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1 |  INTRODUCTION

Pancreatic cancer is one of the most lethal malignancy. 
According to the cancer statistics in 2017, estimated death 
in USA for pancreatic cancer were 22,300 cases and 20,790 

cases, both accounted for the 7% of all cases in men and 
women (Siegel, Miller, & Jemal, 2017). Most patients were 
diagnosed with advanced stage and unresectable status 
(Karakas, Lacin, & Yalcin, 2018). Besides, response rate for 
first‐line chemotherapy regimens was quite dissatisfactory. 
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Abstract
Background: Genomic analysis is the promising tool to clear understanding of the 
tumorigenesis and guide molecular classification for pancreatic cancer. Our purpose 
was to develop a critical predictive model for prognosis in pancreatic carcinoma, 
based on the genomic data.
Methods: The online The Cancer Genome Atlas (TCGA) and International Cancer 
Genome Consortium (ICGC) datasets were queried as training and validation cohorts 
for comprehensive bioinformatic analysis. We applied Lasso and multivariate Cox 
regression to shrink genes and construct predictive model.
Results: A four genes model (DNAH10: HR = 0.71, 95% CI = 0.57–0.88, HSBP1L1: 
HR = 1.51, 95% CI = 1.18–1.92, KIAA0513: HR = 0.69, 95% CI = 0.50–0.96, and 
MRPL3: HR = 3.73, 95% CI = 2.03–6.86), was proposed and validated. The C‐index 
was 0.73 (95% CI: 0.7–0.77). Patients in high‐risk and low‐risk group, stratified by 
model, suffered significantly different overall survival time (15.1 vs. 49.3 months, 
p < 0.0001 in TCGA; 423 vs. 618 days, p = 0.038 in ICGC). Taken clinical parame-
ters into consideration, the risk‐score was independent marker in clinical subpopula-
tion. To explore the molecular mechanisms, 579 differential expression genes (DEG) 
in two groups were identified by edgeR. Functional enrichment of DEG indicated 
neuro‐endocrine activity was the potential mechanism for the discrepant prognosis.
Conclusion: A specific four genes signature with the ability to predicted survival 
of pancreatic carcinoma was generated, which may indicate the connection between 
neuro‐endocrine activity and patients’ prognosis.
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What was worse, no novel‐targeted therapies for pancre-
atic cancer were proved to be effective, which made the 
clear understanding of tumorigenesis urgent for the drug 
discovery.

As to the foremost organ with exocrine and endocrine 
functions, the molecular features in pancreatic carcinogen-
esis were unique and mostly unknown (Chandra & Liddle, 
2013; Venkatesh & Monje, 2017). Research efforts have 
been focused on the genomic landscapes of pancreatic can-
cer, based on the RNA micro‐array or sequence technol-
ogy (Notta, Hahn, & Real, 2017). The numerous genomic 
features make future managements more specific and in-
dividualized. As a consequence, deep and comprehensive 
interpretation of those genomic data owes great value to 
uncover the propagable predictors in the risk estimation of 
carcinogenesis, therapeutic response, and prognosis. Here, 
we established a four genes signature for pancreatic can-
cer prognosis based on The Cancer Genome Atlas (TCGA) 
database, and validated in further International Cancer 
Genome Consortium (ICGC) database. This gene signature 
indicated the critical value of neuro‐endocrine activity in 
the pancreatic cancer.

2 |  MATERIAL AND METHODS

2.1 | Ethical compliance
This is a secondary analysis based on the open online‐da-
tabases. As reported in the original database, all procedures 
performed in studies involving human participants were in 
accordance with the ethical standards of the institutional and/
or national research committee. Informed consent was ob-
tained from all individual participants included in the original 
studies.

