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Abstract

Cardiorespiratory fitness (CRF) provides important diagnostic and prognostic information. It

is measured directly via laboratory maximal testing or indirectly via submaximal protocols

making use of predictor parameters such as submaximal _VO2, heart rate, workload, and per-

ceived exertion. We have established an innovative methodology, which can provide CRF

prediction based only on body motion during a periodic movement. Thirty healthy subjects

(40% females, 31.3 ± 7.8 yrs, 25.1 ± 3.2 BMI) and eighteen male coronary artery disease

(CAD) (56.6 ± 7.4 yrs, 28.7 ± 4.0 BMI) patients performed a _VO2peak test on a cycle ergometer

as well as a 45 second squatting protocol at a fixed tempo (80 bpm). A tri-axial accelerome-

ter was used to monitor movements during the squat exercise test. Three regression models

were developed to predict CRF based on subject characteristics and a new accelerometer-

derived feature describing motion decay. For each model, the Pearson correlation coeffi-

cient and the root mean squared error percentage were calculated using the leave-one-sub-

ject-out cross-validation method (rcv, RMSEcv). The model built with all healthy individuals’

data showed an rcv = 0.68 and an RMSEcv = 16.7%. The CRF prediction improved when

only healthy individuals with normal to lower fitness (CRF<40 ml/min/kg) were included,

showing an rcv = 0.91 and RMSEcv = 8.7%. Finally, our accelerometry-based CRF prediction

CAD patients, the majority of whom taking β-blockers, still showed high accuracy (rcv = 0.91;

RMSEcv = 9.6%). In conclusion, motion decay and subject characteristics could be used to

predict CRF in healthy people as well as in CAD patients taking β-blockers, accurately. This

method could represent a valid alternative for patients taking β-blockers, but needs to be fur-

ther validated in a larger population.
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Introduction

Cardiorespiratory fitness (CRF), or functional capacity, is defined as the ability to perform

daily living physical tasks by means of preeminent aerobic metabolic processes [1], and it pro-

vides important diagnostic and prognostic information [1]. In sports medicine it is used to

predict endurance performance [2], whilst in cardiac rehabilitation it is an important parame-

ter for characterizing the severity of cardiac limitations, prescription of an exercise programs,

and evaluating post-event recovery [3, 4]. Moreover, this parameter has been shown to be an

excellent independent risk factor for cardiovascular diseases [5, 6].

Cardiorespiratory fitness, also called _VO2peak, is traditionally measured directly via labora-

tory maximal exercise testing, or indirectly via submaximal exercise protocols making use of

predictor parameters such as oxygen consumption ( _VO2), heart rate (HR), rating of perceived

exertion, and workload [1, 7]. The importance of testing CRF on a large scale was already

stressed in a preventive context by the Canadian Physiology Society in the late 70’s [8]. For this

purpose a simple submaximal step home test was designed [8]. About the same time, H. J.

Montoye deployed another submaximal step home test in his epidemiologic study in order to

evaluate exercise capacity of the entire community of Tecumseh, Michigan [9]. Those types of

submaximal tests were employed because they were rather inexpensive; they did not need spe-

cial supervision and they could be performed in a heterogeneous population. However, they

still required specific tools such as an exercise step, and around 30 minutes of preparation time

[10]; and they are still a tradeoff between increased convenience and reduced accuracy [7].

Nowadays, mobile health has become a growing reality [11, 12]. In cardiac rehabilitation,

telehealth interventions have shown to be at least as effective as conventional rehabilitation,

with the advantage for the patients to remain in their familiar environment and for the health

care system lower costs [13]. In this context it is important to have a safe, reliable, and easy to

perform CRF home test, which could be executed by cardiac patients at home using as little

extra equipment as possible. We have extensively reviewed submaximal protocols to assess

CRF, which could be suitable for the home setting [7]. Most of these submaximal protocols use

HR and/or workload to estimate CRF.

