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ABSTRACT
Tobacco smoke is a well-established lung cancer carcinogen. We hypothesize that 

epigenetic processes underlie carcinogenesis. The objective of this study is to examine 
the effects of smoke exposure on DNA methylation to search for novel susceptibility 
loci. We obtained epigenome-wide DNA methylation data from lung adenocarcinoma 
(LUAD) and lung squamous cell (LUSC) tissues in The Cancer Genome Atlas (TCGA). 
We performed a two-stage discovery (n = 326) and validation (n = 185) analysis to 
investigate the association of epigenetic DNA methylation level with cigarette smoking 
pack-years. We also externally validated our findings in an independent dataset. 
Linear model with least square estimator and spline regression were performed 
to examine the association between DNA methylation and smoking. We identified 
five CpG sites highly associated with pack-years of cigarette smoking. Smoking was 
negatively associated with methylation levels in cg25771041 (WWTR1, p = 3.6 × 10−9),  
cg16200496 (NFIX, p = 3.4 × 10−12), cg22515201 (PLA2G6, p = 1.0 × 10−9) and 
cg24823993 (NHP2L1, p = 5.1 × 10−8) and positively associated with the methylation 
level in cg11875268 (SMUG1, p = 4.3 × 10−8). The CpG-smoking association was 
stronger in LUSC than LUAD. Of the five loci, smoking explained the most variation in 
cg16200496 (R2 = 0.098 [both types] and 0.144 [LUSC]). We identified 5 novel CpG 
candidates that demonstrate differential methylation patterns associated with smoke 
exposure in lung neoplasms.

INTRODUCTION

Tobacco is a major cause of many diseases, such as 
cardiovascular diseases [1, 2], pulmonary diseases [3, 4], 
cancers [5, 6] and most notably lung cancer [6, 7]. Based 
on 2012 estimates, worldwide 21% of individuals aged 
15 or greater smoked tobacco products [8]. Globally, 1.42 
million cancer deaths in 2000 were attributable to cigarette 
smoke exposure, 60% of which were due to lung cancer 
[9]. Lung cancer alone is also responsible for 12.4% of all 
new cancer cases and 17.6% of all cancer mortality [10]. In 
the U.S., lung cancer is the second most common cancer in 

both men and women, and the 5-year survival rate of lung 
cancer patients is 15.6%, which is much lower than other 
common types of cancers such as breast cancer (5-year  
survival rate 89.7%) [11] and prostate cancer (99.2%) 
[12]. Given the high incidence and poor prognoses for 
lung cancer, the high prevalence of smoking, and the lack 
of early diagnostic testing methods, it is critical that we 
understand the mechanisms by which tobacco smoking 
might cause lung cancer [10]. 

DNA methylation, the addition of a methyl group 
to DNA, may mechanistically regulate gene function 
[13, 14]. Differential DNA methylation, hypermethylation 
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and hypomethylation of promoter-specific genes within 
CpG islands of tumor suppressor and proto-oncogenes, 
has been correlated with human cancers [15–21]. The 
triggers leading to aberrant epigenetic changes are poorly 
understood in the cancer genome, but those in blood have 
been implicated in cigarette smoking [22, 23]. Cigarette 
smoking has also been shown to be associated with 
genomic instability, which leads to DNA copy number 
alterations in the lung cancer genome [24]. For example, 
polycyclic aromatic hydrocarbons (PAHs), among other 
carcinogens in tobacco smoke have been well documented 
in altering DNA [25, 26]. However, less is known about 
how carcinogens may alter epigenetic machinery in the 
cancer genome. 

The effects of cigarette smoke on DNA methylation 
range from modification of tissue methylation patterns 
to the development of disease [27–29]. A number of 
these studies have previously examined the link between 
smoking and DNA methylation [1, 18, 30–33], and while 
many candidate methylation loci have been identified, 
most studies used blood samples from patients. However, 
DNA methylation profiles are tissue specific, and blood 
tissue is unlikely to accurately represent lung cancer 
etiology [34–36]. It is important to examine site-specific 
DNA methylation to best understand how these disease-
associated patterns may manifest in vivo. In this study, we 
used disease-appropriate neoplastic tissue from patients 
with lung squamous cell carcinoma (LUSC) and lung 
adenocarcinoma (LUAD) to study the effects of smoke 
exposure on DNA methylation. Because we use lung 
tumor tissue, which is directly exposed to cigarette smoke, 
rather than relying on proxy specimens such as blood, our 
study may provide greater insight into the link between 
smoking and methylation in lung cancer.

