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Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous
treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies
provide less benefit for protection from CVD. These considerations spur the concept that
diabetes-specific, disease-modifying therapies are essential to identify especially as the
diabetes epidemic continues to expand. In this context, high levels of blood glucose
stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling
changes in cells of the cardiovascular system. In animal models flux via AR in hearts is
increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic
hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis,
human AR expression accelerates progression and impairs regression of atherosclerotic
plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of
the ALD2 (human AR gene) is associated with diabetic complications, including
cardiorenal complications. This Review presents current knowledge regarding the roles
for AR in the causes and consequences of diabetic cardiovascular disease and the status
of AR inhibitors in clinical trials. Studies from both human subjects and animal models are
presented to highlight the breadth of evidence linking AR to the cardiovascular
consequences of diabetes.

Keywords: diabetes, cardiovascular diabetic complications, aldose reductase, polyol pathway, hyperglycemia,
aldose reductase inhibitor, cardiovascular disease
INTRODUCTION

Diabetes prevalence worldwide has been increasing at an alarming rate. World Health organization
estimates that currently greater than 400 million people live with diabetes (https://www.who.int/
health-topics/diabetes). As the number of people with diabetes has increased, consequent increases
in diabetic complications has been observed (1, 2). Among the various diabetic complications,
cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with
diabetes mellitus (3). CVD entities include increased sensitivity of diabetic myocardium to ischemic
episodes (4) and diabetic cardiomyopathy, manifested as a subnormal functional response of the
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diabetic heart independent of coronary artery disease (5, 6).
Macrovascular disease in patients with diabetes, includes,
atherosclerosis (7), coronary artery disease (CAD), peripheral
vascular disease (PVD) and stroke (8), and restenosis of large
vessels (9–11). The United Kingdom Prospective Diabetes Study
(UKPDS) demonstrated that despite significant reductions in
HbA1c, diabetes related mortality and myocardial infarction (MI)
events were not reduced (12).

CVD significantly reduces the median life expectancy for
diabetic adults in the 55–64 age group (13, 14). This is likely due
to diabetes specific cardiovascular disorders. Key among them is
the accelerated atherosclerosis in diabetes, with greater infiltration
of inflammatory cells, and larger necrotic core size (15).While the
deaths due to CAD have declined in the general population, the
reduction in deaths due to CAD has been much less dramatic in
diabetic patients (16). Another factor contributing to CV death in
diabetics is heart failure. Prevalence of diastolic heart failure with
preserved ejection fraction (HFpEF) and systolic heart failure
with reduced ejection fraction (HFrEF) are higher in patients
with diabetes compared to those without diabetes. While the
precise mechanisms by which diabetes mediates heart failure are
unknown, contributors include impaired endothelial dysfunction,
pathways driving fibrosis, cardiomyocyte dysfunction, and
defective remodeling after myocardial infarction (17, 18).
Similarly, the Framingham Heart Study showed that diabetes
independently increases the risk of heart failure (19–21).
Recently meta-analysis of sixteen CV outcome trials by Sacre
et al. (22) found that hospitalization for heart failure and
myocardial infarction are the most frequent CV events in
clinical trials in Type 2 diabetes.

High rate of mortality, post-MI, has been observed in people
with diabetes vs those without diabetes (21, 23, 24), presumably
due to ventricular arrhythmia (25). Mechanisms causing
arrhythmias in diabetes include calcium channel function
changes driven by downregulation of SERCA2a and increased
phosphorylation of the ryanodine receptor (26, 27), oxidative
stress (28, 29), AGEs-RAGE axis (29–31). Cardiac autonomic
neuropathy prevalent in patients with diabetes, has been linked
to increased risk for fatal cardiac arrhythmias (32).

In the recent outbreak of the coronavirus disease 2019 (COVID-
19), diabetes and cardiovascular disease are risk factors for severe
adverse clinical outcome in COVID19 patients (33). Emerging data
reveal that diabetes and obesity are among the strong predictors for
hospitalization among COVID-19 patients and risk factor for severe
COVID-19 morbidity and mortality (34–38). In these hospitalized
COVID-19 patients, myocardial infarction with or without
obstructive coronary lesions (33, 39) were observed. These and
the above findings strongly highlight the urgent need for focused
therapies for alleviating the devastating impact of cardiovascular
complications induced by diabetes. Global efforts are underway to
find more effective strategies to mitigate and or attenuate the
devastating consequences of diabetic cardiovascular complications.