2.2 | Data sources and processing
Genomic data of RNA sequence for pancreatic carcinoma 
were queried from TCGA database and ICGC database. 
The included criteria for the analysis were: (a) pathological 
type was pancreatic carcinoma; (b) overall survival (OS) 
data were available; (c) raw count or normalized gene ex-
pression data were available. After the screening, project 
PAAD from TCGA and PACA‐AU from ICGC were ob-
tained, with the available clinical data. All the data were 
queried and extracted on January 1, 2018. We predefined 
the PAAD as training set, PACA‐AU as validation set. To 
control the heterogeneity, log2 transformed normalized 
read counts extracted from “rsem.genes.normalized_re-
sults” files in TCGA and raw Z‐scores for ICGC were 
adopted for normalization. Finally, we totally enrolled 178 
and 84 pancreatic carcinoma cases for TCGA and ICGC, 
respectively.

2.3 | Survival signature development
To select the predictive genes for patients’ survival, 
L1 penalized Lasso regression was initially performed, 
which was suitable for high‐dimension genomic dataset 
(Friedman, Hastie, & Tibshirani, 2010). With the variable 
selection and shrinkage, interpretable prediction genes 
were further delivered for multivariate Cox regression 
to construct the survival model. We calculated the risk‐
score for each pancreatic carcinoma patients based on 
the individual expression levels of selected genes, where 
risk score=

∑n

i=1
�

i
×exp

�

G
i

�

 (Shukla et al., 2017). In the 
equation, n genes were enrolled as variables, exp(Gi) rep-
resented the normalized expression of gene i, while βi rep-
resented the coefficient for gene i. We set the median of 
risk‐score as the cutoff value, and patients were stratified 
as high‐risk group with risk‐score ≥ median and low‐risk 
group with risk‐score < median. Due to the censored data in 
survival analysis, we selected the C‐index in the model as-
sessment. For survival analysis, we applied Kaplan–Meier 
method to calculate OS time in different risk group. The 
log‐rank test was performed to check the statistical signifi-
cance. The unpaired t test was applied to assess whether a 
selected prediction gene was differentially expressed be-
tween two risk groups. Statistical significance was deter-
mined using p  <  0.05. All the analyses were performed 
in R software. Glmnet (Friedman et al., 2010), survival 
(Therneau & Grambsch, 2000), and survminer/ggplot2 
(Hadley, 2016) packages implemented in R software were 
called for lasso regression, cox regression, survival analy-
sis, and data visualization, respectively. Forest plots were 
drawn to demonstrate the hazard ratio (HR) of selected pre-
diction genes. Expression of the four genes signature and 
clinical profile were visualized by Complex‐Heatmap. The 
flow chart was shown in Figure 1.

2.4 | Differential gene expression and 
functional enrichment analysis
To investigate the genomic profile between high and 
low‐risk group, we further performed the differential 
expression genes (DEG) analysis by edgeR Package in 
TCGA cohorts.(Robinson, McCarthy, & Smyth, 2010) 
Fold change and false discovery rate (FDR) were set as 
2 and 0.05. Volcano plots were drawn to visualize the 
DEG. DEG were further delivered for gene ontology 
and KEGG pathway enrichment, which were performed 
by over‐representation analysis with Fisher's exact test, 
and Benjamini–Hochberg multiple test to correct occur-
rence of false positive. Strict cutoff of p < 0.01 and FDR 
<0.05 was set. The statistics and data visualization were 
performed by ClusterProfiler Package in R software (Yu, 
Wang, Han, & He, 2012).
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2.5 | Clinical phenotype analysis
Predictive value of the four genes signature in different clini-
cal profiles was also investigated. We enrolled the risk‐score, 
gender, age, tumor location, grade, and stage as confound-
ers to calculated the multivariate Cox regression. Besides, 
survival status of high‐risk and low‐risk groups in different 
clinical subpopulations were checked.

2.6 | Statistics
All analyses were set at two‐sided p <  0.05 as the thresh-
old for statistical significance. The data were expressed as 
mean ± standard deviation.