RESULTS

In order to identify differentially methylated loci 
associated with smoking, we conducted an epigenome-
wide analysis using a two-stage, discovery-validation 
approach in lung adenocarcinoma (LUAD) and lung 
squamous cell (LUSC) tissue samples of 511 subjects from 
The Cancer Genome Atlas (TCGA) database. Subjects 
were randomized into the discovery or validation analysis 
groups conditional on cell-type (LUAD or LUSC) in 
order to obtain a balanced distribution of each lung cancer 
tissue in the two subsets. Demographic characteristics for 
the 511 subjects by analytic group and smoking status 
(light or heavy smoking status, based on the median 
smoking pack-year (3.71)) are summarized in Table 1. 
None of the demographic and clinical characteristics were 
significantly different (Table 1) between the discovery 
(n = 326) and validation subsets (n = 185). Within-group 
distributions of sex, age and cell type of lung cancer were 
unbalanced between light and heavy smokers, i.e., heavy 
smokers were older, more likely to be male and to have 

squamous cell carcinoma (Table 1). Therefore, these 
potential confounders were adjusted either as covariates 
or stratifying factors in the epigenome-wide analyses. 

EWAS identification of differentially methylated 
sites associated with smoking

In the first stage, an epigenome-wide association 
scan was conducted in the discovery subset to test the 
relationship between smoking and DNA methylation at 
each CpG site, with adjustments for cell-type, EGFR and 
KRAS mutation status, age, sex, and race. We identified 
263 out of 271,316 CpG sites, which were significant 
at FDR<0.05 in this stage. Of these, we identified 98 
CpG loci which had 1) consistent directions of effect in 
both analytic stages, 2) p-value < 0.001 in the validation 
stage (Supplementary File S1) and were thus considered 
internally validated (Figure 1). 

Externally validated candidate CpG loci

Further analysis of the 98 internally validated CpG 
sites in an external dataset, GSE56044 from the Gene 
Expression Omnibus database (demographic characteristics 
are summarized in Supplementary Table S1), identified 
five CpG sites with independently replicated signals for 
association between smoking and DNA methylation. As 
shown in Table 2, the five externally validated sites and 
their associated genes were: cg25771041 in WW domain 
containing transcription regulator 1 gene (WWTR1; 
pooled p-value = 3.63 × 10−9, external p-value = 0.046), 
cg11875268 in single-strand-selective monofunctional uracil 
DNA glycosylase gene (SMUG1; pooled p-value = 4.28 × 
10−8, external p-value = 0.0017), cg16200496 in nuclear 
factor 1 x-type gene (NFIX; pooled p-value = 3.4 × 10−12, 
external p-value = 0.0344), cg22515201 in phospholipase 
A2 group VI gene (PLA2G6; pooled p-value = 1.04 × 10−9,  
external p-value (in LUAD) = 0.016), cg24823993 in 
NHP2-like protein 1 gene (NHP2L1; pooled p-value = 5.13 
× 10−8, external p-value (in LUAD) = 0.047). We noted that 
the three most significant CpG sites that were validated 
internally: cg16579555 (pooled p = 4.2 × 10−20; located 
within RNF135 [ring finger protein 135]), cg00032419 
(pooled p = 1.8 × 10−19; located within TP53I13 [tumor 
protein P53 inducible protein 13]) and cg16654732 (pooled 
p = 8.1 × 10−20; located within FGF18 [fibroblast growth 
factor 18]) seemed biologically interesting but were not 
validated by the external data. 

Higher smoking exposure was associated with 
decreased methylation at cg25771041, cg16200496, 
cg22515201, and cg24823993, and increased methylation 
at cg11875268. The direction of association for these loci 
was consistent across the internal discovery and validation 
subsets, as well as in the external validation analyses. 
Adjusting for cancer stage level (I-IV) also resulted in 
stronger statistical significance for all externally validated 
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CpG loci (Table 2). Associations between CpG site 
methylation and RNA expression of their associated genes 
were also assessed for subjects who also had expression 
data available; only cg25771041 at NHP2L1 demonstrated 
a significant association between methylation and RNA 
expression (Supplementary Table S4).

