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Abstract: MerTK (Mer tyrosine kinase), a receptor tyrosine kinase, is ectopically or aberrantly
expressed in numerous human hematologic and solid malignancies. Although a variety of MerTK
targeting therapies are being developed to enhance outcomes for patients with various cancers, the
sensitivity of tumors to MerTK suppression may not be uniform due to the heterogeneity of solid
tumors and different tumor stages. In this report, we develop a series of radiolabeled agents as
potential MerTK PET (positron emission tomography) agents. In our initial in vivo evaluation, [18F]-
MerTK-6 showed prominent uptake rate (4.79 ± 0.24%ID/g) in B16F10 tumor-bearing mice. The
tumor to muscle ratio reached 1.86 and 3.09 at 0.5 and 2 h post-injection, respectively. In summary,
[18F]-MerTK-6 is a promising PET agent for MerTK imaging and is worth further evaluation in
future studies.

Keywords: MerTK; positron emission tomography; fluorine-18; radiolabeling; cancer

1. Introduction

MerTK, a receptor tyrosine kinase of the TAM (TYRO3, AXL, and MERTK) family, is
over-expressed or ectopically expressed in a wide variety of cancers [1,2], including acute
lymphoblastic leukemia (ALL) [3], non-small cell lung cancer (NSCLC) [4], melanoma [5],
prostate cancer [6], glioblastoma [7], etc. In fact, MerTK mediates the activation of sev-
eral canonical oncogenic signaling pathways in cancer cells [8,9]. In addition, due to the
important physiological role of MerTK in the innate immune system, MerTK inhibitors
may potentially reduce tumor growth by changing the immunosuppressive environment
and stimulating antitumor immunity [10,11]. Indeed, based on the important functions
of MerTK, many MerTK targeted therapies are in development to enhance outcomes for
patients with a variety of types of cancers, and a few are in clinical trials [12]. Despite the
enthusiasm, tumor sensitivity to MerTK suppression may not be uniform due to the hetero-
geneity of solid tumors and different disease stages (for example, primary v. metastatic
disease) [13,14]. Clearly, there is an urgent need to better predict which cancer patients are
likely to respond to such novel interventions, as well as monitor the therapeutic responses.
Although the drug metabolism study based on Mass analysis could provide information
on biodistribution and metabolism of small pharmaceutical molecules in vivo [15], PET
is a non-invasive imaging technology that can quantitatively evaluate biological targets
or biochemical processes in vivo [16–19]. Nevertheless, research on MerTK targeted PET
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agent are very limited [20]. Therefore, the aim of this research is to develop radio-labeled
agents that will allow us to directly measure MerTK expression and distribution during
different disease stages, non-invasively and repetitively.

We have been committed to the development of novel therapeutics against MerTK
for an extended period and have developed several small-molecule MerTK inhibitors
with great potency and different selectivity profiles [21–25]. UNC5293 is a new MerTK-
specific inhibitor developed recently at UNC, which is extremely potent against MerTK
(Ki is 0.19 nM) and very selective against the kinome (Ambit selectivity score S50 = 0.041
at 100 nM) [25]. Since target specificity is one of the key requirements of PET agents,
the discovery of UNC5293A provides us with a solid foundation for developing MerTK
PET ligands.

In this research, we developed a series of potential MerTK PET agents based on the core
of UNC5293 (UNC6429/UNC5650) and evaluated their use in B16F10 tumor-bearing mice.

2. Results and Discussion
2.1. Chemistry

As shown in Scheme 1, UNC6429 and UNC5650 were synthesized using a three-step
sequence. Generally, the starting material 1 was heated with an appropriate primary amine
(commercially available and enantiomerically pure) in a sealed tube under basic conditions
for 3 days to complete the SNAr replacement reaction. After purification, the resulting
intermediate 2 underwent a Suzuki coupling reaction, followed by deprotection of the Boc
group with hydrogen chloride to afford us with intermediate 3. Finally, UNC6429 and
UNC5650 were prepared by hydrogenation of the double bond using palladium on carbon
with overall yields of 33% and 62%, respectively.
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Scheme 1. The synthesis of MerTK-target molecule core UNC6429 and UNC 5650. 

UNC6429 and UNC5650 were then used to form corresponding precursors and 
standards according to different labeling protocols, as shown in Scheme 2. Route 1 focuses 
on C-11 labeling. The standards [12C]-MerTK-1 and [12C]-MerTK-2 were synthesized from 
UNC6429 and UNC5650, respectively, after methylation with methyl iodide. The same 
reaction was used to produce C-11 labeled PET agents when [11C]-MeI was used as the 
reagent. Route 2 introduced chelators for radiometal labeling. The precursors MerTK-3 
and MerTK-4 were prepared by reacting UNC6429 or UNC5650 with NOTA-Bn-NCS. 
Precursors MerTK-3 and MerTK-4 were purified by semi-preparative HPLC and their 
structures were confirmed by Mass spectrum. Route 3 involved fluorination. The stand-
ards of [19F]-MerTK-5 and [19F]-MerTK-6 were prepared by a nucleophilic substitution 
reaction with [19F]-2-fluoroethyl 4-methylbenzenesulfonate. 

Scheme 1. The synthesis of MerTK-target molecule core UNC6429 and UNC 5650.

