
T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

1003

COMMENTARY

© 2008 Allen and Altfeld

The Rockefeller University Press $30.00

J. Exp. Med. Vol. 205 No. 5 1003-1007 www.jem.org/cgi/doi/10.1084/jem.20080569

    Despite signifi cant progress in our un-
derstanding of HIV-1 pathogenesis 
over the past two decades, the precise 
correlates of protective immunity against 
HIV-1 infection remain unknown, and 
the lack of this information has im-
paired the development of an eff ective 
HIV-1 vaccine. It is now well estab-
lished that virus-specifi c immune re-
sponses, and in particular HIV-1 – specifi c 
CD8 +  T cell responses, contribute to 
the control of viral replication in in-
fected individuals. The virus, however, 
has developed several means to evade 
these responses, the most notable of 
which is its ability to rapidly acquire 
mutations that impair its recognition by 
epitope-specifi c CD8 +  T cells ( 1 ). This 
continuous evolution of HIV-1 has also 
contributed to the dramatic sequence 
diversity among circulating viral strains 
at the population level, which repre-
sents a major challenge for vaccine 
development ( 2 ). Fortunately, several 
recent studies, including a study by 
Goepfert et al. ( 3 ) on page  1009  of this 
issue, indicate that the ability of HIV-1 
to escape virus-specifi c immunity is not 
limitless, but rather comes at a fi tness 
cost to the virus, which may hold hope 
for the design of an eff ective HIV-1 
vaccine. 

 Balancing cytotoxic T lymphocyte 

escape and viral fi tness 

 To understand the complex interplay 
between the immune response and the 
sequence evolution of HIV-1, and to 
understand why sustained immune 
control of HIV-1 is so diffi  cult to at-
tain, it is important to examine the les-
sons learned from studies of HIV-1 
drug resistance ( 4 ). It is well known 
that HIV-1 can rapidly develop drug 
resistance mutations when single sites 
in the viral genome are under intense 
selective pressure, such as in patients 
undergoing mono- and dual-drug 
therapy. This observation eventually 
spurred the development of triple-drug 
therapies that target multiple highly 
conserved sites of the virus, making si-
multaneous mutations in these regions 
very unlikely. This multi-pronged ap-
proach has been extremely successful 
at containing HIV-1, limiting the 
development of drug resistance, and 
dramatically slowing disease progres-
sion. These studies also suggested that 
although viral escape from antiretrovi-
ral therapy through the development 
of drug resistance mutations may be 
immediately advantageous to the virus 
in the presence of the drug, they none-
theless result in a reduction of viral rep-
licative fi tness ( 4 ). Evidence for this 
fi tness loss is derived in part from the 
observation that drug-resistance muta-
tions quickly revert back to wild-type 
in the absence of the drug, either when 
therapy is stopped or when the virus 
is transmitted to a new host ( 5, 6 ). 
Furthermore, continuing antiretroviral 

therapy even after the virus has devel-
oped resistance to a specifi c drug can 
be clinically benefi cial ( 7 ). 

 The concept of drug-induced se-
lection pressure can also be applied to 
selective pressures imparted by virus-
specifi c CD8 +  T cell responses. The 
relationship between immune-medi-
ated selection pressure, the emergence 
of viral escape mutations within tar-
geted CD8 +  T cell epitopes, and the 
impact of these mutations on viral rep-
licative fi tness is best illustrated in the 
context of virus-specifi c CD8 +  T cell 
responses restricted by human histo-
compatibility leukocyte antigen (HLA)-
B57. This HLA class I allele has been 
consistently associated with protection 
from HIV-1 disease progression ( 8 – 10 ). 
Individuals expressing HLA-B57 mount 
a strong CD8 +  T cell response against a 
highly conserved epitope within Gag 
called TW10 very early in acute HIV-1 
infection ( 11, 12 ). The development of 
this TW10-specifi c CD8 +  T cell re-
sponse is associated with the reduction 
of viral load by 1,000-fold or more. 
The virus eventually evades this domi-
nant TW10-specifi c CD8 +  T cell re-
sponse by selecting for escape variants 
within the epitope ( 13 – 15 ). But despite 
immune escape, viral replication re-
mains well controlled in these individ-
uals, and large numbers of individuals 
expressing HLA-B57 have long-term 
nonprogressive HIV-1 infection ( 16 ). 
The underlying factors responsible for 
this apparent paradox — effi  cient con-
trol of virus replication despite viral 
escape from CD8 +  T cell – mediated 
immune pressure — appear to be related 
to the reduced replicative fi tness of 
viruses containing escape mutations in 
the TW10 epitope. Indeed, the rapid 
in vivo reversion of these mutations 
back to wild-type after transmission 
into a new HLA-B57  �   host ( 13 ), and 
the direct impact of these mutations on 
viral replication in vitro, confi rm the 
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mitted mutations may eventually revert 
in the new host, resulting in higher lev-
els of viral replication. If such mutations 
are found to be stable over time, how-
ever, this might suggest long-term ben-
efi ts of these transmitted mutations on 
limiting progression to AIDS. 