In this review, we will focus on aldose reductase (AR), its
possible link to the cardiovascular complications of diabetes
mellitus and the potential impact of pharmacological inhibition
of AR on cardiovascular complications of diabetes.
Frontiers in Endocrinology | www.frontiersin.org 2
HYPERGLYCEMIA IN
CARDIOVASCULAR CELLS

One of the key mechanisms by which chronic hyperglycemia
(CH) exerts its deleterious effects on CV tissue involves
nonenzymatic glycation reactions of reducing sugars with free
amino groups of proteins, DNA, and lipids. Amadori products
formed by this reaction leads to the formation of advanced
glycation end products (AGEs) (40–48). These derivatives can
bind to pre-existing cell surface receptors of AGEs and such
interactions often lead to generation of reactive oxygen species
through perturbation of NADPH oxidase (33–38, 49). CV tissue
is less dependent on insulin for glucose uptake from extracellular
environment due to abundance of GLUT1, an insulin
independent glucose transporter in the plasma membrane
(50, 51). During CH, there is chronic and abnormal influx of
extracellular glucose due to down regulation of GLUTs
altering the biochemical homeostasis of cardiovascular cells
(52, 53). Consequently, changes, in flux via the polyol
pathway, cytoplasmic redox state, activity of specific isoforms
of protein kinase C, in the glucosamine biosynthesis
pathway, and production of glycating species are observed (9,
53–61).

The present review mainly focuses on aldose reductase (AR),
the first enzyme of the polyol pathway that regulates the uptake
of excess glucose by the cardiovascular cells.
PROPERTIES OF AR AND ITS GENE, ALD2

Aldose reductase (E.C. 1.1.1.21; AKR1B1, ALD2, or AR), a
monomeric enzyme of ~35,900 Daltons, belongs to the aldo-
keto reductase superfamily (62–67). The enzyme reversibly binds
NADPH when it reduces an aldehydic substrate to the
corresponding alcohol, e.g., glucose to sorbitol.

AR reduces a variety of aldehydic substrates with differing
affinities (68, 69). The enzyme efficiently catalyzes reduction of
glyceraldehyde, 4-hydorxynonenal (4-HNE), 2-methylpentanal,
methylglyoxal, retinoids and host of other aldehydes (69–71).
These AR studies determined that the Km values for the above
substrates are in the range of 8 to 50 µmol/L. For glucose, Inagaki
et al. (72) and Grimshaw (73) showed for AR a Km for the open
chain of glucose of 0.66 µmol/L.

Oxidation of cysteine residue, Cys 298 causes AR to exhibit
altered activity and inhibitor sensitivity (74). AR activity is
altered by S−nitrosothiols (75), activated by nitric oxide (NO)
under ischemic/acidic conditions (76) or inhibited by elevated
NO levels in non-acidic conditions (77). In human tissues AR
occurs mostly in the reduced enzyme form (78).

The human AR gene (ALD2 or AKR1B1), approximately 18
kilobases (kb) long and includes ten exons coding for 316 amino
acids, has been mapped to locus q35 on human chromosome 7
(79, 80). The TATA box (at -37), a CCAAT box (−104), and an
androgen-like response element (−396–382) are in the ALD2
promoter region of (81). The region containing three osmotic
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response elements: OreA, OreB and OreC reside upstream of the
transcription start site (82).

ALD2 gene polymorphisms have been found to be associated
with most diabetic complications (83, 84). Microsatellite
polymorphism in (AC)n repeat region located ~2.1 kb
upstream of the transcription start site was first identified in
patients with diabetic retinopathy (85). Subsequent studies
detected single nucleotide polymorphisms C(-106)T (86) and
C(−12)G (87) in the basal promoter region of the ALD2 gene. An
intragenic polymorphism in the BamHI site consisting of an A to
C substitution associated with diabetic retinopathy, was also
identified (88). Studies by Demaine et al. and Moczulski et al. (89,
90) showed that the (AC)n and C(-106)T polymorphisms are
closely linked. Majority of studies have demonstrated an
association between polymorphisms in the ALD2 gene and the
increased risk for rapid onset or increased prevalence of diabetic
complications. The “Z-2” (AC)23 microsatellite polymorphism
has been associated with high expression levels of AR (91) and
with diabetic retinopathy (85, 89), diabetic nephropathy (90–93).
The link between Z-2 allele and diabetic neuropathy is rather
modest (94).

