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Abstract: Interleukin 15 (IL-15), a four-helix bundle cytokine, is involved in a plethora of different
cellular functions and, particularly, plays a key role in the development and activation of immune
responses. IL-15 forms receptor complexes by binding with IL-2Rβ- and common γ (γc)-signaling
subunits, which are shared with other members of the cytokines family (IL-2 for IL-2Rβ- and all other
γc- cytokines for γc). The specificity of IL-15 is brought by the non-signaling α-subunit, IL-15Rα.
Here we present the results of molecular dynamics simulations carried out on four relevant forms
of IL-15: its monomer, IL-15 interacting individually with IL-15Rα (IL-15/IL-15Rα), with IL-2Rβ/γc
subunits (IL-15/IL-2Rβ/γc) or with its three receptors simultaneously (IL-15/IL-15Rα/IL-2Rβ/γc).
Through the analyses of the various trajectories, new insights on the structural features of the
interfaces are highlighted, according to the considered form. The comparison of the results with the
experimental data, available from X-ray crystallography, allows, in particular, the rationalization of
the importance of IL-15 key residues (e.g., Asp8, Lys10, Glu64). Furthermore, the pivotal role of water
molecules in the stabilization of the various protein-protein interfaces and their H-bonds networks
are underlined for each of the considered complexes.
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1. Introduction

Interleukin 15 (IL-15) is a cytokine targeting a plethora of cells and participating in a different
number of cellular functions. Indeed, it is essential to the function and homeostasis of T lymphocytes
and natural killer (NK) cells [1]. As such, it participates in the development and activation of immune
responses. More precisely, its functions include the stimulation of memory T cells and NK cell
proliferation, survival and activation, as well as the inhibition of apoptosis of immune cells [2].

IL-15 is a four-helix bundle cytokine, belonging to the cytokine family sharing the common gamma
(γc) chain receptor, which also includes IL-2, IL-4, IL-7, IL-9, and IL-21. Among this family, IL-2 is
structurally similar to IL-15, as both are the only cytokines to possess three receptor subunits, contrary
to the remaining members of the four-helix bundle family, which only possess two receptor chains.
Despite these two interleukins have shared functions, they are not fully functionally redundant, and
can even display competing effects [3–5]. Based on the noticeable role of IL-15 and IL-2 in various
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immune system responses, intensive research, aimed at the development of novel therapies that could
exploit those functional differences [6,7], has been conducted.

From a structural point of view, the interleukin four-α-helix core (helices A–D, Figure 1) is
hydrophobic, whereas the exposed surface is mainly constituted of polar amino acids making contacts
with the different receptor chains. Both IL-2 and IL-15 bind heterodimers formed by the IL-2Rβ and
the γc chains, inducing the activation of the JAK/Stat pathways [8]. Each of the cytokines has its
own specific α-receptor subunit, namely, IL-2Rα and IL-15Rα, respectively. The IL-15Rα chain is a
single transmembrane protein, whose distal domain, also called sushi domain, is required for IL-15
binding [9]. IL-15Rα can be expressed depending on the activation status of the cells. Thus, IL-15 can
bind to the IL-2Rβ/γc dimeric receptor as well as to a high affinity IL-15Rα/IL-2Rβ/γc trimeric receptor.
IL-15Rα can also be expressed by an IL-15 producing cell (macrophages, dendritic cells, epithelial
cells). In that context, IL-15Rα binds and presents in trans IL-15 to a neighboring cell expressing
the IL-2Rβ/γc complex [2]. At the 3D level, crystallographic data (PDB codes: 2Z3Q and 4GS7) of
the IL-15/IL-15Rα complex exist, respectively with resolutions of 1.8 and 2.3 Å [10,11]. These data
revealed that IL-15 residues located on B helix and AB and CD loops established key interactions
with IL-15Rα. In the same vein, the resolution of the IL-15 heterotrimer (IL-15 with its three different
receptor chains, corresponding to the full tetramer (quaternary complex): IL-15/IL-15Rα/IL-2Rβ/γc) by
X-ray diffraction [11] has shed light on the amino-acids participating in the interactions between the
IL-15/IL-2Rβ and IL-15/γc interfaces. In agreement with those structures, direct mutagenesis studies
have shown that, in the IL-15/IL-2Rβ interface, A and C helices play a major role, whereas the D helix is
crucial for IL-15/γc binding. Such information has paved the way towards the development of specific
immunotherapies based on IL-15 and IL-2 [12,13]. However, despite the obvious interest of these data,
an accurate interpretation of the electron density in and around protein binding sites is often limited
by the resolution. Furthermore, the inherent complexity of protein structures, and particularly of
protein-protein assemblies, prevents a straightforward interpretation of the constitutive interactions at
the three dimensional level [14–16]. Lastly, the X-ray crystallography provides a “static” structure,
limiting the assessment of proteins’ functions and corresponding mechanisms of action.

Molecules 2019, 24, 3261 2 of 20 

 

IL-2 in various immune system responses, intensive research, aimed at the development of novel 
therapies that could exploit those functional differences [6,7], has been conducted. 

From a structural point of view, the interleukin four-α-helix core (helices A–D, Figure 1) is 
hydrophobic, whereas the exposed surface is mainly constituted of polar amino acids making 
contacts with the different receptor chains. Both IL-2 and IL-15 bind heterodimers formed by the IL-
2Rβ and the γc chains, inducing the activation of the JAK/Stat pathways [8]. Each of the cytokines has 
its own specific α-receptor subunit, namely, IL-2Rα and IL-15Rα, respectively. The IL-15Rα chain is 
a single transmembrane protein, whose distal domain, also called sushi domain, is required for IL-15 
binding [9]. IL-15Rα can be expressed depending on the activation status of the cells. Thus, IL-15 can 
bind to the IL-2Rβ/γc dimeric receptor as well as to a high affinity IL-15Rα/IL-2Rβ/γc trimeric receptor. 
IL-15Rα can also be expressed by an IL-15 producing cell (macrophages, dendritic cells, epithelial 
cells). In that context, IL-15Rα binds and presents in trans IL-15 to a neighboring cell expressing the 
IL-2Rβ/γc complex [2]. At the 3D level, crystallographic data (PDB codes: 2Z3Q and 4GS7) of the IL-
15/IL-15Rα complex exist, respectively with resolutions of 1.8 and 2.3 Å [10,11]. These data revealed 
that IL-15 residues located on B helix and AB and CD loops established key interactions with IL-
15Rα. In the same vein, the resolution of the IL-15 heterotrimer (IL-15 with its three different receptor 
chains, corresponding to the full tetramer (quaternary complex): IL-15/IL-15Rα/IL-2Rβ/γc) by X-ray 
diffraction [11] has shed light on the amino-acids participating in the interactions between the IL-
15/IL-2Rβ and IL-15/γc interfaces. In agreement with those structures, direct mutagenesis studies have 
shown that, in the IL-15/IL-2Rβ interface, A and C helices play a major role, whereas the D helix is 
crucial for IL-15/γc binding. Such information has paved the way towards the development of specific 
immunotherapies based on IL-15 and IL-2 [12,13]. However, despite the obvious interest of these 
data, an accurate interpretation of the electron density in and around protein binding sites is often 
limited by the resolution. Furthermore, the inherent complexity of protein structures, and 
particularly of protein-protein assemblies, prevents a straightforward interpretation of the 
constitutive interactions at the three dimensional level [14–16]. Lastly, the X-ray crystallography 
provides a “static” structure, limiting the assessment of proteins’ functions and corresponding 
mechanisms of action. 