3 |  RESULTS

3.1 | Clinical characteristics of the included 
cohorts
With the inclusion criteria, project PAAD from TCGA and 
PACA‐AU from ICGC were obtained (Table 1). In TCGA 
cohort, 178 patients were analysis, with an average age of 

64.6 (±10.9) years. Most patients were males (n = 98) and 
presented with tumors in pancreatic head (138). The his-
tological grade included 30 for G1, 96 for G2, 47 for G3, 
two for G4, and three for Gx. According to American Joint 
Committee on Cancer staging system, T stages included T1 
(n = 6), T2 (n = 24), T3 (n = 142), T4 (n = 3), and Tx (n = 3), 
N stages included N0 (n = 49), N1 (n = 123), and Nx (n = 6), 
M stages included M0 (n = 78), M1 (n = 5), and Mx (n = 95). 
The average OS time was 18.8 (±15.6) months. In the ICGC 
cohort, 84 patients were retrieved, including 38 females and 
46 males, with an average age of 66.2 (±11.4) years. Tumors 
located in pancreatic head were presented in 66 cases, and the 
average OS time was 542.3 (±374.9) days.

3.2 | Generation of a four genes prognostic 
signature in TCGA cohorts
We set the TCGA cohort as the training set, and mapped 
genes in the expression matrix. Lasso regression analysis 
was initially applied to shrink the high‐dimension genomic 
data. Totally, 22 genes were selected with non‐zero regres-
sion coefficients at the value of λ with optimal cross‐vali-
dated likelihood, including ARNT2, ARNTL2, B3GNT8, 

F I G U R E  1  Flow‐chart of the bioinformatic analysis
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C6orf122, CASKIN2, CDK6, CYP27A1, DNAH10, 
HSBP1L1, INSIG2, KIAA0195, KIAA0513, LQK1, 
MRPL3, PI4KB, PPP2R3A, RARRES3, RPAP2, SEC16A, 
SEC61A2, THSD1P1, and TMEM104. According to the 
annotation in Pubmed, C6orf122 was non‐coding RNA 

and removed in further analysis. Next, the 21 genes were 
delivered to multivariate Cox regression analysis in the 
same cohort. The result indicated four genes, DNAH10, 
HSBP1L1, KIAA0513, and MRPL3, were the independ-
ent predictors for prognosis. The detailed information was 
shown in Table S1. Subsequently, a four genes model was 
formulated, based on the risk‐score = HSBP1L1 × 0.4099 
− DNAH10 × 0.3448‐KIAA0513 × 0.3725 + MRPL3 × 1
.3175. The C‐index was 0.734 (95% CI: 0.7–0.768) for the 
four genes model, which indicated the superiority of the 
model for predicting OS in pancreatic carcinoma. The de-
tailed HR, coefficient, and p‐value were presented in Table 
2 and Figure 2. According to the risk‐score, TCGA cohort 
was stratified into high‐risk group with risk‐score ≥ median 
and low‐risk group with risk‐score < median. The Kaplan–
Meier plot indicated high‐risk group had significantly 
worse prognosis than low‐risk group (p  <  0.0001), with 
median OS time were 15.1 and 49.3 months, respectively 
(Figure 3a). Expression level of the four predictive genes 
were significantly different in two groups (Figure 3c). The 
positive prognostic factors, HSBP1L1 and MRPL3, were 
both high‐expression in high‐risk group, while the negative 
factors, DNAH10 and KIAA0513 were low‐expression in 
high‐risk group. Value of the four genes signature in differ-
ent clinical profile was analyzed. Stratification by patients’ 
age, gender, location, tumors’ grade, and stage, the risk‐
score independently predicted prognosis in different sub-
population (Figure S1). In the meantime, we also inputted 
the clinical parameters with risk‐score in Cox regression 
analysis, and got the integrated‐model, in which risk‐score 
and histological grade were the independent predictors for 
prognosis. The C‐index was 0.696 (95% CI: 0.663–0.729) 

T A B L E  2  The multivariate cox regression analysis for OS

Parameters Coefficient p value HR (95% CI)

Four genes model (only four candidate genes were shown)

DNAH10 −0.3448 0.0021 0.71 (0.57–0.88)

HSBP1L1 0.4099 <0.0001 1.51 (1.18–1.92)

KIAA0513 −0.3725 0.0258 0.69 (0.50–0.96)

MRPL3 1.3175 <0.0001 3.73 (2.03–6.86)

Integrated‐model (all the included factors were shown)

Risk‐score (low‐risk vs. high‐risk) −1.3258 <0.0001 0.27 (0.16–0.44)