In some studies an association between ALD2 alleles and
complications risk has not been detected (95, 96). In one study of
Type 2 diabetic patients, although no association of Z−2 with
proteinuria was found, a statistically significant association of
erythrocyte AR concentration with proteinuria was found (97).
ALD2 gene polymorphism has been detected in Type 2 diabetic
patients with cardiorenal complications (98) and microangiopathy
(99). It is important to note that most studies across the globe has
demonstrated link between diabetic complications and AL2
polymorphisms (100–104).
POLYOL PATHWAY AND THE
OSMOTIC HYPOTHESIS

Based on thee replicated genetic links, the impact of chronically
elevated glucose metabolism via the AR pathway aka polyol
pathway has received considerable attention in the study of
diabetic complications. In this pathway (105), AR in the
presence of NADPH reduces glucose to sorbitol, while sorbitol
dehydrogenase (SDH) uses NAD+ to oxidize sorbitol to fructose.
The pioneering studies of Kinoshita, Gabbay, Dvornik and
colleagues (106) demonstrated the presence of elevated polyol
pathway intermediates in diabetic rat tissues and suggested a
pathogenic link to diabetic complications. In the seminal
“Osmotic Hypothesis” paradigm, high levels of glucose are
metabolized through AR and SDH to sorbitol and fructose.
Accumulation of sorbitol in tissues like eye lens induces a
osmosis driven cascade of altered ion and metabolite
homeostasis, culminating in the formation of the sugar cataract
(106). Data demonstrating an accelerated rate of sorbitol
accumulation and cataract formation in human AR transgenic,
and SDH-deficient mice (107) provides clear confirmation of this
mechanism for sugar cataract formation.
Frontiers in Endocrinology | www.frontiersin.org 3
POLYOL PATHWAY AND METABOLIC
FLUX HYPOTHESIS

The past several decades of research have reemphasized that in
many tissues/cells the polyol pathway is integrally linked via its
coenzymes to various metabolic and signaling pathways (108–
111). In studies involving the lens tissue, it was shown that
increased flux via the polyol pathway, increased turnover of
NADPH (112) and that AR and antioxidant defense enzyme
glutathione reductase compete for the same pool of cytoplasmic
NADPH. Another study showed that increased metabolic flux
via the polyol pathway impairs the glycolysis in diabetic hearts,
resulting from competition between SDH and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) for cytosolic NAD+ (58).
Furthermore, studies by Williamson and his team have
demonstrated increased polyol pathway flux modulates the
ratio of free cytosolic NADH to NAD+ and consequently
impairs neural and vascular function (113–117).

Realization that in conjunction with possible osmotic stress in
vascular tissue, excess metabolic flux of glucose through AR
affects key pathways linked to diabetic complications via its
ability to generate precursors/intermediates/activators, has
heightened interest in AR and the polyol pathway.

The presence and levels of AR vary in tissues and cells (118),
with the inner medulla of kidney expressing the highest amount
of AR (119). While sciatic nerve, lens, testis, heart, and cornea,
express high levels of AR, organs/tissues such as liver, renal
cortex, stomach, spleen, lung, small intestine, and colon express
low levels of AR (119). AR is present in cells such as
cardiomyocytes, endothelial cells, smooth muscle cells, and
fibroblasts. In this review, we summarize the key data on AR
and evidence linking AR to cardiovascular complications
in diabetes.
AR AND ITS PHYSIOLOGICAL ROLE

To date, the basic physiological function of AR remains elusive
(120). By synthesizing intracellular sorbitol, AR forms parts of a
multi-tiered renal osmolyte system that helps protect cells in the
renal inner medulla from the locally high osmotic stress (121, 122).
Interestingly, AR inhibiton results in upregulation of sorbitol
compensatory pathways in the renal osmolyte system (123).

Several potential physiological roles have been proposed, they
include (a) generation of intermediates to facilitate production of
advanced glycation end product precursors (124–127), (b) process
to divert glucose from glycolysis and glucose oxidation (53), (c)
participation in the metabolism of steroids (128), norepinephrine
intermediates (129), detoxification of aldehydes, e.g., (130), or of
their glutathionylated derivatives (131). Like AR, aldehyde
dehydrogenase 2 (ALDH2) has been shown to detoxify 4-
hydroxynonenal (4-HNE) and is expressed in cardiovascular cells
(132, 133). Furthermore, studies have shown that 4HNE is a
substrate ALDH2, with Km and Vmax values of 14.3 mM and 3.5
nmol min-1 mg protein-1, respectively (134, 135). The fact that AR,
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aldehyde reductases, and aldehyde dehydrogenases can essentially
compete for various aldehydes (136, 137), makes it challenging to
determine specific physiological role for AR.