 
Figure 1. Structure of IL-15 in the full (IL-15/IL-15Rα/IL-2Rβ/γc) form. IL-15 is colored in blue and the 
A-D helices are indicated, IL-15Rα in magenta, IL-2β in green and γc in orange. 

Figure 1. Structure of IL-15 in the full (IL-15/IL-15Rα/IL-2Rβ/γc) form. IL-15 is colored in blue and the
A-D helices are indicated, IL-15Rα in magenta, IL-2β in green and γc in orange.



Molecules 2019, 24, 3261 3 of 20

In addition to structural and in vitro studies, molecular dynamics (MD) simulations are of prime
interest to investigate at the atomic level the time-dependent behavior of the interleukin family
members, in particular to get deeper insights within their structure and function relationships. In a
recent study, MD simulations pointed out the key roles of the IL-6Rα chain in the assembly of
the human IL-6 receptor complex [17], whereas a previous work, combining NMR measurements
and MD calculations, had pointed out significant heterogeneity in terms of backbone fluctuations
according to the IL-6 receptor epitopes [18]. Due to their structural similarity, IL-2 and IL-15 have often
been simultaneously investigated combining (i) experiments to probe their structural (through X-ray
crystallography) and/or affinity (with Surface Plasmon Resonance studies) features, and, (ii) molecular
modeling, to reveal the major role of specific IL-2/IL-15 regions in the stabilization of particular receptor
bound conformations [10,11]. Very recently, Baker and col. have engineered an IL-2 superkine using
in vitro evolution studies in parallel with crystallographic, MD and affinity investigations on wild type
IL-2 and selected mutants, highlighting, at the atomic level, the key amino-acid residues involved [19].

In the present work, we investigate different multimeric IL-15 models through MD simulations,
in order to describe the structural and time related behavior of the various IL-15-receptor interfaces.
To the best of our knowledge, our work is the first MD study of this important therapeutic target with
a time length greater than 100 ns. In addition to the key features found by previous experimental
works and further depicted here, new important components involved in the interface between IL-15
and its receptors are highlighted and described. This information could be useful for the design of
new potent drugs targeting specifically these interfaces. Recent attempts have been carried out and
the incorporation of dynamic features such as the ones highlighted in the present work could help to
refine the models and improve the success of these strategies [20,21].

2. Methods

2.1. Structure Preparation

The initial coordinates for the molecular modeling study were extracted from the crystallographic
data available on the Protein Data Bank for the IL-15/IL-15Rα binary complex (PDB ID: 2Z3Q) [10]
and for the IL-15/IL-15Rα/IL-2Rβ/γc quaternary complex (PDB ID: 4GS7) [11]. Starting from these
structures, four relevant combinations of IL-15 complexed with its receptors were built, in order to
assess the influence of the different receptors on the overall IL-15 conformation. These systems were:
the monomeric IL-15 form, the IL-15/IL-15Rα binary complex, the IL-15/IL-2Rβ/γc ternary complex and
the full IL-15/IL-15Rα/IL-2Rβ/γc quaternary complex. Apart from the model consisting of IL-15 and its
IL-15Rα, which was built starting from the 2Z3Q PDB file, all the other models were built starting from
the 4GS7 PDB tetrameric structure. Indeed, since these two PDB entries remain the only ones available
for IL-15, we think that their use as starting points for the relevant simulations is important, rather than
using a single entry, in order to take into account their corresponding features, that might be related
to the corresponding multimeric state. Nevertheless, we have computed the RMSD (considering
Cα carbon atoms) of the IL-15/IL-15Rα chains in the dimer and tetramer crystallographic complexes.
The value obtained, of 0.67 Å, clearly confirms that the two structures are similar. We are therefore
confident that the protocol that we have used is safe.

The missing side-chain atoms, hydrogen atoms and disulfide bridges were added using the Prime
tool in the Maestro program of the Schrödinger package [22]. A missing loop (residues 25–31 on IL-15)
was added by homology modelling with an identical loop present on IL-2 (PDB ID 2B5I) using Prime
from the Schrödinger Suite [22]. The glycosylated residues in the original PDB file were restored to
their non-glycosylated form. All the water molecules located in the crystallographic structure at 4 Å of
the interface residues were kept, as they might have an influence on the interactions established at
the interfaces.
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2.2. Molecular Dynamics Simulations

The MD simulations were carried out using the NAMD program [23]; all receptors complexes
and counter-ions were described using the CHARMM36 force-field [24,25] and explicit TIP3P water
molecules [26] were added to form a cuboid box of 12 Å dimensions around the protein. Each entire
system was neutralized by the number of required counter-ions. These number were: 11, 6, 13 and 9
potassium ions for the monomer, dimer, trimer and tetramer species. Initially, two minimization steps
were performed, each for 10,000 steps, wherein, at first, the water molecules and counter-ions were
minimized while the protein was kept fixed and, finally, the whole system was minimized. The number
of atoms and water molecules ranges from 30,736 (with 9652 water molecules) for the monomer to
190,645 (with 60,394 water molecules) for the tetramer. The cutoff distance, for all the steps, was set
to 12 Å, with the switching function starting to take effect at 10 Å. The pair list distance, for which
electrostatics and van der Waals interactions have been calculated during our calculations, were set to
14 Å. Being the size of the box used (distance of 12 Å between the solute and the wall of the box), we are
confident that the that the protein did not interact with its images during the simulations, as proven by
the values of the parameters of the MD analyses.