UNC6429 and UNC5650 were then used to form corresponding precursors and stan-
dards according to different labeling protocols, as shown in Scheme 2. Route 1 focuses on
C-11 labeling. The standards [12C]-MerTK-1 and [12C]-MerTK-2 were synthesized from
UNC6429 and UNC5650, respectively, after methylation with methyl iodide. The same
reaction was used to produce C-11 labeled PET agents when [11C]-MeI was used as the
reagent. Route 2 introduced chelators for radiometal labeling. The precursors MerTK-3
and MerTK-4 were prepared by reacting UNC6429 or UNC5650 with NOTA-Bn-NCS.
Precursors MerTK-3 and MerTK-4 were purified by semi-preparative HPLC and their
structures were confirmed by Mass spectrum. Route 3 involved fluorination. The standards
of [19F]-MerTK-5 and [19F]-MerTK-6 were prepared by a nucleophilic substitution reaction
with [19F]-2-fluoroethyl 4-methylbenzenesulfonate.
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gallium-68 and fluorine-18. (i) [11C]-methyl iodide, DMSO, K2CO3, heating. 28%RCY; (ii) NOTA-Bn-
NCS, acetonitrile. 76% yield; (iii) Sodium acetate buffer (0.5 M), [68Ga]-GaCl3 in 0.04 M HCl, heating 
at 80 °C for 10 min. 75–82% RCY; (iv) [18F]-2-fluoroethyl 4-methylbenzenesulfonate, K2CO3, acetoni-
trile, 110 °C 15 min. 46.0–60.4% RCY. 
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Scheme 2. Labeling protocols of MerTK target molecules UNC 5650 and UNC6429 with carbon-11,
gallium-68 and fluorine-18. (i) [11C]-methyl iodide, DMSO, K2CO3, heating. 28%RCY; (ii) NOTA-
Bn-NCS, acetonitrile. 76% yield; (iii) Sodium acetate buffer (0.5 M), [68Ga]-GaCl3 in 0.04 M HCl,
heating at 80 ◦C for 10 min. 75–82% RCY; (iv) [18F]-2-fluoroethyl 4-methylbenzenesulfonate, K2CO3,
acetonitrile, 110 ◦C 15 min. 46.0–60.4% RCY.

The inhibitory activities of standards towards MerTK, Axl, Tyro3 and Flt3 were deter-
mined in our in-house microcapillary electrophoresis (MCE) assays [25]. As presented in
Table 1, the primary targets of these compounds are all MerTK.

Table 1. TAM and Flt3 inhibitory activities of standards.

Compound Structure MerTK
IC50 (nM) a

Axl
IC50 (nM) a

Tyro3
IC50 (nM) a

Flt3
IC50 (nM) a

MerTK-1

Molecules 2022, 27, x FOR PEER REVIEW 3 of 12 
 

 

R N
H

N

N

N

H
N

OH

UNC5650/UNC6429

[11C]-MerTK-1

ii)

i)

R N
H

N

N

N

N

OH

S
NH

N
N

N

OHO
HO O

O

OH

MerTK-3/MerTK-4iv)

[18F]-MerTK-6

R N
H

N

N

N

N

OH

S
NH

N
N

N

OO
O O

O

O

[68Ga]-MerTK-3/[68Ga]-MerTK-4

iii)

68Ga

N
H

N

N

N

N

OH

11C

N
H

N

N

N

N

OH
[11C]-MerTK-2

11C

N
H

N

N

N

N

OH

18F

N
H

N

N

N

N

OH

18F

[18F]-MerTK-5  
Scheme 2. Labeling protocols of MerTK target molecules UNC 5650 and UNC6429 with carbon-11, 
gallium-68 and fluorine-18. (i) [11C]-methyl iodide, DMSO, K2CO3, heating. 28%RCY; (ii) NOTA-Bn-
NCS, acetonitrile. 76% yield; (iii) Sodium acetate buffer (0.5 M), [68Ga]-GaCl3 in 0.04 M HCl, heating 
at 80 °C for 10 min. 75–82% RCY; (iv) [18F]-2-fluoroethyl 4-methylbenzenesulfonate, K2CO3, acetoni-
trile, 110 °C 15 min. 46.0–60.4% RCY. 

The inhibitory activities of standards towards MerTK, Axl, Tyro3 and Flt3 were de-
termined in our in-house microcapillary electrophoresis (MCE) assays [25]. As presented 
in Table 1, the primary targets of these compounds are all MerTK. 

Table 1. TAM and Flt3 inhibitory activities of standards. 

Compound Structure 
MerTK 

IC50 (nM)a 
Axl 

IC50 (nM) a 
Tyro3 

IC50 (nM) a 
Flt3 

IC50 (nM) a 

MerTK-1 

 

4.2 370 65 850 

MerTK-2 

 

61 1700 180 >30,000 

4.2 370 65 850

MerTK-2

Molecules 2022, 27, x FOR PEER REVIEW 3 of 12 
 

 

R N
H

N

N

N

H
N

OH

UNC5650/UNC6429

[11C]-MerTK-1

ii)

i)

R N
H

N

N

N

N

OH

S
NH

N
N

N

OHO
HO O

O

OH

MerTK-3/MerTK-4iv)

[18F]-MerTK-6

R N
H

N

N

N

N

OH

S
NH

N
N

N

OO
O O

O

O

[68Ga]-MerTK-3/[68Ga]-MerTK-4

iii)

68Ga

N
H

N

N

N

N

OH

11C

N
H

N

N

N

N

OH
[11C]-MerTK-2

11C

N
H

N

N

N

N

OH

18F

N
H

N

N

N

N

OH

18F

[18F]-MerTK-5  
Scheme 2. Labeling protocols of MerTK target molecules UNC 5650 and UNC6429 with carbon-11, 
gallium-68 and fluorine-18. (i) [11C]-methyl iodide, DMSO, K2CO3, heating. 28%RCY; (ii) NOTA-Bn-
NCS, acetonitrile. 76% yield; (iii) Sodium acetate buffer (0.5 M), [68Ga]-GaCl3 in 0.04 M HCl, heating 
at 80 °C for 10 min. 75–82% RCY; (iv) [18F]-2-fluoroethyl 4-methylbenzenesulfonate, K2CO3, acetoni-
trile, 110 °C 15 min. 46.0–60.4% RCY. 

The inhibitory activities of standards towards MerTK, Axl, Tyro3 and Flt3 were de-
termined in our in-house microcapillary electrophoresis (MCE) assays [25]. As presented 
in Table 1, the primary targets of these compounds are all MerTK. 

Table 1. TAM and Flt3 inhibitory activities of standards. 