In addition to the enzymatic activity, two recent studies have
revealed other functions for AR. First, our studies (138) showed
that the interaction of AR with deacetylation domain (DAD) of
the nuclear corepressors, silencing mediator of retinoic and
thyroid receptor (SMRT) and nuclear corepressor 1 (NCOR1),
could lead to histone deacetylase 3 (HDAC3) degradation
(Figure 1). HDAC3 binds to the DAD of either (SMRT) or
(NCOR1) and protects itself from degradation (139). We
observed that interaction of AR with DAD of SMRT/NCOR1
in hearts of ischemic, diabetic, and aged mice drives HDAC3
degradation, consequently leading to PPARg activation and lipid
accumulation in the hearts (138). These findings revealed a
novel role for AR in modulating lipid metabolism via its ability to
regulate HDAC3 degradation and consequent activation
of PPARg.
Frontiers in Endocrinology | www.frontiersin.org 4
Second, AR actions independent of its enzymatic activity
were revealed in a study by Shimizu et al. (140). Using
phosphoproteome analysis and molecular studies, they showed
that AR phosphorylation/dephosphorylation is essential for the
transduction of T cell receptor-mediated T-cell stimulatory
signals. Notably, they showed that AR expression in T cells was
unaffected by TCR stimulation or by the presence of suppressor
signals from immunosuppressive macrophages. Importantly,
upregulation of ERK1/2-mediated signaling pathways in T
lymphocytes was linked to AR phosphorylation driven events.
Shimizu et al. (140) concluded that AR mediates intracellular
transmission of the suppressor signal of immunosuppressive
macrophages toward downstream ERK1/2 pathways, possibly
through its direct interaction with acceptor proteins.

Adding to the AR functional conundrum are data from mice
devoid of AR (141). These AR null mice, otherwise normal from
structural, biochemical, reproductive and physiological
standpoint, display mild polyuria, and mild polydipsia (141),
FIGURE 1 | Scheme showing competition between AR and HDAC3 for the DAD of SMRT/NCOR1 and consequent transcriptional changes leading to lipid
accumulation. [adapted from (128)]. AR denotes aldose reductase; DAD refers to deacetylation domain of the nuclear corepressors, SMRT refers to silencing
mediator of retinoic and thyroid receptor, NCOR1 denotes nuclear corepressor 1, RAR denotes retinoic acid receptor, HDAC3 denotes histone deacetylase 3.
March 2021 | Volume 12 | Article 636267
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and moderately altered divalent cation levels (142). Nerve
conduction velocity (NCV) is unaffected by the overexpression
of AR; however, in a diabetic setting, in marked contrast to the
fall in NCV in wild type mice, NCV is normal in the AR
knockout mouse (141). Similarly, cardiac contractile function
is unaffected by pharmacological inhibition of AR (143–145).

Though the physiological function of AR in normal cellular
and organ physiology is unclear, the pathogenic role of AR as a
key player mediating diabetic complications is well established.
This review will focus on the pathogenic role of AR in diabetic
cardiovascular complications.
DIABETIC CARDIAC ISCHEMIA AND AR

The presence and activity of AR in cardiac myocytes of rats and
rabbits has been demonstrated in several studies, e.g., (76, 143–
147), and cardiac sorbitol and fructose tissue concentrations
were shown to be significantly increased in diabetic rats
compared to control rats (146). Studies have shown that
diabetes and ischemia increase AR activity in hearts (76, 148)
and that blockade of AR with ARI zopolrestat or sorbinil was
found to improve cardiac glucose metabolism and to
dramatically reduce acute ischemia-reperfusion-induced
cardiac damage in diabetic rat hearts and in non-diabetic rat
and rabbit hearts (76, 143–145).
Frontiers in Endocrinology | www.frontiersin.org 5
Humans have much greater activity of AR than mice. For this
reason, we used a transgenic mouse line in which human AR
(hAR) was expressed via a histocompatibility gene promoter
(149). These transgenic mice have tissue levels of AR activity
comparable to those of humans (108). These hAR transgenic
mice have been invaluable in recapitulating human diabetic
cardiovascular disease. When subjected to ischemia/reperfusion
(I/R), hearts from hAR transgenic mice exhibited greater injury,
reduced ATP levels, and impaired functional recovery than wild-
type mice (148). AR inhibitor zopolrestat attenuated I/R injury
and improved functional recovery in these hAR transgenic mice
(148). Studies in hAR transgenic mice addressing potential
mechanisms revealed that opening the mitochondrial
permeability transition pore (MPTP) (Figure 2) is linked to
increased I/R injury (150). Increased generation of hydrogen
peroxide, and reduced levels of antioxidant glutathione were key
to MPTP opening in these hAR mice undergoing I/R
(150). Attenuation of reactive oxygen species generation either
by antioxidants or by ARIs reduced MPTP opening and reduced
I/R injury in hAR transgenic mice hearts (150). Since MPTP
opening is linked to phosphorylation of glycogen synthase
kinase 3 b (GSK3b), subsequent studies in hAR mice and AR
null mice, revealed that flux via AR reduces phosphorylation
GSK3b via the Akt pathway in I/R hearts (151). These studies
linked key signaling mechanisms by which AR impairs MPTP
opening in I/R hearts.
FIGURE 2 | Scheme displays the impact of AR on changes in NAD+/NADH and consequent changes in glycolysis, mitochondrial properties and key signaling
pathways leading to ischemic injury in hearts. ATP- adenosine triphosphate; JAK2- Janus activated kinase 2; MPTP-mitochondrial permeability transition pore, Akt- a
serine/threonine-specific protein also known as Protein kinase B (PKB), pAkt- phosphorylated Akt, GSK3b-Glycogen synthase kinase 3 beta, STAT5- Signal
transducer and activator of transcription 5.
March 2021 | Volume 12 | Article 636267
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Studies by Hwang et al. (152), in isolated perfused rat and mice
hearts, revealed that ischemia drives JAK2 phosphorylation
followed by STAT5 activation and that inhibition of AR or SDH
blocked JAK2 and STAT5 activation (Figure 2). Furthermore, using
pharmacological strategies they showed that the activation of JAK2-
STAT5 pathway during ischemia in hAR mice was dependent on
lowering of cytosolic NAD+/NADH and increased protein kinase C
a/b activity. These data (152) (Figure 2), showed that AR mediates
myocardial ischemic injury by modulating NAD+/NADH/protein
kinase C a/b/JAK-STAT signaling.