However, HR is not a reliable parameter to estimate maximal aerobic capacity in patients

on β-blockers [14, 15]. In fact, blockades of β-adrenoceptors slow down HR at rest and attenu-

ate its increase during exercise [16]. The cardiorespiratory and cardiovascular effects of β
receptor blockade are more complex than a mere reduction in HR; at pulmonary level, β2

receptor inhibition causes bronchoconstriction, while at peripheral vessels level vasoconstric-

tion [17]. Furthermore, myocardial oxygen consumption is reduced by β-blockers [17]. At rest

as well as during exercise the effect of chronic β-blockers treatment on _VO2 and HR does not

seem to be proportional. Gullestad et al. [18] observed no reduction of _VO2 at rest, a slight

reduction of 2% in _VO2 at submaximal level and 7.5% for peak _VO2, mainly explained by a

lower peak workload, whereas they observed a steady reduction in HR of 28% at rest, 26% at

submaximal level, and 27% at peak exercise level when compared with placebo. Furthermore,

Wolfel et al. [19] found a striking increase in oxygen pulse ( _VO2=HR) due to acute and chronic

β-adrenergic blockades in both submaximal and maximal exercise conditions. Interestingly,

reduction in _VO2max and peak workload were less pronounced in this latter study [19].

It becomes evident that HR-based estimation models would inaccurately estimate CRF on

an individual basis, while either workload-based or subjective rating estimation would be

more appropriate [14]. However, accurate workload measurements require ad-hoc equipment,

such as cycle-ergometers or treadmills, which usually are not available at home. In order to

overcome the above mentioned limitations of submaximal testing based on HR and/or
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workload measurements, we have developed an innovative methodology for predicting CRF

from periodic body motion decay. We used a submaximal physical exercise such as repetitive

squats executed at a given tempo (i.e. 80 bpm, one beat squat down and one beat stand up) for

a time period long enough to increase HR and physical fatigue perception [20]. This protocol

was recently validated for the estimation of CRF from HR and subject characteristics in a large

population of healthy individuals [20]. Since HR-based estimations would not be suitable for

patients on β-blockers, we have hypothesized that CRF could be estimated from the progres-

sive deviation of motion patterns from the ideal motion pattern required. In simple terms: we

anticipate that less fit people would deviate from the ideal motion pattern faster and with a

greater magnitude, than fitter people. The only device required to carry out this test was an

activity monitor (i.e. tri-axial accelerometer), and a metronome.

To the authors knowledge this is the first time that CRF is predicted solely by body motion.

The purpose of this study was to prove the idea that body motion information during a peri-

odic movement (e.g. 45 second of squatting) is able to provide CRF prediction in healthy sub-

jects as well as coronary artery disease (CAD) patients.

Materials and methods

Forty-nine subjects volunteered to take part in our investigation. Thirty were healthy individu-

als and all of them are included in the data analysis. Nineteen were CAD patients and eighteen

of them are included in the data analysis (Table 1, Table 2). The excluded subject was the

only woman in the patients group. Her data were not analyzed to avoid misrepresentation of

sex in the regression analysis. All patients included in the data analysis, with the exception of

three, were on β-blockers. All the subjects recruited were able to perform the physical tasks

requested, accordingly to their fitness level. The healthy subjects were recruited in the Eindho-

ven area via flyers and newspaper advertisements, while the CAD patients were enrolled

through the Máxima Medical Center in Veldhoven and Eindhoven. Prior to their participa-

tion, all volunteers had time to read the information letter and gave written consent. The pro-

tocol of this study was approved by the Internal Committee on Biomedical Experiments of

Philips Research as well as by the Medical Ethical Committee of the Máxima Medical Center.

Cardiorespiratory fitness assessment

Subjects were asked to come to the Máxima Medical Center for a cycle ergometer _VO2peak test.