Compound Structure 
MerTK 

IC50 (nM)a 
Axl 

IC50 (nM) a 
Tyro3 

IC50 (nM) a 
Flt3 

IC50 (nM) a 

MerTK-1 

 

4.2 370 65 850 

MerTK-2 

 

61 1700 180 >30,000 61 1700 180 >30,000



Molecules 2022, 27, 1460 4 of 11

Table 1. Cont.

Compound Structure MerTK
IC50 (nM) a

Axl
IC50 (nM) a

Tyro3
IC50 (nM) a

Flt3
IC50 (nM) a

MerTK-4

Molecules 2022, 27, x FOR PEER REVIEW 4 of 12 
 

 

MerTK-4 

 

13 4100 180 >30,000 

MerTK-5 

 

15 1100 190 1000 

MerTK-6 

 

37 2100 120 5500 

a Values are the mean of two or more independent assays. 

2.2. Radiochemistry 
With the precursors and standards in hand, we explored their radiolabeling with eas-

ily available positron nuclides: carbon-11, Gallium-68, and Fluorine-18. C-11 labeled 
MerTK-1 and MerTK-2 were obtained with lower yields due to the difficulty in HPLC 
purification (the precursor and the product had close retention times). The short half-life 
of 11C (t1/2 = 20.4 min) added more challenges: only one HPLC purification could be done 
for each reaction. The IC50 value of MerTK-1 and MerTK-2 against MerTK were deter-
mined to be 4.2 nM and 61 nM, respectively (Table 1). Good selectivity over Axl, Tyro3 
and Flt3 was observed. The 68Ga (half-life of 67.6 min and up to 1.89 MeV positron energy) 
could label MerTK-3 and MerTK-4 efficiently; however, the initial pilot study in mice did 
not provide promising results (<1%ID/g tumor uptakes were observed). Therefore, we did 
not measure their binding affinity and focused on developing fluorine-18 labeled PET 
agents for MerTK imaging due to its relatively long half-life (109.8 min) and high resolu-
tion (up to 0.64 MeV positron energy) on the PET imaging. 

As shown in Scheme 2, the fluorine-18 labeling on UNC 5650 and UNC6429 were 
carried out using a two-step sequence. First, [18F]-2-fluoroethyl 4-methylbenzenesulfonate 
was freshly prepared by heating the ethylene ditosylate with anhydrous [18F]-tetrabu-
tylammonium fluoride ([18F]-TBAF) in anhydrous acetonitrile at 110 °C for 15 min, fol-
lowed by purification using radio-HPLC. The collected fraction containing [18F]-2-fluoro-
ethyl 4-methylbenzenesulfonate was loaded on a Sep-Pak C18 cartridge, washed with 10 
mL water, and then eluted with 1 mL anhydrous acetonitrile. The elution was concen-
trated under evaporation. Then UNC 6429 (2 mg) was added to react with purified [18F]-
2-fluoroethyl 4-methylbenzenesulfonate under the basic condition at 110 °C for 15 min. 
The desired products ([18F]-MerTK-5 and [18F]-MerTK-6) were purified on radio-HPLC 
and followed by reformulation. The identity of the final product was confirmed by co-
injection with the standard compound in HPLC. The IC50 value of MerTK-5 and MerTK-6 
were determined to be 15 nM and 37 nM against MerTK, respectively, with good selectiv-
ity over Axl, Tyro3 and Flt3 (Table 1). Although MerTK-5 had a higher binding affinity 

13 4100 180 >30,000

MerTK-5

Molecules 2022, 27, x FOR PEER REVIEW 4 of 12 
 

 

MerTK-4 

 

13 4100 180 >30,000 

MerTK-5 

 

15 1100 190 1000 

MerTK-6 

 

37 2100 120 5500 

a Values are the mean of two or more independent assays. 

2.2. Radiochemistry 
With the precursors and standards in hand, we explored their radiolabeling with eas-

ily available positron nuclides: carbon-11, Gallium-68, and Fluorine-18. C-11 labeled 
MerTK-1 and MerTK-2 were obtained with lower yields due to the difficulty in HPLC 
purification (the precursor and the product had close retention times). The short half-life 
of 11C (t1/2 = 20.4 min) added more challenges: only one HPLC purification could be done 
for each reaction. The IC50 value of MerTK-1 and MerTK-2 against MerTK were deter-
mined to be 4.2 nM and 61 nM, respectively (Table 1). Good selectivity over Axl, Tyro3 
and Flt3 was observed. The 68Ga (half-life of 67.6 min and up to 1.89 MeV positron energy) 
could label MerTK-3 and MerTK-4 efficiently; however, the initial pilot study in mice did 
not provide promising results (<1%ID/g tumor uptakes were observed). Therefore, we did 
not measure their binding affinity and focused on developing fluorine-18 labeled PET 
agents for MerTK imaging due to its relatively long half-life (109.8 min) and high resolu-
tion (up to 0.64 MeV positron energy) on the PET imaging. 

As shown in Scheme 2, the fluorine-18 labeling on UNC 5650 and UNC6429 were 
carried out using a two-step sequence. First, [18F]-2-fluoroethyl 4-methylbenzenesulfonate 
was freshly prepared by heating the ethylene ditosylate with anhydrous [18F]-tetrabu-
tylammonium fluoride ([18F]-TBAF) in anhydrous acetonitrile at 110 °C for 15 min, fol-
lowed by purification using radio-HPLC. The collected fraction containing [18F]-2-fluoro-
ethyl 4-methylbenzenesulfonate was loaded on a Sep-Pak C18 cartridge, washed with 10 
mL water, and then eluted with 1 mL anhydrous acetonitrile. The elution was concen-
trated under evaporation. Then UNC 6429 (2 mg) was added to react with purified [18F]-
2-fluoroethyl 4-methylbenzenesulfonate under the basic condition at 110 °C for 15 min. 
The desired products ([18F]-MerTK-5 and [18F]-MerTK-6) were purified on radio-HPLC 
and followed by reformulation. The identity of the final product was confirmed by co-
injection with the standard compound in HPLC. The IC50 value of MerTK-5 and MerTK-6 
were determined to be 15 nM and 37 nM against MerTK, respectively, with good selectiv-
ity over Axl, Tyro3 and Flt3 (Table 1). Although MerTK-5 had a higher binding affinity 

15 1100 190 1000

MerTK-6

Molecules 2022, 27, x FOR PEER REVIEW 4 of 12 
 

 

MerTK-4 

 

13 4100 180 >30,000 

MerTK-5 

 

15 1100 190 1000 

MerTK-6 

 

37 2100 120 5500 

a Values are the mean of two or more independent assays. 