To determine if AR actions in the heart are specifically in
cardiomyocytes, we generated mice with cardiac specific
expression of human AR (hAR) using the a-myosin heavy
chain (MHC) promoter (153). Cardiomyocyte specific hAR
transgenic expression did not alter cardiac function or glucose
and fatty acid (FA) oxidation gene expression in young mice,
whereas cardiac dysfunction was observed in older mice. Like the
global hAR transgenic mice, these cardiac specific hAR mice also
had greater infarct area and reduced functional recovery than
non-transgenic littermates. In these studies, when the hAR
transgene was crossed onto the PPAR alpha knockout
background, hAR expressing mice had increased heart fructose
content, cardiac fibrosis, reactive oxygen species (ROS), and
apoptosis. These studies informed us that cardiomyocyte
specific overexpression of hAR leads to cardiac dysfunction
with aging and in the setting of reduced FA oxidation and
increased glucose metabolism (153).

Studies addressing the short term and long term remodeling
consequences of in vivo I/R injury model revealed that AR null
mice was protected, in part, due to short term activation of the b-
catenin pathway and subsequent increases in mesenchymal
markers and fibrosis provoking genes (154). The increased
activity of the b-catenin pathway and its downstream target
genes in AR null mice was observed at early time points (48 h) of
recovery after ligation of the descending coronary artery. At later
time points of recovery (28 days), these changes in b-catenin
activity were not observed in the AR null mice hearts. Thus, these
data demonstrated that long term protection in AR null mice
hearts was independent of b-catenin pathway.

In vitro and cellular studies described in the earlier sections of
this review indicate that AR can detoxify aldehydes, such as 4-
HNE, that accumulate during I/R. Studies in hAR expressing
mice hearts have demonstrated increased injury and poor
functional recovery after I/R (148, 155), along with increased
oxidative stress. Furthermore, studies in AR-null mice hearts
revealed reduced oxidative stress and reduced I/R injury
(156). Similar findings linking increased AR activity and flux
to increased oxidative stress has been demonstrated in rat
hearts (157–161). It is possible that activation of aldehyde
dehydrogenase 2 (ALDH2) reduces 4-HNE accumulation and
protects hearts from I/R injury (162). Furthermore, it is possible
that as shown in some studies, glutathione adduct of 4-HNE (GS-
HNE) is converted by AR to its dihydroxynonane form (GS-
DHN) and that inhibition of AR reduces GS-DHN and mitigates
adverse signaling mechanisms driving inflammation and injury
(163–165). In the context of diabetes, ALDH2 activity is known
Frontiers in Endocrinology | www.frontiersin.org 6
to be reduced in multiple tissue, including the heart (132, 133).
Could the accumulation of 4-HNE observed in the diabetic
hearts (especially during I/R) be due to lack of ALDH2?
Comprehensive murine studies are warranted to establish the
precise role of AR vs ALDH2 in modulating 4-HNE metabolism
cascade in I/R hearts.