Subjects were instructed to wear comfortable sports clothes and having fasted for the previous

Table 1. Subjects’ characteristics.

n Weight [kg] Height [cm] BMI [kg/m2] Age [years] RFSmax

Healthy

Female 12 67.9±8.2*** 170.1±4.8*** 23.4±2.4* 31.3±8.4 16.2±5.9

Male 18 83.7±9.8***,§§ 178.9±5.9*** 26.2±3.2* 31.2±7.7§§§ 20.2±8.5§§§

total 30 77.4±12+++ 175.4±7.0+ 25.1±3.2++,§ 31.3±7.8+++ 18.6±7.7+++

CAD patients

Male 18 93.7±11.7+++,§§ 180.8±6.6+ 28.7±4++,§ 56.6±7.4+++,§§§ 4.6±1.8+++,§§§

RFSmax = Maximum cross-correlation between the initial and last parts of the accelerometer signal (explained in detail in the Data Analysis section).

*,*** = significant difference between the two sexes in the healthy group, p<0.05, and p<0.001, respectively.

+,++,+++ = significant difference between the healthy group and the CAD patients group; p<0.05, p<0.01 and p<0.001, respectively.

§,§§,§§§ = significant difference between the male subjects in the healthy group and in the CAD patients group, p<0.05, p<0.01 and p<0.001, respectively.

https://doi.org/10.1371/journal.pone.0183740.t001
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two hours from food and caffeine. Upon arrival, they had their weight and height measured.

The subjects were then seated on the cycle ergometer and set up for the CRF assessment. The

cardiorespiratory fitness was measured using breath by breath metabolic carts (Oxycon Pro

Metabolic Cart, Carefusion, California, USA and Masterscreen™ CPX, CareFusion, Hoechberg,

Germany). The test was conducted by trained exercise physiologists, who calculated a ramp

protocol following ACSM guidelines [21] aiming at a maximum workload being reached after

10 minutes. After a 2 minute warm up at a light intensity, the test began. The load on the cycle

ergometer progressively increased every 6 seconds according to the protocol selected by the

exercise physiologist. Subjects were given encouragement in order to help them cycle until

complete exhaustion. The test ended once the subject could no longer maintain a pedaling

cadence above 60 rpm. After completing a 3 minute cool down subject were allowed to stop.

_VO2peak was calculated as the final 30 second averaged value of the test.

Submaximal testing

A few days after the cardiorespiratory fitness assessment, the subjects were requested to do a

squat exercise for 45 seconds. Each repetition is composed of two movements, one squatting

down and one standing back up, each one executed following the audio feedback of a metro-

nome set at 80 bpm. In literature, this test modality has been found appropriate to assess car-

diovascular fitness on healthy subjects using HR and physical characteristics data [20, 22], and

therefore it has been considered suitable also for this research. Subjects were instructed to per-

form a squat as we define it here: bending their knees to create an internal angle between the

femur and the tibia of around 90˚. During the exercise the tri-axial acceleration was recorded.

Table 2. Coronary artery disease patients.

Subject Diagnose Intervention β-blocker dose [mg] ACE inhibitor dose [mg] AR blocker dose [mg]

1 non STEMI PCI Metoprolol 50 Perindopril 4

2* suspected AP Drug treatment Metoprolol 50 Lisinopril 5

3 non STEMI PCI Metoprolol 50 Perindopril 4

4 stable AP CABG Metoprolol 50

5 MI PCI (DES) Metoprolol 50 Perindopril 2

6 non STEMI PCI

7 non STEMI Drug treatment Metoprolol 100 Perindopril 2

8 AP PCI Metoprolol 100

9 non STEMI Drug treatment

10 non STEMI Drug treatment Metoprolol 50 Perindopril 4

11 MI PCI Metoprolol 100 Valsartan 160

12 MI Drug treatment Metoprolol 50 Lisinopril 5

13 AP PCI Metoprolol 50

14 non STEMI CABG Metoprolol 100

15 MI PCI Metoprolol 50 Enalapril 5

16 non STEMI PCI Metoprolol 100 Perindopril 2

17* complains of AP Drug treatment Valsartan 320

18 AP CABG Metoprolol 100

STEMI = ST elevated myocardial infarction; AP = angina pectoris, PCI = percutaneous coronary intervention, CABG = coronary artery bypass graft,

DES = drug-eluting stent

* Both patients #2 and #17 had documented coronary artery disease. Patient #2 had a PCI and patient #17 had a CABG intervention in their recent history.

