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1 | INTRODUCTION

Pancreatic cancer is one of the most lethal malignancy.
According to the cancer statistics in 2017, estimated death
in USA for pancreatic cancer were 22,300 cases and 20,790
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Abstract

Background: Genomic analysis is the promising tool to clear understanding of the
tumorigenesis and guide molecular classification for pancreatic cancer. Our purpose
was to develop a critical predictive model for prognosis in pancreatic carcinoma,
based on the genomic data.

Methods: The online The Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) datasets were queried as training and validation cohorts
for comprehensive bioinformatic analysis. We applied Lasso and multivariate Cox
regression to shrink genes and construct predictive model.

Results: A four genes model (DNAH10: HR =0.71,95% CI = 0.57-0.88, HSBP1L1:
HR =1.51,95% CI = 1.18-1.92, KIAA0513: HR = 0.69, 95% CI = 0.50-0.96, and
MRPL3: HR =3.73, 95% CI = 2.03-6.86), was proposed and validated. The C-index
was 0.73 (95% CI: 0.7-0.77). Patients in high-risk and low-risk group, stratified by
model, suffered significantly different overall survival time (15.1 vs. 49.3 months,
p <0.0001 in TCGA; 423 vs. 618 days, p = 0.038 in ICGC). Taken clinical parame-
ters into consideration, the risk-score was independent marker in clinical subpopula-
tion. To explore the molecular mechanisms, 579 differential expression genes (DEG)
in two groups were identified by edgeR. Functional enrichment of DEG indicated
neuro-endocrine activity was the potential mechanism for the discrepant prognosis.
Conclusion: A specific four genes signature with the ability to predicted survival
of pancreatic carcinoma was generated, which may indicate the connection between

neuro-endocrine activity and patients’ prognosis.
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cases, both accounted for the 7% of all cases in men and
women (Siegel, Miller, & Jemal, 2017). Most patients were
diagnosed with advanced stage and unresectable status
(Karakas, Lacin, & Yalcin, 2018). Besides, response rate for
first-line chemotherapy regimens was quite dissatisfactory.
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What was worse, no novel-targeted therapies for pancre-
atic cancer were proved to be effective, which made the
clear understanding of tumorigenesis urgent for the drug
discovery.

As to the foremost organ with exocrine and endocrine
functions, the molecular features in pancreatic carcinogen-
esis were unique and mostly unknown (Chandra & Liddle,
2013; Venkatesh & Monje, 2017). Research efforts have
been focused on the genomic landscapes of pancreatic can-
cer, based on the RNA micro-array or sequence technol-
ogy (Notta, Hahn, & Real, 2017). The numerous genomic
features make future managements more specific and in-
dividualized. As a consequence, deep and comprehensive
interpretation of those genomic data owes great value to
uncover the propagable predictors in the risk estimation of
carcinogenesis, therapeutic response, and prognosis. Here,
we established a four genes signature for pancreatic can-
cer prognosis based on The Cancer Genome Atlas (TCGA)
database, and validated in further International Cancer
Genome Consortium (ICGC) database. This gene signature
indicated the critical value of neuro-endocrine activity in
the pancreatic cancer.

2 | MATERIAL AND METHODS

2.1 |

This is a secondary analysis based on the open online-da-
tabases. As reported in the original database, all procedures
performed in studies involving human participants were in
accordance with the ethical standards of the institutional and/
or national research committee. Informed consent was ob-
tained from all individual participants included in the original
studies.

Ethical compliance

2.2 | Data sources and processing

Genomic data of RNA sequence for pancreatic carcinoma
were queried from TCGA database and ICGC database.
The included criteria for the analysis were: (a) pathological
type was pancreatic carcinoma; (b) overall survival (OS)
data were available; (c) raw count or normalized gene ex-
pression data were available. After the screening, project
PAAD from TCGA and PACA-AU from ICGC were ob-
tained, with the available clinical data. All the data were
queried and extracted on January 1, 2018. We predefined
the PAAD as training set, PACA-AU as validation set. To
control the heterogeneity, log2 transformed normalized
read counts extracted from “rsem.genes.normalized_re-
sults” files in TCGA and raw Z-scores for ICGC were
adopted for normalization. Finally, we totally enrolled 178
and 84 pancreatic carcinoma cases for TCGA and ICGC,
respectively.