 Specifi city trumps quantity 

 Over the years, numerous studies have 
shown that neither the overall magni-
tude nor the breadth of HIV-1 – specifi c 
CD8 +  T cell responses correlates with 
better outcome of HIV-1 infection 
( 26 – 28 ). More recent data, however, 
including those in the current study by 
Goepfert et al., suggest that the speci-
fi city of the CD8 +  T cell response 
against HIV-1, and in particular the 
Gag-specifi c response, may be critical 
for immune control ( 24, 29 – 36 ). Many 
of the protective major histocompati-
bility complex class I alleles described 
for both HIV-1 and simian immuno-
defi ciency virus (SIV) infection present 
CD8 +  T cell epitopes from the Gag 
protein. HLA-B57 and HLA-B27, for 
example, present adjacent T cell epi-
topes from HIV-1 Gag to CD8 +  T cells 
during the acute phase of infection at a 
time when control of viral replication 
appears to be either established or lost 
( 12, 37 ). Similarly, in acutely SIV-in-
fected macaques, CD8 +  T cell responses 
restricted by the protective allele Mamu-
A01 predominantly target an epitope in 
Gag ( 38 ). Notably, all of these CD8 +  T 
cell epitopes are located within a short 
but highly conserved 100 – amino acid 
stretch of the protein ( 37 ). These data 
support the hypothesis that focused 
CD8 +  T cell responses against Gag may 
be associated with early and sustained 
control of both HIV-1 and SIV. Simi-
larly, viral escape mutations in each of 
these Gag epitopes have been found to 
impair viral replication capacity to the 

the couples per year. These unfortunate 
cases provide a unique setting to study 
the impact of viral sequence mutations 
selected under immune pressure in the 
initial host (the donor in the partner-
ship) on viral replication in the newly 
infected host (the recipient). 

 The authors sequenced the HIV-1 
 gag  and  nef  genes from plasma samples 
obtained six months after the estimated 
date of infection, and demonstrated that 
accumulating transmitted amino acid 
mutations in Gag, but not Nef, were as-
sociated with reduced viral loads in the 
recipients. The protective eff ect of 
transmitted Gag mutations was largely 
mediated by those associated with 
HLA-B – restricted CD8 +  T cell re-
sponses. This result is in line with a pre-
vious study in HIV-1 clade C – infected 
individuals that demonstrated a domi-
nant role for HLA-B – restricted T cell 
responses in driving viral escape and in 
controlling viral replication ( 24 ). 

 Interestingly, newly infected hosts 
whose HLA class I alleles were not as-
sociated with the induction of Gag mu-
tations benefi ted the most from the 
transmission of viruses carrying these 
escape mutations. This later observation 
suggests that transmitted Gag mutations 
can substitute for the absence of immune 
responses capable of actively forcing the 
acquisition of Gag mutations in the new 
host, and that some transmitted muta-
tions may revert suffi  ciently slowly to 
benefi t the recipient early after infection. 
This is further supported by a recently 
published study of Chopera et al. ( 25 ) 
demonstrating that HLA-B57/5801  �   
individuals infected with HIV-1 clade 
C viruses carrying mutations that indicate 
previous selection in HLA-B57/5801 +  
individuals experienced lower viral loads 
and higher CD4 +  T cell counts than 
individuals infected with viruses with-
out these mutations. Collectively, these 
studies demonstrate the potential con-
sequences of the  “ immune selection 
history ”  of the transmitted virus on vi-
ral replication in the newly infected re-
cipient, at least during the initial phase 
of infection. It is important to note, 
however, that the long-term benefi ts of 
the transmission of these mutated vi-
ruses remain to be determined. Trans-

deleterious impact of escape mutations in 
TW10 on viral replicative fi tness ( 15, 17 ). 
These studies also show that the virus 
tries to minimize the impact of these 
mutations by developing secondary 
compensatory mutations that can par-
tially restore the replication defects ( 15, 
17 ). Furthermore, a recent population 
study of HIV-1 clade B –  and clade C –
 infected individuals demonstrated an 
inverse correlation between the pro-
portion of mutations within CD8 +  T 
cell epitopes and viral load ( 18 ). Col-
lectively, these studies suggest a model 
in which the virus is either controlled 
by potent virus-specifi c T cell responses 
or evades antiviral immune pressures 
through sequence variations that de-
crease its capacity to replicate. The 
study by Goepfert et al. ( 3 ) provides ad-
ditional evidence for this model, which 
may help in translating studies of HIV-1 
pathogenesis into vaccine design. 