However, both patients returned to the hospital with suspected AP. Drug treatment was intensified and they were referred to cardiac rehabilitation.

https://doi.org/10.1371/journal.pone.0183740.t002
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Patients used a research version of the DirectLife Activity Monitor (DL, range ± 2 g; sampling

frequency 20 Hz, Philips Research, Netherlands, Eindhoven) accelerometer placed on the belt.

Healthy subjects used a Cardio and Motion Monitoring Module Generation 1 (CM3g1,

range ± 8 g; sampling frequency 16 Hz, Philips Research, Netherlands, Eindhoven) accelerom-

eter placed on the wrist.

This type of sensors allow to record the acceleration of body segments where they are

placed. In their tri-axial configuration, these sensors can completely capture the movement in

the three dimensional space. The tri-axial acceleration signals have been used in literature to

describe the motion of the subject in terms of type, quantity and quality [23, 24]. Thus, tri-

axial accelerometry is suitable to be used for motion decay quantification. The acceleration sig-

nals were uniformed (range ± 2 g; sampling frequency 20 Hz) off-line prior to further analysis.

Data analysis

The study design and the data analysis flow are diagrammatically represented in Fig 1A. The

raw accelerations recorded during the squat test were organized in a database to easily allow

feature extraction. Before this operation the acceleration signal from each sensing axis of the

sensor (Xacc, Yacc, Zacc) was used to calculate the Euclidean norm, here called magnitude vector

of the acceleration signal, as described in this formula:

Magnitude ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

acc þ Y2
acc þ Z2

acc

p

The magnitude vector was segmented in two parts of 150 samples each (7.5 seconds), the

first from the 200th and the 350th sample (MagnFP, Magnitude First Period) and the second

Fig 1. Study workflow and accelerometer output comparison. A) Flowchart describing the main elements of the study B) Examples of 5

seconds segments of the magnitude at the beginning and at the end of the squat exercise in an unfit and a fit representative subject.

https://doi.org/10.1371/journal.pone.0183740.g001
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from 650th and the 800th (MagnSP, Magnitude Second Period). In this way the signal irregular-

ities due to the adaptation process of the volunteer to the start of the squat task were removed.

The resulting segments of the signals were filtered using a low-pass filter with cut-off frequency

of 4 Hz after subtraction of the mean. From the filtered signals in the two segments, the cross-

correlation between each couple of MagnFP and MagnSP was calculated (RFS). For two dis-

crete time series of data the RFS for the sample n results mathematically:

RFS½n� ¼ ðMagnFP$MagnSPÞ½n� ≝ X150

m¼� 150

MagnFP½m�MagnSP½nþm�

The RFS is commonly used in literature to compare signals [25] and also for activity recog-

nition purposes [24]. The maximum of this function (RFSmax) is the expression of the maxi-

mum similarity between the two segments up to the lag of one respect to the other. Therefore,

a higher RFSmax value indicates a lower difference between MagnFP and MagnSP. This feature

was selected to represent the ability of the volunteer to maintain a similar motion pattern of

moving limbs over time and could reflect the onset of fatigue during squatting. To summarize,

when the perceived effort of squatting was high, the similarity between the first and second

part of the signal was low. An example of motion decay can be seen in Fig 1B where the healthy

subject with normal to low fitness has a higher dissimilarity between MagnFP and MagnSP

compared to a healthy fit subject.