23 |

To select the predictive genes for patients’ survival,
L1 penalized Lasso regression was initially performed,

Survival signature development

which was suitable for high-dimension genomic dataset
(Friedman, Hastie, & Tibshirani, 2010). With the variable
selection and shrinkage, interpretable prediction genes
were further delivered for multivariate Cox regression
to construct the survival model. We calculated the risk-
score for each pancreatic carcinoma patients based on
the individual expression levels of selected genes, where
risk score=Y"_, §;xexp (G;) (Shukla et al., 2017). In the
equation, n genes were enrolled as variables, exp(G;) rep-
resented the normalized expression of gene i, while j; rep-
resented the coefficient for gene i. We set the median of
risk-score as the cutoff value, and patients were stratified
as high-risk group with risk-score > median and low-risk
group with risk-score < median. Due to the censored data in
survival analysis, we selected the C-index in the model as-
sessment. For survival analysis, we applied Kaplan—Meier
method to calculate OS time in different risk group. The
log-rank test was performed to check the statistical signifi-
cance. The unpaired ¢ test was applied to assess whether a
selected prediction gene was differentially expressed be-
tween two risk groups. Statistical significance was deter-
mined using p < 0.05. All the analyses were performed
in R software. Glmnet (Friedman et al., 2010), survival
(Therneau & Grambsch, 2000), and survminer/ggplot2
(Hadley, 2016) packages implemented in R software were
called for lasso regression, cox regression, survival analy-
sis, and data visualization, respectively. Forest plots were
drawn to demonstrate the hazard ratio (HR) of selected pre-
diction genes. Expression of the four genes signature and
clinical profile were visualized by Complex-Heatmap. The
flow chart was shown in Figure 1.

2.4 | Differential gene expression and
functional enrichment analysis

To investigate the genomic profile between high and
low-risk group, we further performed the differential
expression genes (DEG) analysis by edgeR Package in
TCGA cohorts.(Robinson, McCarthy, & Smyth, 2010)
Fold change and false discovery rate (FDR) were set as
2 and 0.05. Volcano plots were drawn to visualize the
DEG. DEG were further delivered for gene ontology
and KEGG pathway enrichment, which were performed
by over-representation analysis with Fisher's exact test,
and Benjamini—-Hochberg multiple test to correct occur-
rence of false positive. Strict cutoff of p < 0.01 and FDR
<0.05 was set. The statistics and data visualization were
performed by ClusterProfiler Package in R software (Yu,
Wang, Han, & He, 2012).
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Flow-chart of the bioinformatic analysis
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Predictive value of the four genes signature in different clini-
cal profiles was also investigated. We enrolled the risk-score,
gender, age, tumor location, grade, and stage as confound-
ers to calculated the multivariate Cox regression. Besides,
survival status of high-risk and low-risk groups in different
clinical subpopulations were checked.

Clinical phenotype analysis

2.6 | Statistics

All analyses were set at two-sided p < 0.05 as the thresh-
old for statistical significance. The data were expressed as
mean =+ standard deviation.

3 | RESULTS

31 |
cohorts

Clinical characteristics of the included

With the inclusion criteria, project PAAD from TCGA and
PACA-AU from ICGC were obtained (Table 1). In TCGA
cohort, 178 patients were analysis, with an average age of

64.6 (£10.9) years. Most patients were males (n = 98) and
presented with tumors in pancreatic head (138). The his-
tological grade included 30 for G1, 96 for G2, 47 for G3,
two for G4, and three for Gx. According to American Joint
Committee on Cancer staging system, T stages included T1
(n=6),T2(n=24),T3 (n=142), T4 (n=3),and Tx (n = 3),
N stages included NO (n =49), N1 (n = 123), and Nx (n = 6),
M stages included MO (n = 78), M1 (n =5), and Mx (n =95).
The average OS time was 18.8 (+15.6) months. In the ICGC
cohort, 84 patients were retrieved, including 38 females and
46 males, with an average age of 66.2 (+11.4) years. Tumors
located in pancreatic head were presented in 66 cases, and the
average OS time was 542.3 (+374.9) days.