2.2. Radiochemistry 
With the precursors and standards in hand, we explored their radiolabeling with eas-

ily available positron nuclides: carbon-11, Gallium-68, and Fluorine-18. C-11 labeled 
MerTK-1 and MerTK-2 were obtained with lower yields due to the difficulty in HPLC 
purification (the precursor and the product had close retention times). The short half-life 
of 11C (t1/2 = 20.4 min) added more challenges: only one HPLC purification could be done 
for each reaction. The IC50 value of MerTK-1 and MerTK-2 against MerTK were deter-
mined to be 4.2 nM and 61 nM, respectively (Table 1). Good selectivity over Axl, Tyro3 
and Flt3 was observed. The 68Ga (half-life of 67.6 min and up to 1.89 MeV positron energy) 
could label MerTK-3 and MerTK-4 efficiently; however, the initial pilot study in mice did 
not provide promising results (<1%ID/g tumor uptakes were observed). Therefore, we did 
not measure their binding affinity and focused on developing fluorine-18 labeled PET 
agents for MerTK imaging due to its relatively long half-life (109.8 min) and high resolu-
tion (up to 0.64 MeV positron energy) on the PET imaging. 

As shown in Scheme 2, the fluorine-18 labeling on UNC 5650 and UNC6429 were 
carried out using a two-step sequence. First, [18F]-2-fluoroethyl 4-methylbenzenesulfonate 
was freshly prepared by heating the ethylene ditosylate with anhydrous [18F]-tetrabu-
tylammonium fluoride ([18F]-TBAF) in anhydrous acetonitrile at 110 °C for 15 min, fol-
lowed by purification using radio-HPLC. The collected fraction containing [18F]-2-fluoro-
ethyl 4-methylbenzenesulfonate was loaded on a Sep-Pak C18 cartridge, washed with 10 
mL water, and then eluted with 1 mL anhydrous acetonitrile. The elution was concen-
trated under evaporation. Then UNC 6429 (2 mg) was added to react with purified [18F]-
2-fluoroethyl 4-methylbenzenesulfonate under the basic condition at 110 °C for 15 min. 
The desired products ([18F]-MerTK-5 and [18F]-MerTK-6) were purified on radio-HPLC 
and followed by reformulation. The identity of the final product was confirmed by co-
injection with the standard compound in HPLC. The IC50 value of MerTK-5 and MerTK-6 
were determined to be 15 nM and 37 nM against MerTK, respectively, with good selectiv-
ity over Axl, Tyro3 and Flt3 (Table 1). Although MerTK-5 had a higher binding affinity 

37 2100 120 5500

a Values are the mean of two or more independent assays.

2.2. Radiochemistry

With the precursors and standards in hand, we explored their radiolabeling with
easily available positron nuclides: carbon-11, Gallium-68, and Fluorine-18. C-11 labeled
MerTK-1 and MerTK-2 were obtained with lower yields due to the difficulty in HPLC
purification (the precursor and the product had close retention times). The short half-life of
11C (t1/2 = 20.4 min) added more challenges: only one HPLC purification could be done for
each reaction. The IC50 value of MerTK-1 and MerTK-2 against MerTK were determined
to be 4.2 nM and 61 nM, respectively (Table 1). Good selectivity over Axl, Tyro3 and Flt3
was observed. The 68Ga (half-life of 67.6 min and up to 1.89 MeV positron energy) could
label MerTK-3 and MerTK-4 efficiently; however, the initial pilot study in mice did not
provide promising results (<1%ID/g tumor uptakes were observed). Therefore, we did not
measure their binding affinity and focused on developing fluorine-18 labeled PET agents
for MerTK imaging due to its relatively long half-life (109.8 min) and high resolution (up to
0.64 MeV positron energy) on the PET imaging.

As shown in Scheme 2, the fluorine-18 labeling on UNC 5650 and UNC6429 were carried
out using a two-step sequence. First, [18F]-2-fluoroethyl 4-methylbenzenesulfonate was freshly
prepared by heating the ethylene ditosylate with anhydrous [18F]-tetrabutylammonium fluo-
ride ([18F]-TBAF) in anhydrous acetonitrile at 110 ◦C for 15 min, followed by purification us-
ing radio-HPLC. The collected fraction containing [18F]-2-fluoroethyl 4-
methylbenzenesulfonate was loaded on a Sep-Pak C18 cartridge, washed with 10 mL
water, and then eluted with 1 mL anhydrous acetonitrile. The elution was concentrated
under evaporation. Then UNC 6429 (2 mg) was added to react with purified [18F]-2-
fluoroethyl 4-methylbenzenesulfonate under the basic condition at 110 ◦C for 15 min. The
desired products ([18F]-MerTK-5 and [18F]-MerTK-6) were purified on radio-HPLC and
followed by reformulation. The identity of the final product was confirmed by co-injection
with the standard compound in HPLC. The IC50 value of MerTK-5 and MerTK-6 were
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determined to be 15 nM and 37 nM against MerTK, respectively, with good selectivity over
Axl, Tyro3 and Flt3 (Table 1). Although MerTK-5 had a higher binding affinity towards
MerTK, the initial PET study suggested that MerTK-6 had more prominent tumor uptake
and contrast. Therefore, we focused on MerTK-6 in the initial evaluation. The HPLC
spectra in Figure 1 illustrate the purification and quality control of [18F]-MerTK-6.
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Figure 1. HPLC condition: Column: Phenomenex, Gemini 5 µm C18 110A, New Column
250 × 4.6 mm. Solvent A: 0.1%TFA water; Solvent B: 0.1%TFA acetonitrile; Flow rate: 1 mL/min,
column temperature: 19 to 21 ◦C. (A) 0 to 2 min: isocratic 5% solvent B, 2 to 35 min: isocratic 18%
solvent B; (B) reinjection of [18F]-MerTK-6: 0 to 2 min: isocratic 5% solvent B, 2 to 22 min: 5–95% sol-
vent B, 22 to 35 min: isocratic 95% solvent B; (C) Co-injection of [18F]-MerTK-6 with [19F]-MerTK-6:
0 to 2 min: isocratic 5% solvent B, 2 to 22 min: 5–95% solvent B, 22 to 35 min: isocratic 95% solvent B.