Like in I/R hearts, flux via AR is also increased in diabetic
cardiomyopathy and heart failure. AR and SDH protein
expression, activities and substrate flux were increased in
hearts of Type 2 BBZDR diabetic rat hearts along with
functional changes (166). AR expression was attenuated in
pacing induced canine model of heart failure (167). Hearts
tissue samples from patients with ischemic cardiomyopathy
and diabetic cardiomyopathy exhibited elevated AR expression
(168). These observations provide rationale for addressing the
role of AR in mediating cardiac dysfunction and heart failure,
both in diabetic and non-diabetic models.

In summary, the studies discussed establish AR as a key driver
of functional and metabolic impairment in diabetic and ischemic
hearts and that blockade of AR presents a therapeutic target for
protection of these stressed hearts
ATHEROSCLEROSIS IN DIABETES
AND AR

Patients with diabetes are at increased risk for CAD (5, 6).
Gleissner et al. showed that AR is expressed in CD68+ cells
(monocytes/macrophages) from human atherosclerotic plaques
(108, 169), and that patients with diabetes had significantly
greater CD68+AR+ macrophages in the plaques than patients
without diabetes (170).

As discussed earlier, hAR transgenic mice (149) exhibit AR levels
similar to those observed in humans. Previously, we reported that
overexpression of hAR in LDL receptor knockout (Ldlr−/−) (171)
and apolipoprotein E null (Apoe−/−) (172) mice promoted
atherosclerosis under hyperglycemic conditions and that
pharmacological inhibition of AR reduced lesion size (172).
Subsequent studies by us probed the mechanisms by which AR
promoted atherosclerosis in hyperglycemic conditions.

Early events in atherosclerosis progression include endothelial
dysfunction and upregulation of VCAM-1 (173). Vedantham et al.
showed that, in both diabetic Apoe−/− mice and in human
atherosclerotic carotid artery, AR is expressed in endothelial cells
and this endothelial AR leads to endothelial dysfunction and
increased expression of VCAM-1 and MMP-2 (148). Importantly,
this study showed that AR inhibition improved endothelial function
and was linked to attenuated VCAM-1 and MMP-2 expression
(148) and that these findings were similar to those observed by
blockade of RAGE in atherosclerotic Apoe−/− mice (174). Studies in
cells linked AR to AGE and RAGE activation and consequent
changes in intercellular adhesion molecule-1 and monocyte
chemoattractant protein-1, migration, and monocyte adhesion
(175) and that ARI or AR antisense oligonucleotides (176)
blocked these changes, suggesting that, AR may promote
progression of atherosclerotic plaques via AGE-RAGE axis.
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Pharmacological studies have shown that AR inhibitor treatments
improves endothelium-dependent relaxation to acetylcholine of
aortas from diabetic rabbits (176), diabetic rats (177), and
galactosemic rats (177). Taken together, these findings establish a
central role for AR pathway as a key mediator of impaired
endothelium-dependent relaxation, endothelial dysfunction, cell
adhesion, and inflammatory events in diabetic blood vessels.

Mechanisms probing cellular and in vivo studies to address link
between AR and inflammation, revealed that flux via AR impaired
drives inflammatory gene changes via Egr-1. Specifically, changes in
AR activity and flux reduces NAD+ levels triggering reduced activity
of NAD+-dependent deacetylase Sirt-1 and consequent acetylation
and prolonged expression of Egr-1 in hyperglycemic conditions
(Figure 3) (178). These data established a novel AR-SIRT1-EGR1
mechanism by which glucose may lead to proinflammatory and
prothrombotic responses in diabetic atherosclerosis.

While the studies in hAR overexpressing mice revealed that
AR promotes atherosclerosis progression in diabetes, an
unexpected finding of increased early lesion size was observed
in diabetic Apoe−/−mice devoid of AR (179). In this study lesion
size positively correlated with 4-HNE in mice devoid of AR,
which the authors postulated was likely to reduced metabolism
of toxic aldehydes. Given the potential impact of ALDH-2 in
detoxifying 4-HNE (162) and recent studies by Singh et al.
showing that macrophages from AR null mice exhibit higher
basal and lipopolysaccharide stimulated phagocytic activity (180),
additional studies are warranted to understand the mechanisms in
play when AR is deleted in Apoe−/−mice. Human AR expression
does appear to recapitulate human diabetic atherosclerosis more
closely in Ldlr−/− and Apoe−/− mice models, suggesting that, AR
deletion may have unintended consequences, including
compensatory regulation influencing vascular properties.