3.2 | Generation of a four genes prognostic
signature in TCGA cohorts

We set the TCGA cohort as the training set, and mapped
genes in the expression matrix. Lasso regression analysis
was initially applied to shrink the high-dimension genomic
data. Totally, 22 genes were selected with non-zero regres-
sion coefficients at the value of A with optimal cross-vali-
dated likelihood, including ARNT2, ARNTL2, B3GNTS,
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TABLE 1

Age (mean + SD)

Gender (male/female)

Location

Head/body/tail/
other

AJCC T stage
T1/T2/T3/T4/Tx

AJCC N stage
NO/N1/Nx

AJCC M stage
MO/M1/Mx

Over-all survival
time (mean + SD)

Histological type
Ductal

adenocarcinoma

Other
Histological grade

G1/G2/G3/G4/Gx

CHEN ET AL.

TCGA training-
cohort (n = 178)

64.6 (£10.9)
98/80

138/14/15/11

6/24/142/3/3

49/123/6

78/5/95
18.8 + 15.6 months

148

30

30/96/47/2/3

Open Access,

Clinical parameters of the TCGA and ICGC cohorts

ICGC validation-
cohort (n = 84)

66.2 + 11.4
46/38

66/4/14/0

NA

NA

NA
542.3 + 374.9 days

70

14

31/15/20/18/0

Abbreviations: ICGC, International Cancer Genome Consortium; TCGA, The
Cancer Genome Atlas; NA, not available.

Co6orf122, CASKIN2, CDK6, CYP27A1, DNAHIO,
HSBPIL1, INSIG2, KIAA0195, KIAAO0513, LQKI,
MRPL3, PI4KB, PPP2R3A, RARRES3, RPAP2, SEC16A,
SEC61A2, THSD1P1, and TMEM104. According to the
annotation in Pubmed, C6orf122 was non-coding RNA

TABLE 2 The multivariate cox regression analysis for OS
Parameters Coefficient

Four genes model (only four candidate genes were shown)

DNAHI10 —0.3448
HSBPILI1 0.4099
KIAA0513 —0.3725
MRPL3 1.3175
Integrated-model (all the included factors were shown)
Risk-score (low-risk vs. high-risk) —1.3258
Age (£50y vs. >50y) 0.1847
Location (other vs. head) —-0.5968
Gender (male vs. female) —0.1167
AJCC T stage (T3/4 vs. T1/2) —0.1078
AJCC M stage (M1/x vs. MO) —0.1280
AJCC N stage (N1/x vs. NO) 0.4735
Histological grade (G3/4 vs. G1/2) 0.5324

Abbreviations: HR, hazard ratio; OS, overall survival.