Age (≦50y vs. >50y) 0.1847 0.5809 1.20 (0.62–2.32)

Location (other vs. head) −0.5968 0.0686 0.55 (0.29–1.83)

Gender (male vs. female) −0.1167 0.5998 0.89 (0.58–1.38)

AJCC T stage (T3/4 vs. T1/2) −0.1078 0.7670 0.90 (0.44–1.83)

AJCC M stage (M1/x vs. M0) −0.1280 0.5594 0.88 (0.57–1.35)

AJCC N stage (N1/x vs. N0) 0.4735 0.1018 1.61 (0.91–2.83)

Histological grade (G3/4 vs. G1/2) 0.5324 0.0248 1.70 (1.07–2.71)

Abbreviations: HR, hazard ratio; OS, overall survival.

T A B L E  1  Clinical parameters of the TCGA and ICGC cohorts

TCGA training‐ 
cohort (n = 178)

ICGC validation‐
cohort (n = 84)

Age (mean ± SD) 64.6 (±10.9) 66.2 ± 11.4

Gender (male/female) 98/80 46/38

Location

Head/body/tail/
other

138/14/15/11 66/4/14/0

AJCC T stage

T1/T2/T3/T4/Tx 6/24/142/3/3 NA

AJCC N stage

N0/N1/Nx 49/123/6 NA

AJCC M stage

M0/M1/Mx 78/5/95 NA

Over‐all survival 
time (mean ± SD)

18.8 ± 15.6 months 542.3 ± 374.9 days

Histological type

Ductal 
adenocarcinoma

148 70

Other 30 14

Histological grade

G1/G2/G3/G4/Gx 30/96/47/2/3 31/15/20/18/0

Abbreviations: ICGC, International Cancer Genome Consortium; TCGA, The 
Cancer Genome Atlas; NA, not available.
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for the integrated‐model. The C‐index was 0.745 (95% 
CI: 0.711–0.779), when the four selected genes (each 
treat as continuous variable) and clinical variables as the 
covariates, which was similar with the four‐gene‐model. 
Furthermore, when only histological grade was considered 
without the risk score, the C‐index was 0.549 (95% CI: 
0.522–0.576). Hence, based on those results, the risk score 
was the major contribution to the prognosis prediction. The 
heatmap demonstrated the expression of the four predictive 
genes with distribution of risk‐score, age, gender, location, 
grade, and stage in TCGA cohort (Figure 4a). Taken all 
together, the four genes signature acted very well to predict 
the prognosis for pancreatic carcinoma.

3.3 | Validation of the four genes prognostic 
signature in ICGC cohort
To check the external validity and general applicability, 
we applied our four genes model in RNA sequence data of 
ICGC. The C‐index was 0.637 (95% CI: 0.594–0.680) for the 
ICGA cohort. According to the four genes model, low‐risk 
group survived longer than high‐risk group (p = 0.038), with 
median OS time were 618 and 423 days, respectively (Figure 
3b). Be similar to TCGA cohorts, both HSBP1L1 and MRPL3 
were highly expressed, DNAH10 and KIAA0513 were lowly 
expressed in high‐risk group (Figure 3d). The detailed HR 
and p‐value were presented in Figure S2, in which low‐ex-
pressed DNAH10 and KIAA0513 were proved to be robust 
for prognosis prediction. Thus, the four genes signature was 
potential prognostic marker for pancreatic carcinoma, based 
on RNA sequence data.

3.4 | Differential gene expression and 
functional enrichment analysis
To reveal the important molecular events, accounted for the 
prognosis, DEG were calculated in TCGA cohort. As shown 
in the volcano plot (Figure 5a), a list of 579 genes were iden-
tified, of which 454 genes were up‐regulated, and 125 genes 
were down‐regulated. Besides, the relevant biological pro-
cess and signal pathway were mapped by over‐representation 
analysis. Ultimately, the neuro‐endocrine signal transition 
including regulation of hormone, synaptic, signal release, 
and membrane potential was the most enrichment biologi-
cal process (Figure 5b). Corresponding, the regulated path-
ways were majorly focused on the neurotransmitter activities 
(Figure 5c).