 Escape mutations: the bright side 

 It is now well established that drug and 
immune escape mutations selected in 
an HIV-1 – infected host can be trans-
mitted to a new host ( 19 – 23 ). Several 
studies have demonstrated that the trans-
mission of drug-resistant virus can have 
a signifi cant impact on the response to 
antiretroviral therapy in the newly in-
fected recipient ( 22, 23 ). But the clinical 
consequences of infection with viruses 
containing immune escape mutations 
are not well understood. To address this 
issue, Goepfert et al. studied HLA class I –
 associated amino acid polymorphisms 
of HIV-1 Gag and Nef in a cohort of 
114 HIV-1 transmission pairs from 
Zambia. These couples were initially 
identifi ed as HIV-1 – discordant couples 
in which one partner was HIV-1 in-
fected, and the other was HIV-1 nega-
tive. Counseling and condom provision 
have reduced the transmission rates in 
these discordant couples, but transmis-
sion of HIV-1 still occurs in  � 8% of 

The ability of HIV-1 to escape virus-
specific immunity is not limitless, 
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mate model substantiate this, an addi-
tional challenge will be to simultaneously 
prime cellular immune responses against 
conserved structural proteins, while 
eliciting neutralizing antibody responses 
against the envelope protein. Because 
antibodies recognize and eliminate vi-
rus from the blood before it has a chance 
to infect a cell, the combined eff orts of 
vaccine-induced neutralizing antibodies 
and CD8 +  T cell responses will likely 
be needed to mount an eff ective im-
mune responses against HIV-1. 

 To date, eff orts to design an eff ec-
tive HIV-1 vaccine have largely focused 
on inducing stronger CD8 +  T cell re-
sponses against an array of viral proteins 
in the hopes of eliciting the broadest 
immune response possible. These at-
tempts to recapitulate the immunity 
induced in natural HIV-1 infection, 
which fails to protect from disease pro-
gression in the vast majority of infected 
individuals, is prone to failure against 
such a highly variable pathogen that can 
easily evade the majority of these re-
sponses. Recent data, including the 
study by Goepfert et al., demonstrate a 
protective eff ect of broadly directed 
Gag-specifi c CD8 +  T cell responses and 
a cumulative eff ect of immune-driven 
mutations in Gag on viral replication 
capacity, suggesting that some HIV-1 –
 specifi c immune responses are superior to 
others in mediating protective immu-
nity. Control of HIV-1 might therefore 
require a combined assault on conserved 
regions of the virus ( 1, 41 ), which can 
cripple HIV-1 one mutation at a time. 
If so, it will be necessary to identify and 
target vaccine responses against the most 
critical regions, and only those regions, 
to hit HIV-1 where it hurts. 
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by Nef- and Env-specifi c T cell re-
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it may be critical for vaccines not only 
to target highly conserved regions, such 
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gions to avoid competition. If ongoing 
vaccine studies in the nonhuman pri-

extent that fl anking compensatory mu-
tations often arise that partially restore 
these replicative defects ( 15, 17, 39 ). 

 There are several reasons why Gag 
might be critical for raising a protective 
immune response. First, Gag ’ s domi-
nance as a target of the cellular immune 
response ( 26 – 28 ) may be due to its 
preferential processing and presentation 
by infected cells. Gag-derived epitopes 
can be presented very early after infec-
tion because a majority of the capsid 
molecules derived from the Gag p24 
subunit of the infecting virion can be 
rapidly degraded and presented on the 
surface of an infected cell before the rest 
of the viral proteins are synthesized de 
novo ( 40 ). Furthermore, the Gag pro-
tein, and in particular the p24 subunit, 
is a key structural component of the vi-
rus and is thus highly conserved. There-
fore, immune responses against this 
critical  “ Achilles ’  heel ”  of HIV-1 may 
provide strong protection because the 
virus can evade this response only at 
signifi cant cost to its replicative fi tness 
( 1, 41 ). The study in transmission pairs 
by Goepfert et al. provides further evi-
dence for this model by demonstrating 
that the transmission of multiple escape 
mutations in Gag, but not Nef, is asso-
ciated with reduced viral loads in the 
new host ( 3 ). 

 Broader Gag response, better 

protection 

 A crucial observation of recent studies 
associating Gag-specifi c CD8 +  T cell 
responses with control of HIV-1 viremia 
was that the breadth of the Gag-specifi c 
responses appeared to be important for 
this control. In a large cohort study of 
HIV-1 clade C – infected individuals in 
South Africa, CD8 +  T cell responses 
against two or more epitopes in Gag 
were associated with markedly lower 
viral set points, whereas CD8 +  T cell 
responses against one or no epitope in 
Gag was not associated with viral con-

Control of HIV-1 might therefore 
require a combined assault on con-
served regions of the virus, which 
can cripple HIV-1 one mutation at 

a time.
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