and removed in further analysis. Next, the 21 genes were
delivered to multivariate Cox regression analysis in the
same cohort. The result indicated four genes, DNAHI10,
HSBPIL1, KIAA0513, and MRPL3, were the independ-
ent predictors for prognosis. The detailed information was
shown in Table S1. Subsequently, a four genes model was
formulated, based on the risk-score = HSBP1L1 x 0.4099
— DNAHI10 x 0.3448-KIAA0513 x 0.3725 + MRPL3 x 1
.3175. The C-index was 0.734 (95% CI: 0.7-0.768) for the
four genes model, which indicated the superiority of the
model for predicting OS in pancreatic carcinoma. The de-
tailed HR, coefficient, and p-value were presented in Table
2 and Figure 2. According to the risk-score, TCGA cohort
was stratified into high-risk group with risk-score > median
and low-risk group with risk-score < median. The Kaplan—
Meier plot indicated high-risk group had significantly
worse prognosis than low-risk group (p < 0.0001), with
median OS time were 15.1 and 49.3 months, respectively
(Figure 3a). Expression level of the four predictive genes
were significantly different in two groups (Figure 3c). The
positive prognostic factors, HSBP1L1 and MRPL3, were
both high-expression in high-risk group, while the negative
factors, DNAH10 and KIAA0513 were low-expression in
high-risk group. Value of the four genes signature in differ-
ent clinical profile was analyzed. Stratification by patients’
age, gender, location, tumors’ grade, and stage, the risk-
score independently predicted prognosis in different sub-
population (Figure S1). In the meantime, we also inputted
the clinical parameters with risk-score in Cox regression
analysis, and got the integrated-model, in which risk-score
and histological grade were the independent predictors for
prognosis. The C-index was 0.696 (95% CI: 0.663-0.729)

p value HR (95% CI)
0.0021 0.71 (0.57-0.88)
<0.0001 1.51 (1.18-1.92)
0.0258 0.69 (0.50-0.96)
<0.0001 3.73 (2.03-6.86)
<0.0001 0.27 (0.16-0.44)
0.5809 1.20 (0.62-2.32)
0.0686 0.55 (0.29-1.83)
0.5998 0.89 (0.58-1.38)
0.7670 0.90 (0.44-1.83)
0.5594 0.88 (0.57-1.35)
0.1018 1.61 (0.91-2.83)
0.0248 1.70 (1.07-2.71)



CHEN ET AL. Molecular Genetics & Genomic _Wl LEY 5of10
Variable N Hazard ratio p
DNAH10 178 H—eo— ; 0.71 (0.57, 0.88) 0.002
HSBP1L1 178 ; —eo— 1.51(1.18, 1.92) <0.001
KIAA0513 178 | ——eo— E 0.69 (0.50, 0.96) 0.026
MRPL3 178 é f @ { | 3.73(2.03, 6.86) <0.001

:

05 2

5

FIGURE 2 Forest plot of the four genes signature in the predictive model for overall survival

for the integrated-model. The C-index was 0.745 (95%
CI: 0.711-0.779), when the four selected genes (each
treat as continuous variable) and clinical variables as the
covariates, which was similar with the four-gene-model.
Furthermore, when only histological grade was considered
without the risk score, the C-index was 0.549 (95% CI:
0.522-0.576). Hence, based on those results, the risk score
was the major contribution to the prognosis prediction. The
heatmap demonstrated the expression of the four predictive
genes with distribution of risk-score, age, gender, location,
grade, and stage in TCGA cohort (Figure 4a). Taken all
together, the four genes signature acted very well to predict
the prognosis for pancreatic carcinoma.

3.3 | Validation of the four genes prognostic
signature in ICGC cohort

To check the external validity and general applicability,
we applied our four genes model in RNA sequence data of
ICGC. The C-index was 0.637 (95% CI: 0.594-0.680) for the
ICGA cohort. According to the four genes model, low-risk
group survived longer than high-risk group (p = 0.038), with
median OS time were 618 and 423 days, respectively (Figure
3b). Be similar to TCGA cohorts, both HSBP1L.1 and MRPL3
were highly expressed, DNAH10 and KIAA0513 were lowly
expressed in high-risk group (Figure 3d). The detailed HR
and p-value were presented in Figure S2, in which low-ex-
pressed DNAH10 and KIAAO0513 were proved to be robust
for prognosis prediction. Thus, the four genes signature was
potential prognostic marker for pancreatic carcinoma, based
on RNA sequence data.