4 |  DISCUSSION

The genomic background drives the biological phenotypes, 
which also may be retro‐regulated by the external environ-
ments. Even for cancers, the unheeded genomic profiles 
gradually exerted great predictive values for clinical deci-
sion‐making, such as early detection of precancerous, opti-
mization of therapeutic strategies, and disease prognosis. In 
this work, we proposed a risk‐score formula by four genes 
signature for pancreatic carcinoma, which was proved to be 
feasible and creditable for prognostic prediction.

To establish the predictive model, we initially applied 
Lasso algorithm to shrink the candidate genes in the whole 
genomic set. Subsequently, multivariate cox regression was 

F I G U R E  2  Forest plot of the four genes signature in the predictive model for overall survival
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called to construct the formula. Then a four genes model 
was constructed and suggested. This mining regime was 
reported quite suitable for predictors filtering in genomic 
data. Furthermore, this four genes model was also validated 
in external RNA sequence cohort. Living or deceased out-
comings were very consistent with the risk group, stratified 
by gene signature, both in training and validation cohorts. 
When considered this signature in the clinical set, the pre-
dictive value was also robust in different subpopulation. 
Studies indicated early and late onset pancreatic cancer 
suffered different genomic alteration and clinicopathologic 
features (McWilliams et al., 2016; Ohmoto et al., 2016). 
Survival analysis in the TCGA cohort was not available 
to support this point, but our risk model was both feasi-
ble in patients with diagnostic age larger or <50 (Figure 

S1). Similarly, tumor histological grade and AJCC stage 
did not influence the application of our risk model. These 
results indicated our risk model was an independent factor 
for prognosis.

In this four genes signature, two genes (HSBP1L1 and 
MRPL3) were positively related to prognosis, and the other 
two (DNAH10 and KIAA0513) were negative factors, when 
set the OS as the primary outcome. For the four genes, ev-
idences presented in the current study provided, to our 
knowledge, the first link with pancreatic cancer prognosis. 
HSBP1L1 was a 72 amino‐acid protein and showed 41.2% 
identity with HSBP1 (heat shock transcription factor bind-
ing protein 1). But no reports about the exact functions for 
HSBP1L1 in biology. Presumably, HSBP1L1 might suppress 
the heat shock factor transcription under stress. MRPL3 

F I G U R E  3  Performance and expression of the four genes signature in TCGA training and ICGC validation cohorts. The Kaplan–Meier plot 
indicated high‐risk group had significantly worse prognosis than low‐risk group in TCGA cohort (a) and ICGC cohort (b). Expression level of the 
four predictive genes were significantly different in two groups of TCGA cohort (c) and ICGC cohort (d). One star indicated p < 0.05, three stars 
indicated p < 0.001, four stars indicated p < 0.0001. ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas
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encoded a 39s subunit protein that belonged to the large 
mitochondrial ribosomes family. Previous report indicated 
MRPL3 was the candidate susceptibility genes for com-
mon familial colorectal cancer and RNA metabolism‐re-
lated genes in non‐small cell lung cancer (Gylfe et al., 2013; 
Valles et al., 2012). DNAH10 was an inner arm dynein heavy 
chain, and reported to involve with pathogenesis of human 
insulin resistance (Lotta et al., 2017). KIAA0513 was the 
most investigated gene and mainly expressed in normal brain 
tissues (Lauriat et al., 2006). Functional analysis indicated 

KIAA0513 participated into the neuroplasticity, apoptosis, 
and cytoskeletal regulation, and it was therefore reasonable 
that the gene seemed to represent the neuro‐endocrine activ-
ity in pancreatic cancer.

