]. Together these data support 

an important role for fibrillin-1 in the regulation of endothelial cell binding and signaling as one facet 

of a wider biological role relevant to arterial morphogenesis and physiology [49].  

Importantly, fibrillin-1 fragments have also been shown to signal smooth muscle cells and inhibit 

their migration. Specifically, PF8 and PF9 constructs have demonstrated dramatically lower migration 

rates in a Boyden chamber assay in comparison to fibronectin [29]. Fibrillin-1 also appears to regulate 

the production of matrix metalloproteinase (MMP) and directly impact on the health and phenotype of 

vascular SMCs. In Fibrillin-1 deficient mice, SMCs are less well adhered, adopt a synthetic and 

proliferative phenotype and have up-regulated MMP9, leading to fragmentation of elastic lamellae and 

an enhanced inflammatory response [50]. Similar findings are observed in human MFS patients [51], 

demonstrating the importance of fibrillin-1 in SMC signaling. 

Direct assessment of the blood compatibility of fibrillin-1 (or any fibrillin) has not yet been carried 

out, but studies of the thrombogenicity of vessel wall components infer their relative compatibility. 

Decellularized elastic fibers, containing microfibrils and an elastin core, have been shown to bind 

fewer platelets than collagen or isolated basement membrane [52]. While elastin in particular is highly 

compatible with blood (discussed in more detail below), microfibrillar components were shown to 

cause much lower platelet activation than collagen [53]. It has also been assumed that proteins 
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containing an RGD sequence would strongly bind platelets and induce thrombus formation, as is the 

case for collagen and fibronectin. However, recent work functionalizing materials with RGD inspired 

peptides and demonstrating improved blood compatibility [54], challenge this model and a direct 

assessment of the effect of fibrillin-1 on coagulation is needed. Initial work showing the potential 

benefits of modifying the surface of a biomaterial with fibrillin-1 has been carried out using a 

polyurethane scaffold. Immobilized PF9 was shown to significantly enhance the binding and spreading 

of fibroblasts to the material surface and was notably superior to an RGD peptide originating from the 

sequence of fibronectin [55]. This demonstration supports the idea that not all RGD sites are equivalent. 

2.2. Fibulin-5 

The fibulins are a family of secreted glycoproteins associated with basement membranes, elastic 

fibers, and other matrices and are expressed in a variety of tissues. There have been seven fibulins 

identified, divided into class I and class II based on length and domain structures. Class II fibulins, 

called “short” fibulins, include fibulin-3, -4, -5 and -7. Of these, fibulin-5 is the most prominently 

expressed in the vasculature, co-localizing with all layers of elastic lamina and present on the surface 

of elastic fibers [56]. 

The importance of fibulin-5 (also called EVEC or DANCE) to normal elastogenesis was first 

demonstrated by fibulin-5−/− mice that show massively disorganized elastic fibers, resulting in aberrant 

skin, vascular and lung phenotypes [57]. Given that fibulin-5 is known to interact with the elastic fiber 

molecules, tropoelastin and fibrillin-1 [58] it was proposed to play an important role in fiber assembly, 

tethering the developing structure to cell surfaces. However, mice expressing mutant fibulin-5 with a 

disrupted RGD sequence display normal fiber formation, indicating that their role in elastogenesis 

requires further investigation [56] and is not limited to cellular interactions.  

From a vascular perspective, fibulin-5 is of particular interest as it is abundantly expressed in 

developing arteries. In adult blood vessels, expression is at low levels, however, the expression can be 

restarted in response to vascular injury and is enhanced in atherosclerotic plaques [59]. Following 

vascular injury, fibulin-5−/− mice present excessive SMC proliferation and migration and are more 

susceptible to thrombus formation. Vessels were found to be less elastic and remodeling impaired, 

while highlighting an unexpected role for fibulin-5 in SMC regulation [60]. Fibulin-5 also cooperates 

with fibulin-2 in the formation of the internal elastic lamina. Mice lacking both proteins show severely 

disorganized lamellae, thinner vessel walls and display higher rates of thrombosis following injury [61]. 

Fibulin-5 is the only fibulin to contain a conserved RGD motif, known to mediate binding to cell 

surface integrin receptors present on both endothelial cells and vascular smooth muscle cells [62]. For 

EC’s, binding is mediated by integrins including αvβ3 and αvβ5, while fibulin-5 also interacts strongly 

with TGF-βανδ vascular endothelial growth factor (VEGF), implicating a role in regulating 

angiogenesis and in modulation of endothelial cell function [63]. In vitro, over-expression of fibulin-5 

in primary endothelial cells enhanced their attachment, but impaired proliferation. Dual expression 

with VEGF in the same cell type improved cell proliferation while maintaining a high level of 

attachment [64]. The importance of fibulin-5 in the protection of ECs is highlighted in hypoxic 

conditions, where fibulin-5 gene expression is increased and the rate of apoptosis in fibulin-5 

knockdown cells is greater [65]. Surfaces coated with fibulin-5 exhibit strong integrin-mediated EC 
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attachment in static and flow conditions at a level comparable to fibrillin-1 and the cells form stable, 

functional monolayers [29]. 