2.3. Evaluation of the LogP

In order to evaluate the hydrophilicity and lipophilicity of this fluorine-18 labeled
agent [18F]-MerTK-6, we measured the 1-octanol/water partition coefficient (LogP) of
[18F]-MerTK-6. The resulting fractions were counted using a gamma counter. The reaction
was repeated three times. The logP values of [18F]-MerTK-6 (1.56 ± 0.02) showed that it
was moderately lipophilic, indicating that it had good cell membrane permeability and
tumor cell uptake potential.

2.4. PET Imaging Study on Mice

Evaluation of the PET agent [18F]-MerTK-6 was performed on B16F10 tumor-bearing
mice. Representative images and main organ uptakes are shown in Figure 2. At 30 min post-
injection (p.i), the uptake in tumor, liver, kidney, and muscle was 4.65 ± 1.25, 14.79 ± 0.99,
10.42 ± 1.01, and 2.51 ± 0.48%ID/g, respectively. The uptake at 2 h p.i. was 4.79 ± 0.24,
9.72 ± 1.56, 5.34 ± 1.25, and 1.55 ± 0.23%ID/g, respectively. Overall, the tumor uptake
was maintained at ~5%ID/g and the tumor to muscle contrast increased to 3.09 at 2 h
p.i, compared with 1.86 at 0.5 h p.i. No apparent tumor uptake was observed when
[68Ga]-MerTK-3 or [68Ga]-MerTK-4 was injected into the B16F10 tumors.
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3. Materials and Methods
3.1. Chemistry

Microwave reactions were carried out using a CEM Discover-S reactor with a vertically
focused IR external temperature sensor and an Explorer 72 autosampler. The dynamic
mode was used to set up the desired temperature and hold time with the following fixed
parameters: PreStirring, 1 min; Pressure, 200 psi; Power, 200 W; PowerMax, off; Stirring,
high. Flash chromatography was carried out on Teledyne ISCO Combi Flash® Rf 200 with
pre-packed silica gel disposable columns. Preparative HPLC (Agilent Technologies 1260
Infinity, Santa Clara, CA, USA) was performed with UV detection at 220 or 254 nm. Samples
were injected onto a 75 × 30 mm, 5 µm, C18(2) column at room temperature. The flow rate
was 30 mL/min. Various linear gradients were used with solvent A (0.1% TFA in water) and
solvent B (0.1% TFA in acetonitrile). Analytical HPLC was performed with a prominence
diode array detector (Shimadzu SPD-M20A, Kyoto, Japan). Samples were injected onto a
3.6 µm PEPTIDE XB-C18 100 Å, 150 × 4.6 mm LC column at room temperature. The flow
rate was 1.0 mL/min. Analytical thin-layer chromatography (TLC) was performed with
silica gel 60 F254, and 0.25 mm pre-coated TLC plates. The TLC plates were visualized using
UV254 and phosphomolybdic acid with charring. All 1H NMR spectra were obtained with
a 400 MHz spectrometer (Agilent VnmrJ, Santa Clara, CA, USA) using CDCl3 (7.26 ppm),
or CD3OD (2.05 ppm) as an internal reference. Signals are reported as m (multiplet), s
(singlet), d (doublet), t (triplet), q (quartet), p (pentet), and bs (broad singlet); and coupling
constants are reported in hertz (Hz). The 13C NMR spectra were obtained with a 100 MHz
spectrometer (Agilent VnmrJ, Santa Clara, CA, USA) using CDCl3 (77.2 ppm), or CD3OD
(49.0 ppm) as the internal standard. Representative NMR spectrums were provided in
Supplementary Material. LC/MS (Agilent Technologies 1260 Infinity II, Santa Clara, CA,
USA) was performed using an analytical instrument with the UV detector set to 220 nm,
254 nm, and 280 nm, and a single quadrupole mass spectrometer using an electrospray
ionization (ESI) source. Samples were injected (2 µL) onto a 4.6 × 50 mm, 1.8 µm, C18
column at room temperature. A linear gradient from 10% to 100% B (0.1% acetic acid in
MeOH) in 5.0 min was followed by pumping 100% B for another 2 or 4 min with A being
H2O + 0.1% acetic acid. The flow rate was 1.0 mL/min. The purity of all final compounds
(>95%) was determined by LC-MS.