The statistical analysis was conducted in Matlab (R2013b, Matworks). The prediction mod-

els were built by using stepwise forward multiple linear regressions. Leave one subject out

cross-validation was used to evaluate the root mean squared error (RMSEcv) of each model,

both as absolute value in [L/min] and as percentage respect to the mean _VO2peak of the group.

The cross-validation step was employed to evaluate the risk of overfitting and thus to evaluate

the overall generalizability of the models. Pearson correlation coefficient (r), adjusted r2, bias,

limits of agreement were also calculated for each model. Data can be found in the supplemen-

tary material S1 Data.

Results

Using a linear regression technique, three models were created. The first model (Model 1a)

was derived and validated on the healthy subjects. The second model (Model 1b) includes a

subset of the healthy population, with a fitness level below 40 ml/kg/min. Finally the third

model was built on CAD patients ‘data (Model 2). The healthy group and the CAD group were

statistically different on most of their anthropometrical parameters (Table 1).

Motion-based cardiorespiratory fitness models

All models are described in Table 3. Model 1a included all healthy subjects. The RMSEcv for

this model was 0.482 [L/min], equal to 16.7% of the mean _VO2peak measured. The results of its

validation process are shown in Fig 2A.

The healthy subjects were classified in three fitness groups, ranging from 20 to 50 [ml/kg/

min] with an increase of 10 [ml/kg/min], to reveal any dependency between the error and the

fitness level. The RMSEcvs per category are reported in Fig 3A. The group with fitness above

40 [ml/kg/min] showed an overall higher error than the other groups, almost a twofold

RMSEcv compared to the central fitness category, probably because the fitness level influenced

the results of the model proposed.

Starting from the assumption that high cardiovascular fitness could influence the predictive

power of the predictors, especially the RFSmax, a second model (Model 1b) was created based
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Table 3. Multiple linear regression models to predict V
:
O2peak.

Coef. SE t p level r Adj.r2 RMSE Bias LoA (LOOCV)

(L�min-1) (L�min-1) (L�min-1) (L�min-1)

Healthy (n = 30)

Model 1a 0.786 0.556 0.437 0.001 0.962 0.482

-0.956

Constant 1.58700 0.725 2.191 0.038

Body Weight 0.01443 0.009 1.492 0.148

Age -0.01759 0.011 -1.616 0.119

Sex 0.67400 0.238 2.834 0.009

RFsmax 0.01712 0.012 1.479 0.152

Normal to low fitness Healthy (n = 17)

Model 1b 0.955 0.882 0.183 0.009 0.456 0.221

-0.437

Constant 0.14500 0.581 0.249 0.808

Body Weight 0.02990 0.007 4.352 <0.001

Age -0.01820 0.006 -3.157 0.008

Sex 0.18000 0.169 1.066 0.307

RFsmax 0.03050 0.008 3.641 0.003

CAD (n = 18)

Model 2 0.914 0.800 0.205 0.005 0.501 0.246

-0.492

Constant 4.62400 0.602 7.679 <0.001

Body Weight 0.00311 0.005 0.672 0.512

Age -0.05160 0.007 -7.381 <0.001

RFsmax 0.12300 0.029 4.166 <0.001

SE = Standard error, RMSE = root mean square error, LoA = limits of agreement, LOOCV = leave one out cross validation root mean square error

https://doi.org/10.1371/journal.pone.0183740.t003

Fig 2. Bland-Altman plots. A) Model 1a, healthy subjects; C) Model 1b, normal to low fitness healthy subjects; D) Model 2, CAD patients. Bias and mean

values are expressed in L/min.