The interaction of fibulin-5 with smooth muscle cells occurs via a different subset of integrins and 

has been shown to have an inhibitory effect. Vascular SMCs from fibulin-5−/− mice have enhanced 

proliferative and migratory behavior compared to wild-type cells, a response inhibited by 

overexpression of fibulin-5 [60]. This inhibition occurred in the absence of the αvβ3 integrin 

demonstrating the presence of additional mediators. The attachment of primary human aortic SMCs to 

recombinant fibulin-5 was subsequently shown to be through α5β1 and α4β1 integrins. However, SMCs 

in this study were poorly attached and spread and showed inferior migration and proliferation in 

comparison to fibronectin [58]. Migration of SMCs to a confluent layer of ECs grown on fibulin-5 was 

also reduced, in further support of the inhibitory effect of fibulin-5 on SMCs [29]. 

The blood interactions of fibulin-5 have not been studied, though the increased thrombosis observed 

in fibulin-5/fibulin-2 double knockout mice infers a role in maintaining hemostasis. As with fibrillin-1, 

the presence of fibulin-5 in association with elastic fibers is also encouraging given the reduced 

interactions these have with platelets. As discussed above, the presence of an RGD is not necessarily a 

barrier to blood compatibility. 

2.3. Perlecan 

Perlecan is a large (467 kDa) multidomain heparan sulfate proteoglycan (HSPG) that is expressed 

in most ECM and basement membranes and is essential for the assembly and maintenance of a 

functional basement membrane. It is the major extracellular HPSG present in blood vessels and 

consists of a core made up of five distinct domains that each interact with molecules involved in cell 

proliferation, lipoprotein uptake and cell adhesion [66]. In vertebrates, perlecan functions in a diverse 

range of developmental and biological processes, including the regulation of wound healing and 

modulation of vascular biology [31]. It has been found to co-localize with fibrillin-1 and elastin in 

blood vessels [67] and to play an important regulatory role in sequestering a host of growth factors and 

cell signaling molecules [68]. Other heparan sulfate proteoglycans include syndecans and glypicans, 

however these are membrane bound [69]. Secreted HSPGs, agrin and collagen XVIII are of interest; 

however their roles in the vascular healing process have not been fully elucidated [70].  

Perlecan−/− mice display severe phenotypic changes with most embryos dying prior to birth at  

E10-E12 as a result of ruptured basement membranes and consequential bleeding [71]. Cardiac tissue 

is especially affected. While basement membranes are present, they lack integrity and holes are 

observed in the myocardium. The few animals to survive until birth die soon after, suffering serious 

skeletal defects and defective cephalic development [72], emphasizing the importance of perlecan in a 

range of tissues. Focusing further on the cardiovascular consequences of perlecan deficiency, 

heterozygous mice show accelerated atherosclerosis in early lesions, implying a role in retention of 

lipoproteins [73]. Perlecan−/− mice more seriously demonstrate a high incidence of arterial 

transposition, valve malformation and hyperplasia of SMC-specific α-actin-positive mesenchymal 

cells [74]. 

The modulation of vascular specific cells by perlecan has been clearly demonstrated; inhibiting 

smooth muscle cells while promoting endothelialization and displaying potent pro-angiogenic activity. 
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The mechanism of these divergent effects is not yet fully understood. It was originally proposed that 

mouse derived perlecan interacted directly with endothelial cells through β1 and β3 integrins in a 

substantially RGD dependent manner [75]. However, later studies importantly differentiated that while 

mouse perlecan contains a prominent RGD motif, the human form contains no RGD at all [76]. An 

emerging explanation is that cell interactive effects of perlecan are mediated via heparin sulfate side 

chains sequestering growth factors such as fibroblast growth factor-2 (FGF-2), VEGF and hepatocyte 

growth factor (HGF). FGF-2 in particular readily binds to these side chains and can stimulate EC 

proliferation and migration [77]. 