Following these steps, the various systems were heated to 300 K for 200 ps (NVT ensemble),
at which point a 200 ns production step was performed within the NPT ensemble at 300 K. For the
quaternary complex, three independent MD simulations of 100 ns each were run with identical starting
structures but randomized velocities. All the aforementioned steps were performed with periodic
boundary conditions, with the Langevin thermostat being used to keep the temperature constant and
the Particle-Mesh Ewald (PME) method being used to treat non-bonded interactions with a cutoff

of 12 Å [27]. The MD run was performed on a 2 fs timestep, with snapshots being saved every 2 ps
(to a total of 100,000 snapshots for the full 200 ns). Energies were output every 0.25 ps. Bond lengths
involving hydrogen atoms were fixed using the SHAKE algorithm and the non-bonded forces were
calculated every step. The pressure was kept constant (1 bar) using a Langevin piston coupled to a
heat bath, to keep the temperature constant at the aforementioned value.

2.3. MD Analyses

Root mean square deviation (RMSD) and Root mean square fluctuation (RMSF) values were
obtained for IL-15 by first aligning the coordinates from all the corresponding systems to the IL-15
chain Cα atoms, using the first frame as reference, in the VMD plugin Trajectory Tool [28]. To complete
this analysis, the matrices of all the possible RMSD value pairs during the whole 200 ns trajectory have
also been calculated using the AmberTools18 collection of the Amber18 suite [29]. The RMSD values
were calculated only accounting for Cα atoms of every residue, with the global value being further
broken down into structural elements as follows: helix A (residues 1–19), A–B loop (residues 20–35),
helix B (residues 36–54), helix C (residues 57–77), C-D loop (residues 78–95) and helix D (96–111).
The B-C loop was not considered, as it is composed of only two residues and would not, as such,
bring significant information to the analyses. It is worth noting that for these structural elements
RMSD calculations, no re-alignment of the structures have been carried out, the values discussed being
consequently free of roto-translations effects. The RMSF values presented are by-residue, with the
RMSF value being used for each residue corresponding to the Cα RMSF value. In both cases, the values
presented correspond to the last 100 ns of the MD simulations. As specified above for the structural
elements RMSD calculations, no re-alignment has been carried out for the RMSF calculations.

The former analysis allows for a broad view of the conformational changes throughout the
simulations, also serving as a tool for the validation of the models and verification of the equilibrated
state of the different systems. The latter allows for a detailed view, on a per-residue basis, of the
fluctuations observed throughout the simulations, thus allowing a deeper analysis of the influence of
the flexibility of the residues on the system as a whole.

Following this preliminary analysis and confirmation of the equilibrated state of the system,
the total number of contacts between IL-15 and each individual receptor was calculated, for each
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frame of the trajectory in the interval 100–200 ns, interval in which the trajectory was considered to be
equilibrated for all cases. This was performed using the nativecontacts command of the cpptraj trajectory
analysis tool, present in the AmberTools18 collection of the Amber18 suite [29]. A contact was thus
defined based on a distance cut-off (<3 Å) between heavy atoms of each interface interacting amino
acid residues. For this analysis, contacts present in both the reference frame, the 100 ns point of the
simulation, and that were not present in this reference frame, were considered equally. The values
reported in the supporting information for the various interfaces correspond therefore to average
values considering the last 100 ns of the MD simulations. The choice of a value of 3 Å for this parameter
is rationalized by the fact that we wanted to focus on the most specific interactions at the various
interfaces. We have made several tries at greater distances, 3.5, 4 and 5 Å and decided to select 3 Å,
with the weaker corresponding standard deviations.

Distance between residue pairs was analyzed based on the previously mentioned total number
of contacts analysis. Individual (atom-atom pair) contacts were probed through the use of the
aforementioned cpptraj tool, with all the atom pairs for each residue pair, at <3 Å from each other
at any point during the simulation, being considered. The final distance taken into account was the
minimum atom-atom distance in each frame at the 100–200 ns interval, for each residue pair. Further,
average values of the atom-atom pair corresponding to the minimum distance were computed, as well
as the percentage of the time wherein the residue-residue distance (as previously defined) remains at
<3 Å. Lastly, the atoms considered when building the distance tables, as seen in Table S2, for instance,
were the most prevalent throughout the simulation.

Water molecules residency time was calculated for the 100–200 ns interval, in each system,
using the hbond command of the aforementioned cpptraj tool, with only inter-receptor (and hence,
no intra-chain) solute-solvent hydrogen bonds being considered. The acceptor-donor heavy atom
distance considered was 3.2 Å and all the bridging water molecules with more than 10% residency time
(as defined by the ratio between the number of frames wherein each residue establishes a hydrogen
bond with a non-specific water molecule versus the total number of frames) were kept. In other words,
the residency time indicates the time in which any water molecule is bridged to receptor residues
through inter chain hydrogen-bonds.

To complete these structural investigations, MM/GBSA calculations were realized, based on the
MD trajectories obtained for each multimeric model. Let us consider the equation for the binding free
energy of association:

∆Gbind = 〈GAB〉 − 〈GA〉 − 〈GB〉

In the calculations, A and B were systematically different, depending on the multimeric system
and the interface considered. As a matter of example, let’s consider the estimation of the binding free
energy of association of the β interface for the trimeric and tetrameric complexes. For these calculations,
B was the IL-2Rβ receptor chain, whereas A corresponded respectively to IL-15 in the trimeric complex
and in the full tetramer. In other words, for these calculations, we have extracted, from the trimeric
or full quaternary complex, the IL-15 monomer and the receptor chain under investigation in order
to consider specifically in the calculations the corresponding binding energy between two chains.
This method allowed to compare the free energy of binding of the different receptor chains with IL-15
but also to estimate the potential influence of the quaternary structure on this property. The averages
used for the calculations correspond to the time interval between 100–200 ns, wherein the simulations
were considered to be equilibrated.

3. Results and Discussion

3.1. The Quaternary Structure Impacts the Flexibility of the IL-15 Receptor Interfaces

First, we compare the RMSDs of various IL-15 components (whole chain, interfacial sites) as a
function of the multimeric state of IL-15, in order to probe the effect of the quaternary structure on
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the interface dynamics. Table S1 and Figure S1 in the supporting information (SI) gathers the statistic
parameters of the RMSD obtained and show the evolution of the IL-15 RMSD for the four models.