3.1.1. Synthesis of UNC5650

General procedure A [25].
A mixture of 1 (3.30 g, 10.0 mmol); (S)-pentan-2-amine (3.48 g, 40.0 mmol); potassium

carbonate (5.52 g, 40.0 mmol); and N,N-diisopropylethylamine (7.0 mL, 40.0 mmol) in
iPrOH (80 mL) was heated at 120 ◦C for 3 d. The reaction mixture was extracted between
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EtOAc (3 × 80 mL) and H2O (80 mL). The combined organic layers were washed with
brine (50 mL), dried (Na2SO4), filtered, and concentrated under reduced pressure. The
residue was purified by an ISCO silica gel column to afford the desired product 2 as a
pale-yellow solid (2.82 g, 74%). 1H NMR (400 MHz, CD3OD) δ 8.26 (s, 1H); 7.12 (s, 1H),
4.45 (ddd, J = 11.5, 10.3, 4.5 Hz, 1H); 4.07 (dd, J = 13.1, 6.6 Hz, 1H); 3.65 (ddd, J = 11.0, 7.7,
4.3 Hz, 1H), 2.12–1.83 (m, 6H); 1.68–1.37 (m, 6H), 1.21 (dd, J = 6.9, 2.7 Hz, 3H); 0.94 (dd,
J = 9.0, 5.4 Hz, 3H); 13C NMR (100 MHz, CD3OD) δ 160.32; 153.26,;150.13; 123.29; 112.24;
88.86; 70.22; 54.27; 47.71; 40.21; 35.31; 35.30; 31.46; 31.32; 21.05; 20.54; 14.45. MS (ESI) for [M
+ H]+ (C17H26BrN4O+): calcd. m/z 381.12; found m/z 381.11.; LC-MS: 98% purity.

A suspension of 2 (381 mg, 1.0 mmol), Pd(PPh3)4 (58 mg, 0.05 mmol), 3,6-dihydro-
2H-pyridine-1-N-Boc-4-boronic acid, pinacol ester (618 mg, 2.0 mmol), and potassium
carbonate (415 mg, 3.0 mmol) in a mixture of dioxane and H2O (4:1, 10 mL) was heated at
90 ◦C under microwave radiation for 2.0 h. The reaction mixture was cooled to rt and the
solvent was removed under reduced pressure. The residue was purified by an ISCO silica
gel column to afford a Boc-protected product which was dissolved in MeOH (2.0 mL) and
treated with a 4.0 M HCl solution in dioxane (2.0 mL). The resulting solution was stirred at
rt for 1 h, and then concentrated under reduced pressure to provide the desired compound
3a as a pale-yellow solid (276 mg, 72%). 1H NMR (400 MHz, CD3OD) δ 8.76 (s, 1H); 7.66 (s,
1H), 6.17 (s, 1H); 4.56–4.46 (m, 1H); 4.20–4.11 (m, 1H); 3.90–3.85 (m, 2H); 3.72–3.61 (m, 1H);
3.46 (d, J = 8.0 Hz, 2H); 2.82–2.75 (m, 2H); 2.15–2.05 (m, 2H); 2.04–1.93 (m, 4H); 1.71–1.58 (m,
2H); 1.53–1.40 (m, 4H); 1.30 (d, J = 8.0 Hz, 3H); 0.97 (t, J = 8.0 Hz, 3H); 13C NMR (100 MHz,
CD3OD) δ 154.49; 150.48; 138.87; 127.71; 127.10; 116.40; 115.77; 109.18; 72.13; 71.00; 68.50;
60.74; 53.73; 42.38; 41.75; 40.51; 38.09; 33.67; 29.40; 23.13; 19.00; 12.87. MS (ESI) for [M + H]+

(C22H34N5O+): calcd. m/z 384.28; found m/z 384.30; LC-MS: 95% purity.
A suspension of 3a (383 mg, 1.0 mmol) and palladium on carbon (10% Pd, 380 mg)

in MeOH (20 mL) was stirred at rt under hydrogen atmosphere overnight. The resulting
mixture was filtered through a pad of Celite and the solvent was removed under reduced
pressure. The residue was purified by an ISCO silica gel column to afford the desired
product 4 (UNC5650) as a yellow solid (240 mg, 62%). 1H NMR (400 MHz, CD3OD) δ
8.75 (s, 1H), 7.40 (s, 1H), 4.55–4.43 (m, 1H), 4.25–4.10 (m, 1H), 3.75–3.65 (m, 1H), 3.50 (d,
J = 12.7 Hz, 2H), 3.25–3.10 (m, 3H), 2.22 (d, J = 13.9 Hz, 2H), 2.11 (d, J = 11.2 Hz, 2H),
2.04–1.86 (m, 6H), 1.73–1.38 (m, 6H), 1.30 (d, J = 6.6 Hz, 3H), 0.98 (t, J = 7.3 Hz, 3H); 13C
NMR (100 MHz, CD3OD) δ 153.91, 150.43, 137.76, 125.40, 120.05, 110.54, 72.13, 71.00, 68.54,
60.74, 53.38, 43.85, 42.42, 38.12, 33.70, 30.83, 29.51, 29.36, 28.82, 19.10, 18.94, 12.88. MS (ESI)
for [M + H]+ (C22H36N5O+): calcd. m/z 386.29; found m/z 386.30; LC-MS: 95% purity.

3.1.2. Synthesis of UNC6429

The title compound UNC6429 was synthesized according to the general procedure
A as a yellow solid (240 mg, 0.523 mmol). 1H NMR (400 MHz; CD3OD) δ 8.70 (s, 1H);
7.47–7.41 (m, 2H); 7.33 (dd, J = 15.9, 8.0 Hz, 3H); 7.28–7.20 (m, 1H); 5.10 (q, J = 7.0 Hz, 1H);
4.37–4.25 (m, 1H); 3.66 (tt, J = 10.9; 4.2 Hz, 1H); 3.49 (d, J = 13.5 Hz, 2H); 3.21–3.04 (m, 3H);
2.19 (d, J = 14.3 Hz, 2H); 2.12–1.98 (m, 2H); 1.86 (tdt, J = 16.0, 12.6, 8.2 Hz, 5H); 1.72–1.58 (m,
4H); 1.45 (tt, J = 12.9, 10.6 Hz, 2H); MS (ESI) for [M + H+] (C25H34N5O+): calcd. m/z 420.28;
found m/z 420.30; LC-MS 99% purity.