https://doi.org/10.1371/journal.pone.0183740.g002
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on normal to low fitness subjects with a _VO2peak normalized by weight lower than 40 [ml/min/

kg] (The RMSEcv for Model1b was 0.221 [L/min], equal to 8.7% of the average _VO2peak mea-

sured (Fig 2B). For Model 1b the RMSEcv analyzed for fitness categories did not show any rela-

tion between fitness level and error (Fig 3B). Finally, Model 2 was obtained considering all

male CAD patients. The term related to the sex is not present because of the uniformity of the

considered subjects (all male). The RMSEcv for this model was 0.246 [L/min], equal to 9.6% of

the mean measured _VO2peak (Fig 2C). For Model 2, the RMSEcv difference between the highest

and the lowest fitness categories was clear, but the two categories presented a similar RMSEcv

in percentage (11% versus 8%), therefore it was safe to assume that there is no influence of the

fitness level on the error (Fig 3C).

Discussion

This study presents the first evidence that CRF can be predicted by models based on accelero-

metry data only, gathered during a submaximal exercise test with some additional subject

characteristics (i.e. weight, age, sex), in healthy individuals as well as in CAD patients on β-

blockers. This innovative methodology makes use of a motion sensor only, a three axial accel-

erometer, and no additional equipment, rather than a metronome and a stopwatch, basic fea-

tures of any smartphone.

Most of the existing submaximal models require HR information often accompanied by

body movement information, such as workload, speed, and distance covered in a given time

[26–28]. Recently also the use of accelerometers has been exploited for cardio-fitness estima-

tion, however, still in combination with HR information [29, 30]. Despite the fact that there

are several maximal as well as submaximal tests that estimate _VO2max not taking into account

HR, all these models did not make use of accelerometer information, but rather parameters

such as speed and subject’s characteristics, [31–33].

In the current study we have observed that sustained physical aerobic activity administered

as repetitive squat exercise [20], has determined a fatigue-induced deterioration in the motion

patterns. Motion patterns contain information related to the range of motion as well as the

movement economy (i.e. _VO2=displacement). We used RFSmax, an index of signal similarity, to

describe variations in those motion patterns over time. The degree of failure on an optimal

physical exercise task execution, expressed as RFsmax, was related to aerobic capacity. This

means that a person with high CRF has a minimal failure on this aerobic task, thus a small

RFsmax, maintaining a similar motion pattern throughout the exercise test. Conversely, an unfit

person shows a greater change in motion pattern between start and end of the exercise test.

We selected an aerobic submaximal exercise test in order to validate our hypothesis that

motion pattern deterioration could reflect aerobic capacity [20]. Although this was not tested

in the present study, we suggest that this approach could also work for other aerobic protocols,

as long as a repetitive exercise pattern is employed, such as stepping at a given pace (e.g.

Queens college step test 24 steps/min [34]). This approach could also be applied to repetitive

anaerobic tests, such as the repeat jump test [35], as long as the movement frequency is fixed,

so that RFsmax can express task failure.

The model built on all healthy subjects (Model 1a), using RFsmax as accelerometry feature,

and weight, age and sex as subject characteristics, had a comparable RMSEcv to what we

Fig 3. Distribution of the RMSEcv for different fitness categories. A) Model 1a; B) Model 1b; C) Model 2.

The values in each bar represent the RMSEcv in [L/min] and, in parenthesis, the RMSEcv in percentage

respect to the average _VO2peak of the fitness category.

https://doi.org/10.1371/journal.pone.0183740.g003
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observed for the same squat test when HR features and subject characteristics were used

(16.7% versus 16.8% respectively) [20]. As shown in the Bland-Altman plot in Fig 1A, there is

no significant bias between the measured and the predicted _VO2peak. The accuracy, in terms of

RMSEcv, of Modal 1a is on par with other well established submaximal protocols developed in

healthy people, using HR, such as the Rockport walk test proposed by Kline (12.6%), and

Rockport walk test modified for treadmill use (15%), the ACSM cycling test (15.5%) [28, 36,

37]. Our accuracy results are comparable also to more recent prediction models based on

activity monitoring, such as the Activity Counts over HR in free living proposed by Plasqui &

Westerterp (14.1%) [38]. However, Model 1a suffers from the fact that people with a measured