It appears from the results of this first global analysis that the flexibility of the IL-15 chain is
strongly dependent on its quaternary structure. However, the trends have to be considered cautiously
since for the majority of the systems considered, the average RMSD values are not significantly different.
As such, we observed that the IL-15/IL-15Rα dimer is slightly more “restricted” (1.82 (0.20) Å) in terms
of conformational flexibility, when compared to the free monomeric IL-15 (1.80 (0.36) Å), for which the
range of RMSD values is larger. This result is in line with the previously mentioned analysis of the
contacts established at the interface and the resulting loss of conformational freedom [10]. The most
notable difference concerns the trimeric form (IL-15/IL-2Rβ/γc) which shows in particular lower
structural stability (2.55 ± 0.48) Å) compared to the quaternary complex (1.91 (0.24) Å), highlighting
the possible stabilizing effect of the binding of the IL-15Rα chain. However, it is worth noting that the
IL-15 RMSD is in fact significantly weaker for the trimer when the Cα of the residues belonging to the
C-D loop are removed (1.45 ± 0.15 Å compared to the initial 2.55 (0.48) Å), highlighting the particular
flexibility of this loop and its influence (see Figure S2 in the SI).

The matrices of all the possible RMSD value pairs during the trajectory have also been considered,
since they have been reported to be more suited to evaluate the efficacy of the equilibration [30].
These data are shown in Figure 2 for the various complexed forms.
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The visual inspection of these figures shows, in line with the previous analysis, that the four
systems behave differently. Thus, it can clearly be seen that in the case of the IL-15/IL-15Rα/IL-2Rβ/γc
tetramer, from about 100 ns, the complex adopts homogeneous conformations, conserved till the end
of the simulation, in agreement with the equilibration of the system. In contrast, all the other models
considered show regular changes of conformations along the simulation time. This behavior is expected
for the monomer, which indeed shows the greatest conformational flexibility, being not constrained
at any interface in comparison with the other models. The dimeric and trimeric complexes have an
intermediate comportment, pointing out significant conformational changes along the simulation time.

It is worth noting that the duplicate and triplicate for the quaternary complex show very similar
RMSD matrices profiles (Figure S3 in the SI) compared to the ones shown in Figure 2 (top left corner),
reinforcing the trends pointed out for this system.

In order to gain deeper insights, we broke the RMSD analysis down into the specific IL-15
structural elements (see the methodology section). Figure 3 shows respectively their RMSD in the four
heteromeric models for the last 100 ns of the simulation interval. The corresponding figure for the
whole simulation (0–200 ns) is reported in the SI (Figure S4).
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structural elements of the IL-15 chain over the last 100 ns of the MD simulations.

Through the analysis of Figure 3, different features are identified following the various structural
elements considered (A-D helices and associated loops). It is clear that the largest standard deviation
associated to the average RMSD value is, in all but one case (the only exception is loop C-D), obtained
for the free IL-15 cytokine (black dots/lines in Figure 3), which is indeed expected to present the largest
conformational freedom. Accordingly, we observed that for most structural elements, the smallest
RMSD variation range is the one of the tetramer (orange in Figure 3), in agreement with the fact that this
structure is the most constrained; all the IL-15 interfaces being involved in their corresponding contacts.
The consideration of the evolution of the average RMSD values for the various systems, also pointed
out interesting trends. However, since the differences are not statistically significant, these tendencies
have to be considered cautiously. In fact, if we consider helix B, whose residues are in contact with the
IL-15Rα receptor, RMSDs are decreasing in the expected order: IL-15 (0.80 ± 0.18 Å) > IL-15/IL-2Rβ/γc
(0.69 ± 0.16 Å) > IL-15/IL-15Rα (0.57 ± 0.10 Å) > IL-15/IL-15Rα/IL-2Rβ/γc (0.39 ± 0.09 Å).

A similar behavior is apparent for helix A, which is known to participate in contacts with residues
of the IL-2Rβ chain. Indeed, the corresponding order of evolution of the RMSD, despite not significant
from a statistical point of view, is the following: IL-15 (1.12 ± 0.46 Å) > IL-15/IL-15Rα (0.93 ± 0.13 Å) >

IL-15/IL-2Rβ/γc (0.78 ± 0.11 Å) ~ IL-15/IL-15Rα/IL-2Rβ/γc (0.80 ± 0.13 Å).
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For this element, the forms with the largest RMSD value are the monomer and the IL-15/IL-15Rα
dimer, for which helix A conserves its conformational flexibility, the interface being free. Similar
trends could not be drawn from the consideration of the corresponding values for the A-B and C-D
loops, which showed the largest amplitude of structural variations, as should be expected for loops.
One behavior, however, deserves a special attention. Indeed, the C-D loop presents a large average
RMSD (3.72 ± 0.47 Å) for the trimeric form compared to the other forms. In fact, this behavior can
be rationalized by the fact that residues of this loop are involved in the IL-15Rα interface, remaining
therefore exposed to the solvent in the IL-15/IL-2Rβ/γc trimeric receptor, thus compensating for the
constraints imposed by the presence of the two other receptor chains. It is worth noting that if the
whole simulation time length is considered, the RMSD average is even much larger (4.93 ± 1.15 Å,
Figure S3) highlighting the particular flexible character of this loop.

RMSF

To get a complementary picture of the flexibility of the various IL-15 components pointed out
in the previous section, we have then turned to RMSF analyses. Figure 4 shows the RMSF of Cα

carbon atoms of IL-15 residues obtained for the various multimeric models considered and Figure 5
presents them graphically, in complement to the previous data, using the various IL-15 structures, for a
better visualizing of its flexibility in the various forms considered. Figure S5 in the SI, which shows
the corresponding RMSF profiles for the duplicate and triplicate, confirms the behavior of the full
tetrameric complex.
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last 100 ns of the MD simulations. The shaded areas indicate the IL-15 interfaces residues interacting
with IL-15Rα (red), IL-12Rβ (green), and γc (orange). Helices A (dark blue), B (purple), C (light blue)
and D (teal) of IL-15 are also represented.
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Figure 5. RMSF of Cα carbon atoms of IL-15 residues in the various investigated multimeric models 
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related to the B factor values. The scale for the RMSF is from 0 to 4 Å, corresponding to B-factor values 
from 0 to 440 Å2 (blue to red colors).

Figures 4 and 5 confirm the trends drawn from the RMSD analyses, since it is possible to denote
a different flexible character according to the position of the amino acid residues, for the different 
studied models. Globally, the RMSF values appear larger for the free IL-15 structure and the trimeric 
complex (black and green lines), in coherence with the larger flexibility of the first as a monomer,
being unrestricted at all interfaces, and the previous results. This behavior is seen on Figure 5 for both 
systems, the number of different zones and the thickness of the lines being more important for the 
monomer and the trimer. However, such a behavior is not observed for A-B and C-D loops. 

The examination of the IL-15 specific structural elements in the three multimeric models also
provides a complementary description to the previous RMSD analyses, evidenced by Figures 4 and 

Figure 5. RMSF of Cα carbon atoms of IL-15 residues in the various investigated multimeric models
considering the last 100 ns of the MD simulations. In the sake of comparison, the corresponding figures
have been prepared for IL-15 in the two crystal structures, the thickness of the line being related to the
B factor values. The scale for the RMSF is from 0 to 4 Å, corresponding to B-factor values from 0 to
440 Å2 (blue to red colors).