3.1.3. Synthesis of MerTK-1

General procedure B.
The synthesis of MerTK-1 was modified with literature method [25]. To a solution of

UNC5650 (19 mg, 49 µmol) and formaldehyde (11 µL, 0.15 mmol, 37%) in dichloromethane
(6.0 mL) was added sodium triacetoxyborohydride (85 mg, 0.15 mmol) at rt. After 1 h,
the solvent was removed under reduced pressure. The residue was purified by HPLC to
afford a Boc protected product which was dissolved in MeOH (1.0 mL) and treated with a
4.0 M HCl solution in dioxane (1.0 mL). After 1 h, the reaction solution was concentrated
under reduced pressure to provide MerTK-1 as a pale-yellow solid (8.0 mg, 41%). 1H
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NMR (400 MHz, CD3OD) δ 8.71 (s, 1H); 7.38 (s, 1H); 4.55–4.43 (m, 1H); 4.23–4.10 (m, 1H);
3.75–3.55 (m, 4H); 3.25–3.05 (m, 2H); 2.92 (s, 3H); 2.25 (d, J = 14.7 Hz, 2H); 2.15–1.94 (m,
8H); 1.72–1.40 (m, 6H); 1.30 (d, J = 6.6 Hz, 3H); 0.98 (t, J = 7.2 Hz, 3H); MS (ESI) for [M +
H]+ (C23H38N5O+): calcd. m/z 400.31; found m/z 400.35; LC-MS: 95% purity.

3.1.4. Synthesis of MerTK-2

MerTK-2 was synthesized according to the general procedure B as a yellow solid
(17 mg, 39 µmol) in 60% yield. 1H NMR (400 MHz, CD3OD) δ 8.72 (s, 1H); 7.44 (d,
J = 7.8 Hz, 2H); 7.36–7.32 (m, 3H); 7.24 (t, J = 7.8 Hz, 1H); 5.11 (q, J = 6.7 Hz, 1H); 4.35–4.28
(m, 1H); 3.69–3.58 (m, 3H); 3.17 (t, J = 11.5 Hz, 2H); 3.10–3.04 (m, 1H); 2.91 (s, 3H); 2.25–2.20
(m, 2H); 2.08–1.78 (m, 7H); 1.68–1.63 (m, 1H); 1.64 (d, J = 8.1 Hz, 3H); 1.52–1.38 (m, 2H); MS
(ESI) for [M + H]+ (C26H36N5O+): calcd. m/z 434.29; found m/z 434.30; LC-MS: 95% purity.

3.1.5. Synthesis of MerTK-3/MerTK-4

MerTK-3 was synthesized by modifying the literature method [26]. Generally, the
UNC5650 (1.0 equiv.) was reacted with NOTA-Bn-NCS (2.0 equilv.) under the basic condi-
tion to yield MerTK-3 after purification by HPLC. The collected product was lyophilized
and Mass spectrum confirmed. MS (ESI), calcd. for C42H62N9O7S (M + 1H), 836.45;
found, 836.70.

The same method was applied to synthesize precursor MerTK-4 (5.1 mg, 56%) with
UNC6429 as the starting material. 1H NMR (500 MHz, CD3OD) δ 8.67 (s, 1H); 7.48–7.42
(m, 2H), 7.40–7.19 (m, 8H); 5.11 (q, J = 6.9 Hz, 1H); 4.91 (overlapping with CD3OD peak,
1H); 4.36–4.27 (m, 1H); 4.07–3.84 (m, 3H); 3.78–3.53 (m, 3H); 3.50–3.04 (m, 11H); 2.98–2.59
(m, 6H); 2.08–2.02 (m, 3H); 1.92–1.66 (m, 6H); 1.65 (d, J = 7.0 Hz, 3H); 1.54–1.40 (m, 2H);
1.36–1.27 (m, 2H); MS (ESI), calcd for C45H61N9O7S (M + 2H), 871.44; found, 871.43).

3.1.6. Synthesis of MerTK-5

General procedure C.
The synthesis of MerTK was modified from literature method [25]. To a solution

of UNC5650 (10.0 mg, 21.8 µmol) and 2-fluoroethyl 4-toluenesulfonate (3.7 µL, 22 µmol)
in acetonitrile (2.2 mL) was added sodium iodide (1.6 mg, 11 µmol), and sodium car-
bonate (10.4 mg, 98.2 µmol). The reaction mixture was heated at 65 ◦C for 18 h and
concentrated in vacuo. The residue was purified by normal phase chromatography
(dichloromethane/methanol gradient) to afford the desired compound MerTK-5 as a
pale-yellow oil, which was freeze dried to give an orange solid (4.0 mg, 9.3 µmol) in 43%
yield. 1H NMR (400 MHz, CD3OD) δ 8.53 (s, 1H); 7.01 (s, 1H); 4.94–4.91 (m, 1H); 4.83–4.77
(m, 1H); 4.50–4.39 (m, 1H); 4.15–4.05 (m, 1H); 3.73–3.63 (m, 4H); 3.59–3.47 (m, 2H); 3.15–3.05
(m, 1H); 2.26 (d, J = 14.3 Hz, 2H); 2.14–1.94 (m, 8H); 1.70–1.57 (m, 1H); 1.57–1.40 (m, 6H);
1.24 (d, J = 6.5 Hz, 3H); 0.97 (t, J = 7.2 Hz, 3H); MS (ESI) for [M + H+] (C24H39FN5O+): calcd.
m/z 432.31; found m/z 432.30; LC-MS 96% purity.

3.1.7. Synthesis of Compound MerTK-6

MerTK-6 was synthesized according to the general procedure C as an orange foam
(5.6 mg, 12 µmol) in 49% yield. 1H NMR (400 MHz, CD3OD) δ 8.48 (s, 1H); 7.43–7.36 (m,
2H); 7.27 (dd, J = 8.4, 6.9 Hz, 2H); 7.20–7.11 (m, 1H); 6.83 (s, 1H); 5.02 (q, J = 7.0 Hz, 1H);
4.78 (t, J = 4.7 Hz, 1H); 4.67 (t, J = 4.7 Hz, 1H); 4.29–4.19 (m, 1H); 3.69–3.60 (m, 1H); 3,46–3.32
(m, 2H); 3.20–3.05 (m, 2H); 2.93–2.82 (m, 1H); 2.80–2.63 (m, 2H;, 2.21–1.75 (m, 8H); 1.72–1.65
(m, 1H); 1.54 (d, J = 7.0 Hz, 3H); 1.51–1.36 (m, 2H); 1.35–1.25 (m, 1H); MS (ESI) for [M + H+]
(C27H37FN5O+): calcd. m/z 466.30; found m/z 466.30; LC-MS 98% purity.