The inhibition of vascular SMCs has been closely associated with perlecan expression levels in the 

cell [78]. High levels are found in quiescent phenotypes, with decreased amounts correlating to 

enhanced proliferation and in cases of vascular injury. As the healing response moves toward 

completion, perlecan accumulation in the cell induces a reduction in SMC proliferation via a PTEN 

signaling pathway [79]. This effect has been demonstrated in vivo, using a rat model undergoing 

balloon induced carotid artery injury. Specifically, expression and deposition of perlecan are low in the 

early stages following injury, while large amounts of perlecan remain deposited during later stages of 

lesion development, when SMC proliferation decreases. Up to 6 weeks after injury, perlecan remains 

abundant, suggesting that turnover is slow in the advanced lesion [80]. Mechanistically, the inhibition 

of SMCs by perlecan has been linked to the presence of functional heparin sulfate side chains. Mutant 

SMCs with abrogated side chain secretion show increased proliferation, consistent with the greater 

intimal hyperplasia observed in the arteries of mice also lacking HS side-chains. As with EC signaling, 

it is proposed that the effect of perlecan on SMCs is also mediated by the sequestering ability of the 

side-chains and specifically their binding of FGF-2 [81].  

Hemostasis in normal vessels is mediated by a functional monolayer of endothelial cells, which 

express HSPGs that in turn bind and activate anti-thrombin III, inactivating thrombin [82], as well as 

inhibiting platelet adhesion and activation due to their highly negative charge [83]. Accordingly, 

perlecan has been shown to exert a direct influence on the clotting cascade, preventing thrombosis and 

inhibiting platelet adhesion. In vitro, platelets monitored using a quartz crystal microbalance adhered at 

similar levels to perlecan with and without HS side-chains, though aggregation was blocked only in the 

presence of HS chains only [84]. Endothelial cells expressing perlecan at normal levels were also 

shown to completely prevent occlusive thrombosis in a porcine carotid injury model. In contrast, 

perlecan-deficient cells had a 23% occlusion rate [32]. Notably, knockdown cells had a reduced ability 

to interact with FGF-2, a molecule frequently associated with perlecan activity. 

The positive effects of perlecan shown in vitro have some evidence of translation to in vivo use. 

ePTFE vascular grafts dip-coated with perlecan were evaluated in a sheep carotid interposition model. 

After 6 weeks, perlecan-coated grafts showed a trend to less thrombus formation compared to uncoated 

controls and despite high inter-animal variability, a higher degree of endothelial cell coverage [84]. 

Additionally, a novel compound (RUS3108) that induces perlecan over-expression in SMCs was 

eluted from a stent platform in a rabbit iliac artery model. The cross-sectional area of in-stent 

neointima in the treated stent group was significantly reduced in comparison to bare stent or polymer 

coated alone controls [85]. 
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2.4. Tropoelastin  

Elastin is one of the major structural components of the vasculature and provides critical 

mechanical and biological properties [86]. Elastin is formed through the cross-linking of its soluble 

precursor tropoelastin, which is initiated through the action of the enzyme lysyl oxidase [87]. 

Tropoelastin is a 60 kDa highly extensible yet elastic monomer [88] that is cross-linked in the 

extracellular space and assembles to become the major component of elastic fibers [89].  

The importance of normal elastin expression to the vasculature is evidenced by the severe 

disruptions observed in elastin knockout mice. Elastin+/− animals present with hypertension, reduced 

vessel elasticity and display a reorganized arterial wall structure, but survive to normal age [90]. At 

birth, vascular function appears normal but progressive remodeling leads to reduced performance in 

adulthood. Approximately 60% of normal elastin levels are required for normal cardiac function, 

though this is achieved by significant vessel wall remodeling, notably with an increase in the number 

of elastic lamellae and layers of SMCs [91]. In elastin−/− mice, arterial development appears normal 

until E17.5 when the internal elastic lamina (IEL) is severely compromised and subendothelial SMC 

proliferation becomes uncontrolled. Mice die prematurely of arterial obstruction [92].  

The internal elastic lamina is particularly significant in providing signaling and support for luminal 

endothelial cells [93]. Commensurate with this role, various forms of elastin interact favorably with 

endothelial cells and support their growth. Elastin solubilized with oxalic acid (α-elastin) enhanced 

proliferation of ECs at low concentrations [94], while elastin peptides containing the GP/GVGAGVP 

or VGVAPG motifs are chemotactic for endothelial cells [95] and are consequently pro-angiogenic [96]. 

Fibrous scaffolds of bovine elastin were also shown to support endothelial cell growth up to 7 days in 

culture [97] however, the clearest enhancement of endothelialization has been demonstrated with 

recombinant human tropoelastin (rhTE). Attachment and proliferation of ECs was significantly 

increased in the presence of tropoelastin immobilized on a plasma deposited surface [15] and shown to 

be equivalent to fibronectin when coated on tissue culture plastic [98]. The formation of an EC 

monolayer was also encouraged on three-dimensional fibrous scaffolds containing tropoelastin, applied 

to the development of a vascular conduit [98]. Recently, it was shown that human coronary artery 

endothelial cell attachment to tropoelastin is in part mediated through the integrin avβ3, however the 

site of this interaction as well as other binding interactions has not been elucidated [99]. 