Figures 4 and 5 confirm the trends drawn from the RMSD analyses, since it is possible to denote
a different flexible character according to the position of the amino acid residues, for the different
studied models. Globally, the RMSF values appear larger for the free IL-15 structure and the trimeric
complex (black and green lines), in coherence with the larger flexibility of the first as a monomer,
being unrestricted at all interfaces, and the previous results. This behavior is seen on Figure 5 for both
systems, the number of different zones and the thickness of the lines being more important for the
monomer and the trimer. However, such a behavior is not observed for A-B and C-D loops.
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The examination of the IL-15 specific structural elements in the three multimeric models also
provides a complementary description to the previous RMSD analyses, evidenced by Figures 4 and 5.
As such, the position of the loops is clearly pointed out from the RMSF plot and highlighted on Figure 5,
with a maximal RMSF value corresponding to the A-B (residues 20 to 36) and C-D (residues 78 to 96)
loops of IL-15. For helix A, it appears that the largest RMSF values (corresponding to the thickest lines on
Figure 5) are obtained for the free IL-15, compared to the trimeric complex IL-15/IL-2Rβ/γc (exhibiting
the lowest value, i.e., the thinnest line on Figure 5) a trend which is consistent with the interaction of
helix A residues with the IL-2Rβ chain [11]. Similarly, the dimeric complex (IL-15/IL-15Rα) exhibits
higher RMSF values for helix A, but they are lower than for the free IL-15, suggesting a slight stabilizing
effect of IL-15Rα. The situation is different for helix B, since the largest RMSF values are found for
the IL-15/IL-2Rβ/γc trimer, followed by similar values for the free IL-15 and the IL-15/IL-15Rα dimer,
with the lowest values being obtained for the tetrameric model. This behavior is in agreement with
the fact that helix B residues are known to be involved in the interface with the IL-15Rα chain [10].
It is worth noting that a specific region corresponding to the end of helix B (from 52 to 54) and the
B-C loop (residues 55 and 56) shows large values in the trimer and the monomer, corresponding to
thicker lines on Figure 5. For helix C, a similar profile than the one obtained for helix A could be
discerned, presenting an increased conformational stability. For helix D, only the free IL-15 behaves
differently from the three other species. Indeed, on average, the RMSF values are significantly higher
for the IL-15 monomer compared to the three other models, which behave very similarly. Lastly,
it is remarkable that for both A-B and C-D loops, the largest structural fluctuations are obtained for
the trimeric IL-15/IL-2Rβ/γc receptor, in agreement with the fact that those residues are involved in
contacts with IL-15Rα chain amino acids and therefore, with full conformational freedom in the trimer.

3.2. The Quaternary Structure Impacts the Structural and Energetic Features of the Various Interfaces

We then compare the number of contacts and the energetic features at the various interfaces
between IL-15 and its receptors as a function of the investigated multimeric models. Table 1 clearly
evidences different number of contacts and binding free energies for each interface. Indeed, the average
number of contacts involving the IL-15Rα chain is higher than 40, whereas the corresponding values are
around 30 and 20 for the IL-2Rβ and γc chains, respectively. It is worth noting that for the quaternary
complex, the calculation of the number of contacts for two replica led to similar values, strengthening
the trends pointed out. Thus, for the duplicate, the various contacts amount to 38, 32 and 26 for the
IL-15Rα, IL-2Rβ and γc chains whereas for the triplicate, 37, 30 and 27 contacts are predicted. From a
binding free energy perspective, the MM/GBSA results support these trends, since the value computed
for the IL-15/IL-15Rα interface, of about −80 kcal/mol is significantly greater than the corresponding
data for the IL-2Rβ (−28 kcal/mol) and γc (−16 kcal/mol) chains, respectively.

Table 1. Number of contacts and MM/GBSA binding free energies (kcal/mol) for the various interfaces
in the three multimeric (dimer, trimer and tetramer) forms of IL-15. The number in parentheses
corresponds to the standard deviation.

Number of Contacts ∆Gbind

Interface Model Dimer Trimer Tetramer Dimer Trimer Tetramer

IL-15/IL-15Rα 43 (4) - 41 (3) −80.3 (6.6) −83.8 (8.2)
IL-15/IL-2Rβ 28 (4) 26 (4) −29.1 (5.6) −27.2 (6.6)

IL-15/γc 18 (5) 18 (7) −16.2 (7.7) −17.3
(10.5)

Such differences can be correlated to the higher affinity of IL-15 for the IL-15Rα chain (between
7−40 pM) compared to the corresponding quantity for IL-2Rβ/γc complexes (30 nM) [31–33]. In the
rest of the manuscript our reference system will be the tetramer.
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3.3. Highlighting Novel Key Structural Features at IL-15 Interfaces

In order to get deeper details from our MD simulations, the different interface features were
then scrutinized using a pairwise amino acid analysis of the interactions across the various interfaces.
These results are reported in the supporting information (Tables S2–S4). For the sake of comparison,
we have determined using the same methodology the number of contacts at the different interfaces
in the crystal structures. To clearly distinguish the information originating from the crystal structure
analyses and from our MD simulations a color code has been used (experimental: yellow; MD: blue)
in the Tables of the supporting information. It can be seen from this first comparison that for the
IL-15/IL-15Rα interface, only two contacts, on a total of 34, are brought to light by our MD simulations.
In the case of the IL-15/IL-2Rβ interface, the corresponding data are 7 and 29. Lastly, for the IL-15/γc
interface, 12 interactions predicted by the MD simulations, on a total of 19 contacts, were not reported
in the crystal structure. The same analyses were carried out on replicates and support these structural
features, with the majority of interactions, both in terms of types of contacts and with respect to the
residues involved, being conserved between the different simulations for the quaternary complex.

Interestingly, the majority of the interactions having the highest percentages of occurrence within
our simulations are obtained for the IL-15/IL-15Rα interface. Indeed, the average percentages of
occurrence of the various interactions for this interface are of 78 and 86%, respectively, for the dimeric
and tetrameric complexes, whereas the corresponding values are 64 and 67%, and 45 and 39%, for IL-15
interfaces with IL-2Rβ and γc chains in trimeric and tetrameric complexes. In agreement with the
crystallographic structures, both in the dimeric (2Z3Q [10]) and tetrameric (4GS7 [11]) forms, the key
role played by charged residues of IL-15 is evidenced by our simulations. Particularly, the salt bridges
between Asp22 (A-B loop), Glu46 and Glu53 (helix B) of IL-15 with the positively charged lateral
chains of Arg26 and Arg35 on the IL-15Rα receptor were virtually conserved throughout the whole
simulation (percentages higher than 97%) (Figure 6).