Diabetic patients demonstrate impaired atherosclerosis
regression and persistent absolute risk level of a cardiovascular
Frontiers in Endocrinology | www.frontiersin.org 7
event following lipid lowering drugs compared to nondiabetic
patients. Murine studies, in atherosclerosis regression models,
attributed the impairment to hyperglycemia-induced monocytosis
and recruitment of these macrophages to plaques (181). Yuan et al.
(182), using Type 1 diabetic Akita mice with and without hAR
overexpression and aortic transplantation model, addressed the role
of AR in impaired atherosclerosis regression in diabetes. In the
surgical model of atherosclerosis regression, the donor aortic arch
containing the preformed atherosclerotic plaques are transplanted
into a recipient mice that are kept on normal chow diet. Yuan et al.
transplanted donor aorta into the following recipient mice;
either Ldlr−/−, non-diabetic wild type, Akita, hAR transgenic, or
Akita/hAR mouse. In the recipient Type 1 diabetic mice,
hyperglycemia significantly impaired the decrease in percent of
CD68+ lesion area, even after hyperlipidemia was attenuated. The
combination of Akita with overexpression of hAR significantly
increased the percent of lesion macrophage content in the
plaques, suggesting continued atherosclerosis progression. Plaque
CD68+ cells from the Akita+/-/hAR mice demonstrated increased
oxidant stress as measured by DHE fluorescence. They also
exhibited higher expression of genes linked to pro-inflammation
and reduced expression of anti-inflammatory genes. This study
demonstrated that hAR expression amplifies impaired
atherosclerosis regression in Type 1 diabetic mice. Taken together,
the atherosclerosis progression and regression studies in diabetes
demonstrate a key pathogenic role for AR and that interventions to
block AR may be beneficial in diabetic atherosclerosis.
AR AND PLATELETS IN DIABETES

Platelet abnormalities, one of the hallmarks of diabetes, contributes
to the pathogenesis of atherosclerosis and thrombosis. Studies by
Tang et al. (183), in human platelets, demonstrated that AR plays a
FIGURE 3 | Scheme displaying AR driven changes in NAD+/NADH and SIRT1 activity as key driver of transcription factor Egr1 acetylation and consequent induction
of proinflammatory and prothrombotic genes. [adapted from (169)]. Egr1- early growth response 1, SIRT1- NAD+ dependent Sirtuin1, Ac- acetylation, NAMPT-
Nicotinamide phosphoribosyltransferase, VCAM1- vascular cell adhesion molecule 1, MMPs- matrix metalloproteinases, TF-tissue factor.
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key role in mediating thromboxane release, increased cell surface
thromboxane receptor expression, and enhanced platelet activity in
human platelets treated with hyperglycemic conditions and/or
collagen. Importantly, they linked these changes to increased
oxidative stress and the activation of PLCg2, PKCbII, PKCd, and
p38a MAPK (183). Furthermore, studies in diabetic subjects and
humanized AR transgenic mice rendered diabetic with STZ revealed
that hyperglycemia driven AR activation and subsequent increases
in oxidative stress leads to increased p53 phosphorylation, followed
by mitochondrial dysfunction, damage, and rupture of platelets by
sequestration of the antiapoptotic protein Bcl-xL (184). Taken
together, these human and animal studies established that AR is
key mediator of abnormal platelet activity in diabetes, thus adding
to the multiple processes that contribute to the pathogenesis of
diabetic cardiovascular complications.
AR AND VASCULAR INJURY

Diabetes is known to cause increased restenosis after angioplasty.
AR plays a central role in smooth muscle cell (SMC) proliferation
caused by balloon injury in animal models of restenosis. Studies
have shown that AR inhibition prevents SMC growth in in animal
models of restenosis (185–190). Studies in cells and tissue
demonstrated that high glucose flux via the AR pathway leads to
diacylglycerol accumulation and consequent protein kinase C
activation (186). In addition, AR was shown to modulate
hyperglycemia and TNF-a driven increases in the extracellular
signal–related kinase/mitogen-activated protein kinase and
phosphatidylinositol 3-kinase, (187), as well as activation of
nuclear factor kB (188), and G1/S-phase proteins E2F-1, cdks,
and cyclins (191). These signaling changes lead to upregulation of
SMC chemotaxis, vascular inflammation, and cell adhesion. AR
inhibition attenuated the above signaling events and arrested
proliferation and migration of SMCs. Findings from these cellular
and animal studies provide a compelling rationale for testing AR
inhibitors for safety and efficacy in diabetic patients undergoing
angioplasty and at risk for restenosis (185–190).
AR INHIBITORS AND PROPERTIES

AR inhibitors (ARIs) have been extensively reviewed in the
literature, e.g., (53, 83, 192). At this time, epalrestat is the only
ARI that is being used, in Japan, India, and China, to treat patients
with diabetic neuropathy (98, 192). X−ray crystallographic studies
of ARIs revealed that they bind in the active site of AR. Most ARIs
that have been tested in human trials belong to the chemical classes
of spirohydantions or carboxylic acids (192, 193). ARIs of the
carboxylic acid class are quite selective for AR vs. aldehyde
reductase (192, 194). One efficacy challenge of the carboxylic acid
class of ARIs is that they are highly protein bound in vivo.
Hydantoin class of ARIs inhibit both aldehyde and AR with
comparable efficacies (192, 195), thus likely to cause to off target
effects. Another strategic approach that is under active
consideration is the design and use of inhibitors to preferentially
Frontiers in Endocrinology | www.frontiersin.org 8
inhibit glucose reduction while preserving the detoxifying ability of
AR toward toxic aldehydes (196, 197).