CRF above 40 [ml/kg/min] may be aerobically less challenged by a 45 s squat test than people

with a lower fitness (Fig 3A). Thus, when we created Model 1b for normal to low fitness people

only ( _VO2peak < 40 [ml/kg/min]), the RMSEcv was 8% lower than in Model 1a. The accuracy of

Model 1b, even though only in normal to low fitness subjects, is comparable also to more elab-

orated fitness estimation algorithms, such as the one proposed from Altini et al. (11.3%) based

on activity classification and HR monitoring [30]. Also in this case the model did not show a

significant bias (Bland-Altman plot in Fig 2B). Interestingly, the partial correlation coefficient

between RFsmax and _VO2peak increases by circa 120% when excluding fit subjects. Moreover, by

removing the fit subjects, the RMSEcv became comparable between fitness categories (Fig 3B).

Therefore, we suggest that the squatting protocol should be prolonged for fitter people until a

significant motion pattern alteration would be observed (Table 4).

We have applied the same approach to estimate CRF (i.e. _VO2peak) in CAD patients on

β-blockers using acceleration data only (Model 2). The accuracy of Model 2 was of comparable

magnitude (RMSE% = 9.6) to Model 1b, namely normal to low fitness healthy people. No

systematic over- or under-estimation was observed. The consistent low error seen in CAD

patients as well as normal to low fitness healthy people obtained with our motion-based

approach could be explained by the appropriateness of the protocol selected. In fact, CRF levels

of these two populations in our study were similar (normal to low fitness = 31.8 ml/kg/min;

CAD patients = 27.6 ml/kg/min), although patients had a significantly lower fitness than nor-

mal to low fitness healthy individuals (p = 0.006). We hypothesize that the protocol length may

need to be adjusted according to the expected fitness level of the users. In our study accelero-

metry-based CRF estimation was working better in unfit than fit people; this is probably due

to the fact that a greater deviation from the optimal physical task execution was measurable in

unfit people. Possibly, RFSmax could be used to decide when to stop the exercise because of a

significant alteration in movement patterns is achieved.

This was the first attempt to estimate CRF by accelerometry information only; and the

authors are aware of some limitations of this study. Although in total we have a sample size of

48 subjects, only 18 were patients. Yet this is a proof of concept study, which aimed to show

the potentials of our new methodology. Larger studies should be performed in the future in

Table 4. Partial correlation between V
:
O2peak and the different predictors (x = predictor not used).

Model N Weight Age Sex RFSmax

Model 1a 30 0.29 -0.31 0.49 0.28

Model 1b 17 0.78 -0.67 0.29 0.72

Model 2 18 0.18 -0.89 x 0.74

Partial Correlation expresses the correlation between the dependent variable ( _VO2peak) and one of the independent variables (Weight, Age, Sex, RFSmax)

upon removing the linear effects of the remaining independent variables.

https://doi.org/10.1371/journal.pone.0183740.t004
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order to strengthen our results. Confounding factors such as the level of musculoskeletal

impediments, the level of execution experience, and the motoric skills were not controlled in

this study. Yet, the higher variability expected in our heterogeneous sample did not hamper

the statistically significant relation between the movements pattern deterioration and the CRF

levels. Another, limitation is that, by chance, the patients who volunteered to participate in this

study were all males. Thus, it is yet to be determined how our approach would perform in

female patients, considering that a new model, including sex as predictor, should be calculated

for the patient group. We do not expect that the performance in female patients would differ

much from the performance observed in this study in female healthy individuals.

In conclusion, this research showed that CRF can be predicted with a simple squatting exer-

cise in healthy people as well as CAD patients taking β-blockers solely by using accelerometry

and individual’s characteristics (e.g. body weight, sex and age). Further research is needed to

optimize test duration according to fitness level, create models for different wearing positions

of the accelerometer, and to validate this approach for anaerobic power estimation.
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