Moreover, short hydrogen-bonds occurring during the full time length of the calculations are worth
noticing. They correspond to interactions between the phenolic OH group of Tyr26 (A–B loop of IL-15)
with the main carbonyl chain of Arg35 (IL-15Rα) and the carboxylate group of Glu53 (helix B of IL–15)
with the alcohol OH group of Ser40. We also note the occurrence of Van der Waals interactions between
apolar amino acid side chains present on each side of this interface that proved to be conserved all along
the simulation time (interactions between methylene groups of the lateral chains of Glu53 (helix B) and
Glu89 (C–D loop) of IL-15 with Leu42 and Ile64 of IL-15Rα, respectively). The agreement between our
theoretical results and the experimental data for the IL-15/IL-15Rα interface, more precisely Asp22,
Glu46 and Glu53 of IL-15 [32], Glu46 of IL-15 [34], and Arg35 of IL-15Rα [35], makes us confident in
the interest of our model. The first contact not reported in the earlier crystallographic analyses concern
a salt bridge (carboxylate of Asp22 on IL-15 with one ammonium NH of Arg24 on IL-15Rα) present at
87% along the simulation length in the tetramer. The second one involves the aliphatic lateral chain of
Leu52 (IL-15), in close contact with its counterpart on the IL-15Rα side, corresponding to the lateral
chain of Leu42, this contact being predicted in the trimeric complex with a percentage of about 73%.
For the IL-15/IL-15Rα interface, our simulations bring limited new information. Nevertheless, our data
confirm the relative importance of amino acid residues at the interface and clarify their role at the
atomic level, in particular through their high percentage of occurrence along the simulation time. It is
interesting to note that all the interactions discussed above are systematically observed both in the
dimer and the full receptor, with very similar features.

For the IL-15/IL-2Rβ interface, noticeable differences are obtained compared to the IL-15/IL-15Rα
interface. First, as already mentioned, the percentage of occurrence of the various contacts is significantly
lower compared to the IL-15/IL-15Rα interface, in line with the moderate affinity of this complex [36].
As a matter of fact, while the number of contacts in the trimer and tetramer forms remains similar, the
interactions tend to be less conserved, the chemical fragments involved in the trimeric complex being
in some situations different to the ones in interaction in the tetramer. Remarkably, among the various
interactions observed, salt bridges are much less numerous for this interface than in the case of the



Molecules 2019, 24, 3261 12 of 20

IL-15/IL-15Rα. Indeed, only one interaction of this kind is observed, between the carboxylate group
of Asp61 (helix C of IL-15) and the ammonium lateral chain of Lys71 (IL-2Rβ). The most frequent
interactions are hydrogen bonds. Two residues of IL-15 appear to play a pivotal role in such inter-chain
hydrogen-bond interactions: Asp8 (helix A) and Asn65 (helix C). Indeed, one hydrogen-bond is kept
all along the simulation time, and involves the carboxylate group of IL-15 Asp8 and the phenolic OH
of IL-2Rβ Tyr134 (Figure 7).
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Another one, with a significant occurrence (about 45% of the simulation time) and not reported
previously, concerns the OH of IL-15 Ser7 (helix A) and the carboxylate group of IL-2Rβ Glu136.
Interestingly, the amide group of the Asn65 lateral chain uses both its hydrogen-bond donor and
acceptor potential through the NH2 group (with the main carbonyl of Gln70), and the C=O (with
the ammonium of Arg42) fragments. Furthermore, one of the methylene groups of the lateral chain
of Asn65 is in van der Waals contact most of the simulation (99.7% and 98.6% in the trimer and the
full tetramer, respectively) with a methylene group of Thr73, this interaction being never mentioned
before. The importance of these residues has already been highlighted by mutagenesis studies: for
IL-2, Asp20 [37], Asn88 [38] and IL-15, Asp8 [39], Asn65 [34]. In addition, Ile68 and Leu69 residues of
IL-15 are predicted to be in van der Waals contacts (through fragments of their aliphatic chain) with a
significant occurrence (from 35 to 98%) along the simulation time with several IL-2Rβ residues (Lys41,
Arg42, Thr73, Thr74, Val75). Among those, some (Ile68 (IL-15) with Lys41 (IL-12Rβ); Ile68 (IL-15)
with Thr73 (IL-12Rβ)) have not been previously discussed. In these cases, the fragments involved in
the various contacts are not always identical in the trimer and the tetramer, highlighting the higher
flexibility of these groups, in line with the weaker specificity of such interactions.

The IL-15/γc complex appears clearly to be the least stabilized, with significantly lower occurrence
of the interactions highlighted, compared to the other IL-15 interfaces, in line with the difficulty to
measure the affinity of this complex [36]. As a consequence, the differences obtained for the trimer and
the full tetramer are the most significant, as well as the difference between the static (crystallographic)
results and the ones from the MD simulations. Two residues of IL-15 are involved in hydrogen bond
interactions at this interface: His105 and Gln108, both belonging to helix D (Figure 8).
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It is worth mentioning that the contribution of His105 at this interface has not been evidenced
in the crystallographic analysis. His105 interacts through the NH of the imidazole ring as hydrogen
bond donor, the carbonyl oxygen of Gln127 (γc) behaving as the hydrogen bond acceptor, Gln108
through the NH2 group of the amide lateral chain with the main chain carbonyl oxygen of Pro207
(γc). The respective occurrence of these interactions, of 51 (His105:Gln127) and 48% (Gln108:Pro207)
highlight, nevertheless, substantial structural rearrangements, in line with the flexibility of this interface.
The importance of residue Gln108 for both IL-15 and IL-2 (Gln126) has been confirmed by mutagenesis
studies [39,40], and described in the earlier crystallographic structural analyses [11,41]. In line with
the flexibility of this interface mentioned above, the MD simulations bring to light the contribution of
the lateral chain of Ile111 (IL-15) which appears in weak interaction with the carbonyl oxygen of the
Leu208 backbone (for 78%) in the tetrameric complex whereas it is interaction with the corresponding
aliphatic lateral chain in the trimer (for 35%). In the same vein, the lateral chain of Asn112 (IL-15) is
shown to switch between several different interactions (ranging from 10 to 25%) with residues of the
γc chain (Tyr103, Asn158 and Leu208) during the MD simulations.