3.4 | Differential gene expression and
functional enrichment analysis

To reveal the important molecular events, accounted for the
prognosis, DEG were calculated in TCGA cohort. As shown
in the volcano plot (Figure 5a), a list of 579 genes were iden-
tified, of which 454 genes were up-regulated, and 125 genes
were down-regulated. Besides, the relevant biological pro-
cess and signal pathway were mapped by over-representation
analysis. Ultimately, the neuro-endocrine signal transition
including regulation of hormone, synaptic, signal release,
and membrane potential was the most enrichment biologi-
cal process (Figure 5b). Corresponding, the regulated path-
ways were majorly focused on the neurotransmitter activities
(Figure 5c¢).

4 | DISCUSSION
The genomic background drives the biological phenotypes,
which also may be retro-regulated by the external environ-
ments. Even for cancers, the unheeded genomic profiles
gradually exerted great predictive values for clinical deci-
sion-making, such as early detection of precancerous, opti-
mization of therapeutic strategies, and disease prognosis. In
this work, we proposed a risk-score formula by four genes
signature for pancreatic carcinoma, which was proved to be
feasible and creditable for prognostic prediction.

To establish the predictive model, we initially applied
Lasso algorithm to shrink the candidate genes in the whole
genomic set. Subsequently, multivariate cox regression was
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FIGURE 3 Performance and expression of the four genes signature in TCGA training and ICGC validation cohorts. The Kaplan—-Meier plot

indicated high-risk group had significantly worse prognosis than low-risk group in TCGA cohort (a) and ICGC cohort (b). Expression level of the

four predictive genes were significantly different in two groups of TCGA cohort (c) and ICGC cohort (d). One star indicated p < 0.05, three stars
indicated p < 0.001, four stars indicated p < 0.0001. ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas

called to construct the formula. Then a four genes model
was constructed and suggested. This mining regime was
reported quite suitable for predictors filtering in genomic
data. Furthermore, this four genes model was also validated
in external RNA sequence cohort. Living or deceased out-
comings were very consistent with the risk group, stratified
by gene signature, both in training and validation cohorts.
When considered this signature in the clinical set, the pre-
dictive value was also robust in different subpopulation.
Studies indicated early and late onset pancreatic cancer
suffered different genomic alteration and clinicopathologic
features (McWilliams et al., 2016; Ohmoto et al., 2016).
Survival analysis in the TCGA cohort was not available
to support this point, but our risk model was both feasi-
ble in patients with diagnostic age larger or <50 (Figure

S1). Similarly, tumor histological grade and AJCC stage
did not influence the application of our risk model. These
results indicated our risk model was an independent factor
for prognosis.

In this four genes signature, two genes (HSBP1L1 and
MRPL3) were positively related to prognosis, and the other
two (DNAH10 and KIAA0513) were negative factors, when
set the OS as the primary outcome. For the four genes, ev-
idences presented in the current study provided, to our
knowledge, the first link with pancreatic cancer prognosis.
HSBPI1L1 was a 72 amino-acid protein and showed 41.2%
identity with HSBP1 (heat shock transcription factor bind-
ing protein 1). But no reports about the exact functions for
HSBPI1L1 in biology. Presumably, HSBP1L1 might suppress
the heat shock factor transcription under stress. MRPL3
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FIGURE 4 Heatmap demonstrated the expression of the four predictive genes with distribution of risk-score, age, gender, location, grade,
and stage in TCGA cohort (a) and ICGC cohort (b). The blue box in the heatmap indicated the low expression, and red box indicated the high
expression. Dashed line in the annotation indicated the median value of risk score. ICGC, International Cancer Genome Consortium; TCGA, The

Cancer Genome Atlas

encoded a 39s subunit protein that belonged to the large
mitochondrial ribosomes family. Previous report indicated
MRPL3 was the candidate susceptibility genes for com-
mon familial colorectal cancer and RNA metabolism-re-
lated genes in non-small cell lung cancer (Gylfe et al., 2013;
Valles et al., 2012). DNAH10 was an inner arm dynein heavy
chain, and reported to involve with pathogenesis of human
insulin resistance (Lotta et al., 2017). KIAA0513 was the
most investigated gene and mainly expressed in normal brain
tissues (Lauriat et al., 2006). Functional analysis indicated

KIAAO513 participated into the neuroplasticity, apoptosis,
and cytoskeletal regulation, and it was therefore reasonable
that the gene seemed to represent the neuro-endocrine activ-
ity in pancreatic cancer.