Nerve is the common feature in the niche of pancreatic 
cell, not only for the islet cells, but also for the duct epithe-
lium and acinar cells. Stimulated by the nervous impulse, 
pancreatic cells make series of biological responses, in 
the action of neurotransmitters. Numerous evidences indi-
cated the role of neuronal activity in none‐nervous organs 

F I G U R E  4  Heatmap demonstrated the expression of the four predictive genes with distribution of risk‐score, age, gender, location, grade, 
and stage in TCGA cohort (a) and ICGC cohort (b). The blue box in the heatmap indicated the low expression, and red box indicated the high 
expression. Dashed line in the annotation indicated the median value of risk score. ICGC, International Cancer Genome Consortium; TCGA, The 
Cancer Genome Atlas
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for carcinogenesis, especially for pancreas, prostate, and 
gastrointestinal system (Magnon et al., 2013; Saloman 
et al., 2016; Venkatesh & Monje, 2017). In vivo model 
conducted by Saloman et al. (2016) forcefully proved 
pancreatic sensory neurons supported the initiation and 
progression of pancreatic carcinoma. By the gene enrich-
ment analysis, we found that differential genes in high‐risk 
and low‐risk groups were majorly focused on the neuro‐
endocrine activity, such as the neuroactive ligand–recep-
tor interaction (KEGG: hsa04080). Next, biosynthesis and 
secretion of neurotransmitters were also frequently hit, 
including aldosterone, dopamine, insulin, gamma‐amino-
butyric acid (GABA), and nicotine. To be encouragingly, 
most of those factors were reported previously to correlate 
with pancreatic cancer. Genomic data of Jandaghi et al. 
(2016) found that dopamine receptor D2 was significantly 
upregulated both in RNA and protein level in pancreatic 
cancer and inhibitors suppressed tumor growth in mice. 
Clinical observation indicated fasting insulin was caus-
ally associated with an increased risk of pancreatic cancer 
(Carreras‐Torres et al., 2017). Moreover, psychological 
stress also might worse the clinical prognosis in pancre-
atic cancer, via the neurotransmitter GABA (Schuller, 

Al‐Wadei, Ullah, & Plummer, 2012). Binding of nicotine 
to the receptors in pancreatic cell stimulated the secretion 
of autocrine catecholamine and promoted cell prolifera-
tion (Al‐Wadei, Al‐Wadei, & Schuller, 2012). All these 
reported evidences and our current analysis indicated the 
great value of the neuro‐endocrine activity in pancreatic 
cancer progression.

There were several shortcomings to our study. First, due 
to difference in data processing, external applicability of the 
four genes model in the microarray matrix was not warranted, 
which was not validated in our study. Second, pathogenesis and 
molecular events might be different in histological subtypes of 
pancreatic carcinoma. Totally, 83.1% and 83.3% cases were 
ductal adenocarcinomas in TCGA and ICGC cohorts, which 
were the most common subtypes. Hence, the unavoidable 
heterogeneity might weak the interpretation of the four genes 
model for a specific subtype of pancreatic carcinoma. Third, it 
was hard to validate the integrated‐model in ICGC cohort, due 
to the unavailable clinic profiles. But the integrated‐model was 
not superior to the four genes model in TCGA cohort. It indi-
cated the combination with clinical profile might not be suitable 
for genetic profile, but not ruled out the possibility of a better re-
sult based on the ICGC cohort, if clinical profile was available. 

F I G U R E  5  Differential gene expression and gene functional enrichment analysis. The volcano plot shown the 579 DEG identified in TCGA 
cohort (a). The functional enrichment included biological process (b) and KEGG pathway (c). The top 10 items for two sets were shown. DEG, 
differential expression genes; TCGA, The Cancer Genome Atlas
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Finally, all the four genes had not been previously reported in 
pancreatic cancer. Analysis based on computational software 
needed further in‐home validation beside the bench.

In conclusion, on the basis of TCGA sequence data, 
we proposed a four genes model (DNAH10, HSBP1L1, 
KIAA0513, and MRPL3), which facilitated the discernment 
of high‐risk patients for worse OS in pancreatic carcinoma. 
This model also demonstrated fine performance in external 
ICGC validation cohort. Taken clinical parameters into con-
sideration, the risk‐score was independent marker in each 
clinical subpopulation. Furthermore, DEG and functional en-
richment indicated the neuro‐endocrine activity was the po-
tential mechanisms for the prognosis prediction. Future large 
cohorts and basic experiments were warranted to verify this 
four genes model and regulation of the four genes in neuro‐
endocrine pathway.
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