3.4. Water Molecules Stabilize the Interfaces

From previous crystallographic studies, the importance of water molecules in the high affinity
values between IL-15 and some of its receptor chains, especially IL-15Rα, has been emphasized [10].
In this work, we have therefore explored the interactions of water molecules with surrounding residues
at the vicinity of the various interfaces (see the methodology section). Table S5 (supporting information)
presents the results obtained for the various interfaces in the various multimeric species.

The trends highlighted by our results are in concordance with the ones pointed out through the other
descriptors. Indeed, it appears that the highest percentages of presence of water molecules are obtained
for the IL-15/IL-15Rα interface, in line with the very high affinity reported for this complex [31,32]
and the previously suggested key role of two water molecules. Interestingly, our results show a
significant difference according to the quaternary structure since in the dimer, the number of contacts
is significantly higher (12 instead of 8); some of the contacts being more frequent in the full system
(around 83% of the simulation time) than in the dimer. Among the various hydrogen-bond networks
established around these “conserved” bridging water molecules, a special role should be assigned
to the one involving Glu53 (helix B) of IL-15 and Ser41 of IL-15Rα (Figure 9). Indeed, this specific
water molecule coincides with the position occupied by a water molecule with a particularly low
B factor in the crystallographic structure of the IL-15/IL-15Rα [10], this position being conserved,
with a higher percentage (83 instead of 76%), in the full receptor. It is worth noting that the second
position appearing for this interface as the most “occupied” by a water molecule corresponds to another
important region of the IL-15/IL-15Rα interface, involving charged residues (Glu93:Arg35 (almost 50%
in the full receptor) and Glu89:Lys36, around 20%) and reported in the experimental studies [10,11].

Remarkable features can also be pointed out for the IL-15/IL-2Rβ interface. In fact, bridging water
molecules have previously been evidenced in the IL-2/IL-2Rβ interface through His133 and Tyr134 of
IL-2Rβ interacting with Asp20 of IL-2 from X-ray crystallography studies [41]. Despite the resolution
of the quaternary IL-15/IL-15Rα/IL-2Rβ/γc complex, no discussion on the specific behavior of water
molecules at the various interfaces was carried out by Garcia and coworkers [11]. Therefore, our
MD simulations provide a first way to probe their role. For the IL-15/IL-2Rβ interface, among the
contacts with the highest occupancy, His133 and Tyr134 were actually involved (Asp8:Tyr134 (40%);
Lys11:His133 (38%)), bridging water molecules involving these residues being predicted by the MD
simulations, both in the trimer and the tetramer. However, it was surprising to see that the number
of contacts at the IL-15/IL-2Rβ interface appears to be significantly higher (14 compared to 8) in the
quaternary IL-15 complex than in the IL-15/IL-15Rα interface. Although the number of contacts is
higher for this interface, the same residues are involved, which evidences a higher dynamic character
of the interface, which could be in line with a lower affinity of the IL-15/IL-2Rβ complex compared
to IL-15/IL-15Rα (Table S5). Another region, involving other polar and/or charged residues of both
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chains (IL-15: Asp61, Thr62 of helix C; IL-2Rβ: Arg42, Ser69, Gln70), and not mentioned by relevant
experimental studies, is revealed by our MD simulations. This area involves other polar and/or charged
residues of both chains (IL-15: Glu64; IL-2Rβ: Arg41, Arg43). Figure 10 shows as an example the one
with the highest percentage, between Glu64 of IL-15 and Arg43 of IL-2Rβ, reaching 64% in the trimer,
and Arg41 of IL-2Rβ, amounting to about 35% in the tetramer.
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Lastly, both in terms of number of contacts and of occupancy percentage, the water molecules
at the IL-15/γc appear much less conserved, in agreement with the weaker stability of this interface.
However, there are relevant positions, which should be highlighted. Precisely, Gln108 interacts with
a plethora of different residues located on the γc receptor, with relevant interactions with Pro207
(15 and 13% for the two respective systems) and Gln127 (12% for both systems) being evidenced
(Figure 11). Furthermore, there is a water molecule mediating the interaction of the aforementioned
residue (Gln108) with Leu208 exclusively in the trimeric system (14%) and with Ser211 exclusively in
the tetrameric system (11%), further suggesting an important role of this residue in the establishment
of the IL-15/γc interface. These results corroborate the ones outlined in the previous section.
Molecules 2019, 24, 3261 16 of 20 

 

 
Figure 11. Representation of key bridging water molecules at the IL-15/γc interface for the full system 
(left) and the trimeric system (right). The values indicated correspond to the percentage of presence 
of the water molecules along the simulation time. 

4. Conclusions 

In this study, new structural features of IL-15 interfaces (IL-15/IL-15Rα, IL-15/IL-2Rβ and IL-
15/γc) in relevant IL-15 multimeric states have been reported on the basis of MD simulations. It is 
important to note that despite the fact that our study investigates the structural features of the various 
relevant (from a biological point of view) multimeric states of IL-15, namely the full quaternary 
complex: IL-15/IL-15Rα/IL-2Rβ/γc, the trimeric complex IL-15/IL-2Rβ/γc, the dimeric IL-15/IL-
15Rα and monomeric IL-15 forms, the starting geometries used come from the experimental 
structures available, that is the full quaternary complexes (4GS7 pdb entry for the quaternary, trimeric 
complexes and the monomer) and the binary IL-15/IL-15Rα complex (2Z3Q pdb entry for the dimer). 
While this methodology might have limitations, we have not found any other alternative in the 
absence of the relevant corresponding experimental information. It is also worth noticing that with 
the 200 ns simulation time length used in this work, some potentially important dynamic fluctuations 
might be missed. Despite these limitations, nevertheless, significant new insights on the structural 
and dynamic behavior of this important therapeutic target have been highlighted in this work. 

The RMSD analysis has allowed us to point out the significant influence of the quaternary 
structure on the variation in the receptor chains backbone. As such, the lowest structural stability 
(larger RMSD) was obtained for the trimeric form (IL-15/IL-2Rβ/γc), putting into evidence significant 
conformational changes. However, the global analysis suggests that the IL-15/IL-15Rα dimer seems 

Figure 11. Representation of key bridging water molecules at the IL-15/γc interface for the full system
(left) and the trimeric system (right). The values indicated correspond to the percentage of presence of
the water molecules along the simulation time.