Nerve is the common feature in the niche of pancreatic
cell, not only for the islet cells, but also for the duct epithe-
lium and acinar cells. Stimulated by the nervous impulse,
pancreatic cells make series of biological responses, in
the action of neurotransmitters. Numerous evidences indi-
cated the role of neuronal activity in none-nervous organs
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for carcinogenesis, especially for pancreas, prostate, and
gastrointestinal system (Magnon et al., 2013; Saloman
et al., 2016; Venkatesh & Monje, 2017). In vivo model
conducted by Saloman et al. (2016) forcefully proved
pancreatic sensory neurons supported the initiation and
progression of pancreatic carcinoma. By the gene enrich-
ment analysis, we found that differential genes in high-risk
and low-risk groups were majorly focused on the neuro-
endocrine activity, such as the neuroactive ligand-recep-
tor interaction (KEGG: hsa04080). Next, biosynthesis and
secretion of neurotransmitters were also frequently hit,
including aldosterone, dopamine, insulin, gamma-amino-
butyric acid (GABA), and nicotine. To be encouragingly,
most of those factors were reported previously to correlate
with pancreatic cancer. Genomic data of Jandaghi et al.
(2016) found that dopamine receptor D2 was significantly
upregulated both in RNA and protein level in pancreatic
cancer and inhibitors suppressed tumor growth in mice.
Clinical observation indicated fasting insulin was caus-
ally associated with an increased risk of pancreatic cancer
(Carreras-Torres et al., 2017). Moreover, psychological
stress also might worse the clinical prognosis in pancre-
atic cancer, via the neurotransmitter GABA (Schuller,

Al-Wadei, Ullah, & Plummer, 2012). Binding of nicotine
to the receptors in pancreatic cell stimulated the secretion
of autocrine catecholamine and promoted cell prolifera-
tion (Al-Wadei, Al-Wadei, & Schuller, 2012). All these
reported evidences and our current analysis indicated the
great value of the neuro-endocrine activity in pancreatic
cancer progression.

There were several shortcomings to our study. First, due
to difference in data processing, external applicability of the
four genes model in the microarray matrix was not warranted,
which was not validated in our study. Second, pathogenesis and
molecular events might be different in histological subtypes of
pancreatic carcinoma. Totally, 83.1% and 83.3% cases were
ductal adenocarcinomas in TCGA and ICGC cohorts, which
were the most common subtypes. Hence, the unavoidable
heterogeneity might weak the interpretation of the four genes
model for a specific subtype of pancreatic carcinoma. Third, it
was hard to validate the integrated-model in ICGC cohort, due
to the unavailable clinic profiles. But the integrated-model was
not superior to the four genes model in TCGA cohort. It indi-
cated the combination with clinical profile might not be suitable
for genetic profile, but not ruled out the possibility of a better re-
sult based on the ICGC cohort, if clinical profile was available.
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Finally, all the four genes had not been previously reported in
pancreatic cancer. Analysis based on computational software
needed further in-home validation beside the bench.

In conclusion, on the basis of TCGA sequence data,
we proposed a four genes model (DNAH10, HSBPILI,
KIAAO0513, and MRPL3), which facilitated the discernment
of high-risk patients for worse OS in pancreatic carcinoma.
This model also demonstrated fine performance in external
ICGC validation cohort. Taken clinical parameters into con-
sideration, the risk-score was independent marker in each
clinical subpopulation. Furthermore, DEG and functional en-
richment indicated the neuro-endocrine activity was the po-
tential mechanisms for the prognosis prediction. Future large
cohorts and basic experiments were warranted to verify this
four genes model and regulation of the four genes in neuro-
endocrine pathway.
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