3.1.8. Microcapillary Electrophoresis (MCE) Assays

Microcapillary Electrophoresis (MCE) Assays were performed with literature method [25].
These assays were performed in a 384-well polypropylene microplate in a final volume of
50 µL of 50 mM Hepes at Ph 7.4 containing 10 mM MgCl2, 1.0 mM DTT, 0.01% Triton X-100,
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0.1% Bovine Serum Albumin (BSA), 1.0 µM fluorescent substrate (Table 2), and ATP at the
Km for each enzyme (Table 2). All reactions were terminated by addition of 20 µL of 70 mM
EDTA. After an 180 min incubation, phosphorylated and unphosphorylated substrate
peptides (Table 2) were separated in buffer supplemented with 1 x CR-8 on a LabChip EZ
Reader equipped with a 12-sipper chip. Data were analyzed using EZ Reader software.

Table 2. Assay conditions for MCE assays.

Kinase Peptide Substrate Kinase (nM) ATP (µM)

Mer 5-FAM-EFPIYDFLPAKKK-CONH2 1.7 22.3
Axl 5-FAM-KKKKEEIYFFF-CONH2 16 200

Tyro3 5-FAM-EFPIYDFLPAKKK-CONH2 5 40
Flt3 5-FAM-KKKKEEIYFFF-CONH2 0.3 275

3.2. Radiochemistry

General procedure D.
Radiolabeling protocol for [18F]-MerTK-6: [18F]-2-fluoroethyl 4-methylbenzenesulfonate

was prepared (50–60 mCi) as previously described by us [27]. Then K2CO3 (2 mg), UNC6429
(2 mg) and 60 µL acetonitrile were added in and heated at 90 ◦C for 20 min. The resulting
tracer was purified by HPLC to get [18F]-MerTK-6 with a radiochemistry yield (RCY) of
46.0% based on the last step. The collected solution containing [18F]-MerTK-6 was diluted
with 5 mL milliQ pure water and loaded onto a Sep-Pak C18 cartridge. The C18 cartridge
was washed with 10 mL of water, and then the product was washed out by 1 mL acetonitrile.
After removing the acetonitrile under vacuum, the product was diluted with saline. The
radiochemical purity (>99%) of the final product was checked on HPLC with the condition
as: Phenomenex, Gemini 5 µm C18 110A, New Column 250 × 4.6 mm. Solvent A: 0.1%TFA
water; Solvent B: 0.1% TFA acetonitrile; Flow rate: 1 mL/min, column temperature: 19 to
21 ◦C. Zero to two min: isocratic 5% solvent B, 2 to 22 min: 5–95% solvent B, 22 to 35 min:
isocratic 95% solvent B. The structure of the product was confirmed by co-injection of [18F]-
MerTK-6 with [19F]-MerTK-6 ([19F]-UNC7333). The [18F]-MerTK-5 was also synthesized
according to general procedure D by using UNC5650 as a starting material.

3.3. Evaluation of LogP

The LogP value of the [18F]-MerTK-6 was calculated by the gamma particle counts of
samples in the aqueous phase or 1-octanol phase by Automatic Gamma Counter 2480-0010
(PerkinElmer Instruments Inc., Waltham, MA, USA).

The [18F]-MerTK-6 was collected after HPLC purification. After reformulation (pH
value around 7.4), 20 µL [18F]-MerTK-6 sample in saline was added to the mixture of
1 mL Mili-Q®water and 1 mL 1-octanol in a 5 mL Eppendorf tube. The tube was shacked
thoroughly and then let stand still for 5 min. Then the 100 µL 1-octanol phase and 100 µL
aqueous phase were subjected to a gamma counter separately and the gamma counts
were recorded (n = 3). The LogP value was then calculated and expressed as a mean
value ± standard derivation.

3.4. Mouse Model

All animal studies were reviewed and approved by The University of North Carolina
at Chapel Hill Institutional Animal Care and Use Committee. The B16F10 tumor cell was
obtained from the LCCC tissue culture facility (the University of North Carolina at Chapel
Hill, Chapel Hill, NC, USA). The B16F10 tumor-bearing nude mouse model was prepared
as described previously [28]. Briefly, B16/F10 cells were subcutaneously injected on the
right flank of C57BL/6 female mice (Jackson Laboratory). The tumor volume was measured
daily. When the tumor size reached 100 mm3, the mice were used for PET imaging studies.
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3.5. PET Imaging

B16F10 tumor-bearing mice (n = 3/group) were intravenously injected via the tail
vein with tracers. At 30 min and 120 min post-injection, a 10-min static emission scan was
acquired with a SuperArgus small-animal PET/CT scanner. The regions of interests (ROIs)
were drawn over the tumor and other organs and calculated as %ID/g. The mean uptake
and standard deviation were calculated.

4. Conclusions

In this study, we synthesized several MerTK targeted PET agents based on the core
structure of MerTK-specific inhibitor UNC5293. Of them, [18F]-MerTK-6 showed a signifi-
cant uptake rate (4.79 ± 0.24%ID/g) in B16F10 tumor-bearing mice. At 0.5 and 2 h after
injection, the tumor to muscle ratio reached 1.86 and 3.09, respectively. In summary, [18F]-
MerTK-6 is a promising PET agent for MerTK imaging and worthy of further evaluation
in future studies. There are a few MerTK inhibitors entered into clinical trials recently, such
as MRX-2843 [3], INCB081776 [29], and RXDX-106 [30]. The MerTK-target PET imaging
tracer would potentially help evaluating target engagement and adjusting treatment plan
for individual patient.

Supplementary Materials: The following are available online. Figures S1–S7: 1H NMR spectra for
standard compounds.
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