Elastin is also a potent autocrine regulator of SMC activity that inhibits proliferation and regulates 

migration. This effect is mediated directly by tropoelastin sequences via a repeating VGVAPG 

hexapeptide motif. Supply of this hexapeptide activates the same signaling cascade as the full-length 

protein in a specific and dose dependent manner [100]. In vitro, α-elastin has a strong dose dependent 

inhibitory effect on SMCs causing a greater than 50% reduction even at low concentrations  

(0.1 mg/mL) [94]. SMC inhibition has subsequently been demonstrated repeatedly for α-elastin 

scaffolds [101], hydrogels [102] and electrospun sheets [103]. Studies of SMCs derived from elastin−/− 

mice provide the strongest evidence for the inhibitory effect of elastin. Cells lacking elastin were 

highly proliferative and increased by more than twofold by 72 hours, returning to wild type levels 

following the addition of recombinant tropoelastin to the media [104].  

In addition, there is mounting evidence for the haemocompatibility of elastin and its derivatives and 

this subject has been reviewed in detail elsewhere [105]. In brief, elastin has demonstrated minimal 
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platelet adhesion, degranulation and aggregation and was shown to be one of the least thrombogenic 

components of the vessel wall. In support of this finding, immobilized rhTE was found to have low 

thromobengicity on a plasma-activated steel surface [106], while porcine elastin-based scaffolds 

showed decreased thrombosis compared to commercial ePTFE in acute thrombogenicity tests in a 

carotid interposition model [107].  

Translating the vascular compatibility of elastin-based materials in vivo, recombinant peptides 

based on the sequence of tropoelastin, have been shown to reduce thrombogenicity when used as 

surface coatings. Coated polyurethane catheters implanted in a rabbit model demonstrated decreased 

platelet deposition, reduced fibrin aggregation and ultimately improved patency [108]. Similar 

improvements in blood contacting properties were seen in a baboon arteriovenous shunt model using 

4mm expanded polytetrafluoroethylene grafts coated with elastin-mimetic sequences [109]. Stents 

coated with an elastin sheet deployed in the coronary arteries of pigs have also demonstrated reduced 

neointimal hyperplasia compared to uncoated stents [110].  

3. Conclusions and Future Prospects 

Collectively, the outcomes from commercial graft and stent technologies have shown that 

simultaneously achieving reductions in neointimal hyperplasia, enhanced endothelialization and low 

thrombogenicity remains an elusive goal. This article sought to highlight the potential benefits of a 

biomimicry approach in the production of novel medical devices, employing biomolecules that have 

been shown to modulate multiple facets of vascular biology. A subset of candidates, chosen from the 

multitude found in the vasculature, standout as top tier candidates, and their favorable properties are 

summarized in Table 1. 

Table 1. Summary of vascular biological effects of biomolecule candidates. 

Candidate Effect on ECs Effect on SMCs 
Blood 

Compatibility 
Translation to Date 

Fibrillin-1 
Proliferation,  

enhanced 

Proliferation, 

inhibited 
Not yet tested 

Enhanced fibroblast 

attachment to PU 

scaffold 

Fibulin-5 
Attachment enhanced; 

apoptosis reduced 

Proliferation, 

inhibited 
Not yet tested No translation 

Tropoelastin 

Attachment, 

proliferation, 

enhanced  

Proliferation, 

inhibited 

Hemocompatible; 

minimal 

activation of 

platelets 

Improves EC binding, 

growth on steel; reduces 

thrombogenicity of 

catheters, ePTFE grafts 

Perlecan 
Proliferation,  

enhanced 

Proliferation, 

hyperplasia (rat 

model) inhibited 

Direct inhibition 

of thrombosis 

Less thrombus present on 

ePTFE grafts, greater 

ECs; Stents show less 

neointima 

 

With a growing appreciation of the need for biointegration of vascular devices, it is anticipated that 

these candidates will increasingly be translated to metal and polymeric substrates for in vivo 

evaluation. This translation will be achieved more quickly in combination with emerging coating 
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technologies that facilitate binding of biomolecules, in a lasting yet bioactive manner. Recent 

improvements, set apart from conventional plasma polymerisation, eliminating the need for chemical 

linkers is one such example [111]. Future developments will continue to aim to produce a novel device 

platform that can achieve controlled integration with the vasculature through multifaceted biomimicry. 

Ultimately, the goal remains the development of truly biocompatible materials for a wide range of 

vascular applications, including stents and graft materials, thereby meeting a large unmet need in 

cardiovascular medicine. 
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