The number of patents filed over the last 5 years demonstrates
that, after decades of uncertainty, scientific interest in AR and its
inhibitors has resurged. During the last 5 years, a number of
synthetic compounds have been designed and patented as AR
inhibitors, mainly belonging to the carboxylic-type class.
Inspired by the well-known inhibitor zopolrestat, Mylari and
co-workers designed a novel class of carboxylic acid inhibitors
and its water-soluble formulations (198–201) to overcome some
of the limitations of this class of ARIs. Shendelman recently
patented two novel series of phthalazino and pyrazinopyridazino
derivatives (202). Although these compounds are closely related
to ones described by Mylari and coworkers, in their heterocyclic
portion, the novel derivatives possess a boronic residue that
replaces the carboxylic acid moiety. This gives the ARI field a
rather new chemical approach for developing active inhibitors.
These newly developed ARIs are actively being tested for its
efficacy in animal and human diabetic cardiovascular disorders.
CLINICAL APPLICATIONS OF ARIS IN
HUMANS

Initial studies on AR inhibition attenuating injury and improving
functional recovery after I/R in both diabetic and nondiabetic
hearts generated considerable interest toward testing these
molecules for diabetic heart disease (143, 144, 148, 203, 204),
and for development of new ARIs (193, 194). In clinical studies,
AR inhibitor, zopolrestat, treated diabetic subjects displayed
increased left ventricular ejection fraction (LVEF), cardiac
output, left ventricle stroke volume and exercise LVEF (205)
whereas, placebo-treated diabetic subjects exhibited decreased
exercise cardiac output, stroke volume and end diastolic volume
(205). Didangelos et al. showed that AR inhibition beneficially
altered heart rate variability in patients with severe or moderate
diabetic autonomic neuropathy (206). These promising studies
in human subjects with established diabetic complications paved
the way for the development and use of new ARIs, such as AT-
001, currently in clinical trials. Multicenter, randomized,
placebo-controlled, 2-part study to evaluate the safety and
efficacy of AT-001, a novel AR inhibitor, in adult patients with
diabetic cardiomyopathy at high risk of progression to overt
heart failure, is currently in progress (NCT04083339). AT-001
treatment for 28 days was shown to reduce blood levels of
sorbitol and N-terminal pro-B-type natriuretic peptide levels in
diabetic patients (207). In addition to its role in mediating
cardiac dysfunction and injury, preclinical studies have shown
that AR exacerbates lung inflammation (204). Taken together
these studies formed the basis for the current testing of ARI in
COVID19 patients [see review by Kadosh et al. (208)]. Currently,
AR inhibitor, AT-001 is undergoing trials to assess safety and
efficacy in reducing inflammation and cardiac injury in COVID-
19 diabetic patients with heart disease (NCT04365699). Taken
together, these findings from animal and human studies strongly
suggest that AR promotes diabetic cardiovascular complications.
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Current large randomized multicenter human trials using the
newly developed potent ARIs are likely to establish its
therapeutic potential in diabetic cardiovascular complications.
CONCLUSIONS

The DCCT, UKPDS, and prior ARI studies have indicated that
relatively long clinical trials with focused recruitment strategies
and end points will be needed to demonstrate efficacy on
microvascular and macrovascular complications of diabetes.
Focus on prevention or slowing of cardiovascular disease
progression in diabetic patients should be the primary goal,
not rapid reversal of disease endpoints. Despite developmental
setbacks over the last two decades, preclinical and clinical
evidence linking progression of diabetic cardiovascular
complications and elevated flux via AR unambiguously
confirm pathogenic role for AR in mediating diabetic
complications. Importantly, data on genetic polymorphisms of
ALD2 from around the globe indicate an association between
“high AR” alleles and diabetic complications. The preclinical and
clinical data reviewed above indicate that inhibiting AR could
play a key role in our therapeutic strategy to prevent/arrest
progression of diabetic cardiovascular complications. Recent
development of potent AR inhibitors and new formulations
has set the stage for successful clinical testing of these
molecules in patients with diabetic cardiovascular complications.
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