4. Conclusions

In this study, new structural features of IL-15 interfaces (IL-15/IL-15Rα, IL-15/IL-2Rβ and
IL-15/γc) in relevant IL-15 multimeric states have been reported on the basis of MD simulations.
It is important to note that despite the fact that our study investigates the structural features of the
various relevant (from a biological point of view) multimeric states of IL-15, namely the full quaternary
complex: IL-15/IL-15Rα/IL-2Rβ/γc, the trimeric complex IL-15/IL-2Rβ/γc, the dimeric IL-15/IL-15Rα
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and monomeric IL-15 forms, the starting geometries used come from the experimental structures
available, that is the full quaternary complexes (4GS7 pdb entry for the quaternary, trimeric complexes
and the monomer) and the binary IL-15/IL-15Rα complex (2Z3Q pdb entry for the dimer). While this
methodology might have limitations, we have not found any other alternative in the absence of
the relevant corresponding experimental information. It is also worth noticing that with the 200 ns
simulation time length used in this work, some potentially important dynamic fluctuations might be
missed. Despite these limitations, nevertheless, significant new insights on the structural and dynamic
behavior of this important therapeutic target have been highlighted in this work.

The RMSD analysis has allowed us to point out the significant influence of the quaternary structure
on the variation in the receptor chains backbone. As such, the lowest structural stability (larger RMSD)
was obtained for the trimeric form (IL-15/IL-2Rβ/γc), putting into evidence significant conformational
changes. However, the global analysis suggests that the IL-15/IL-15Rα dimer seems to be more
“constrained” in terms of conformational flexibility compared to the free monomeric IL-15, in line with
the contacts established at the interface and the resulting loss of conformational freedom. The RMSD
analysis of specific IL-15 structural elements brought light on more details. For all structural elements
(A, B, C and D helices and loops), the smallest RMSD variation range was predicted for the tetramer,
appearing as the most stable, due to the interactions of interfacial residues in all the possible interfaces,
the largest RMSD being predicted for the monomeric IL-15. The consideration of individual RMSD
values of the various structural elements has revealed interesting complementary trends. Notably,
helix A, which possesses residues in interaction with residues of the IL-2Rβ chain, presents the largest
RMSD value (1.99 ± 0.33 Å) in the IL-15/IL-15Rα dimer, for which these amino acids conserve their
conformational flexibility. Similarly, for helix B, known to have residues in contact at the interface
with the IL-15Rα receptor, the highest RMSD (1.78 ± 0.46 Å) was observed in the trimeric structure
(IL-15/IL-2Rβ/γc). However, no significant trends have been suggested through a comparable analysis
for C and D helices. In the same vein, the A-B and C-D loops showed the largest amounts of flexibility,
which was not significantly different between the different systems, preventing the observation of a
particular behavior.

The RMSF values for the various systems have been shown to be significantly larger for the free
IL-15 chain as a whole, in line with the largest conformational flexibility of this state. The position of the
loops has been unambiguously identified by the RMSF analysis, the maxima of the plots corresponding
to the A-B (residues 20 to 36) and C-D (residues 78 to 96) amino acids. The behavior of the amino
acid residues of the A-D helices complement the RMSD analyses, highlighting the influence of the
multimeric state on the structural fluctuations at the various interfaces.

The consideration of the number of contacts established at the various interfaces have allowed
us to highlight the notable larger number of contacts at the IL-15/IL-15Rα interface, followed by the
IL-15/IL-2Rβ interface, the one with the lower number of interactions being the IL-15/γc interface.

The consideration of the pairwise amino acid interactions across the three interfaces for the three
multimeric systems have allowed us to validate our model, with the key residues previously underlined
by crystallographic analyses appearing as the ones with the highest percentages of presence along the
simulation timecourse. Furthermore, our study provides a detailed chemical and structural atomistic
description, through the measurement of the corresponding distances. Interestingly, the implication
of residues, or fragments of residues, not reported previously through crystallographic analyses
of IL-15 complexes, is delineated by our investigation. Specifically, for the IL-15/IL-15Rα interface,
new hydrogen-bonds involving the IL-15 Glu46 and Glu89 known residues are highlighted by our
work. Moreover, a salt bridge between the IL-15 Glu93 and the IL-15Rα Arg35 has been pointed out.
For the IL-15/IL-2Rβ interface, the specific behavior of Asn65 was underlined, since the whole potential
of interaction, specific and unspecific of the lateral chain of this amino acid appeared to be exploited
in interactions at this interface. As such, the amide chain uses both its hydrogen-bond donor and
acceptor potential through the NH2 group (with the main chain carbonyl of the Gln70 of IL-2Rβ), and
the C=O (with the ammonium of the IL-2Rβ Arg42) fragments, one methylene group of the aliphatic
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chain being in close contact (around 98% of the simulation time) with a methylene group of the IL-2Rβ
Thr73. Lastly, for the IL-15/γc interface, despite the fact that the corresponding complex seems to be
the least stabilized, the role of important residues was suggested, notably through the implication of
their lateral chain in contacts across the interface. On the IL-15 side, His105 and Gln108, presented
contacts for upwards of 70% of the simulation time.

Lastly, the important role of water molecules was evidenced. The previous crystallographic
investigations have emphasized this importance for the IL-15/IL-15Rα interface, whereas we were
able to complement and build upon these data by showing that the same behavior was suggested for
the IL-15/IL-2Rβ and IL-15/γc interfaces, with water molecules being involved in specific networks
pertaining some of the key residues at the interfaces.

Together, our results allowed us to expand on conclusions previously established through
experimental investigations, mainly through X-ray crystallography, and provide a detailed description,
at the atomic level, of pivotal features of IL-15 interfaces. This knowledge should be useful for the
design of specific modulators of these important PPIs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/18/3261/s1,
Table S1: RMSD Statistics (min, max, average and corresponding standard deviation) for the various IL-15
multimeric models; Figure S1: RMSDs plots of the Cα carbon atoms of the whole IL-15 chain over 200 ns of
MD simulations. Figure S2: RMSDs plots of the Cα carbon atoms of the IL-15 chain with (brown) and without
(green) the Cα atoms of the C-D loop over 200 ns of MD simulations. Figure S3: Average RMSDs values together
with their standard deviations, calculated for each specific structural elements of the IL-15 chain over 200 ns of
MD simulations. Table S2: Residues, atoms and corresponding distances and percentage of presence along the
simulation time for the interface contacts predicted by the MD simulations for the IL-15/IL-15Rα complex in
the dimeric and tetrameric receptors; Table S3: Residues, atoms and corresponding distances and percentage of
presence along the simulation time for the interface contacts predicted by the MD simulations for the IL-15/IL-2Rβ
complex in the trimeric and tetrameric receptors; Table S4: Residues, atoms and corresponding distances and
percentage of presence along the simulation time for the interface contacts predicted by the MD simulations for
the IL-15/γc complex in the trimeric and tetrameric receptors; Table S5: Percentage, along the simulation time, of
water molecules in hydrogen-bond interactions with amino acid residues across the various interfaces of IL-15.
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