DNA methylation signal profiles across candidate 
genes

DNA methylation profiles for all genes containing 
externally-validated CpG sites were mapped to explore 
whether any interesting methylation patterns could 
be discerned across the genes (Figure 2). In WWTR1, 
NHP2L1, and PLA2G6, evidence of significant 
methylation near the transcription start sites (TSS) was 
present based on the pooled TCGA analyses, with multiple 
significant CpG hits in the TSS neighborhoods in WWTR1 
and PLA2G6. In NFIX, no significant methylation signals 
other than the externally validated finding at cg16200496 
were present. Finally, in SMUG1, several significant 
methylation loci were present across the gene body but 
not in the TSS. 

Several CpG loci in WWTR1 with significant 
association with smoking localize to a CpG island either 
within 200–1500 base pairs of the transcription start site 
(TSS), or in the 5′ untranslated region (UTR), depending 
on the isoform. The most significant association signal 
between DNA methylation and cigarette smoking in 
WWTR1 occurred at cg25771041 (Figure 2A). cg24823993 

with the most significant signal between smoking and 
DNA methylation in NHP2L1, locates within 200 bp 
of the TSS (Figure 2B). The binary-smoking external 
validation analyses also identified cg24823993 as a 
marginally significant methylation site. cg22515201 in a 
CpG island within 200 bp of the TSS in PLA2G6 is the 
most significant CpG locus in the gene associated with 
cigarette smoking. The analyses also identified several 
highly significant methylation loci at the TSS and near 
exon 1 of PLA2G6 (Figure 2C). The analyses of CpG 
loci within NFIX identified highly significant association 
with smoking in exon 1 with the most significant signal 
in cg16200496, but no other regions demonstrate strong 
enrichment (Figure 2D). The association with smoking 
was more prominent in the fourth exon (cg11875268) of 
SMUG1 (Figure 2E). 

Dose-response relationships between smoking 
and CpG methylation

To examine potential dose-response relationships 
between pack-years of cigarette smoking and methylation 
status, linear models with penalized spline (thin-
plate regression spline) were constructed for the five 
validated CpG sites (Figure 3). There were statistically 
significant negative associations for all CpG sites 
as pack-years increased (cg25771041 [in WWTR1; 
p = 3.1 × 10−31, R2 = 0.079], cg16200496 [in NFIX; 
p = 4.8 × 10−39, R2 = 0.098], cg22515201 [in PLA2G6; 
p = 1.5 × 10−20, R2 = 0.072], cg24823993 [in NHP2L1; 

Table 1: Demographic characters of sample by two-stage analysis and smoking status
Discovery Set Validation Set Discovery vs. Validation

Covariates Light† (n = 173) Heavy†  
(n = 153) P-value Light† (n = 97) Heavy† (n = 88) P-value Discovery  

(n = 326)
Validation  
(n = 185) P-Value

Age* 66.36 (58, 74) 70 (61, 73) 0.04 66 (59, 72) 67 (62, 72.25) 0.048 67 (60, 73) 66.36 (61, 72) 0.81

% of Male 91 (53%) 103 (67%) 0.007 54 (55.6%) 61 (69.3%) 0.055 194 (59.5%) 115 (62.2%) 0.56

Race‡ 0.81

Black 10 (5.7%) 4 (2.6%) 0.37 6 (6.2%) 3 (3.4%) 0.68 14 (4.3%) 9 (4.9%)

White 136 (78.6%) 124 (81%) 74 (76%) 69 (78.4%) 260 (79.8%) 143 (77.3%)

Other 27 (15.6%) 25 (16.3%) 17 (17.5%) 16 (18.2%) 52 (15.95%) 33 (17.8%)

KRAS mutation 5 (2.9%) 2 (1.3%) 0.55 4 (4.12%) 1 (1.13%) 0.43 7 (2.1%) 5 (2.7%) 0.92

EGFR mutation 5 (2.9%) 3 (2%) 0.86 1 (1.03%) 2 (2.27%) 0.94 8 (2.5%) 3 (1.6%) 0.76

PackYears* 3.367 (3.045, 3.58) 4.11 (3.93, 4.39) 2.20E-16 3.26 (3.05, 
3.58) 4.08 (3.93, 4.39) 2.20E-16 3.71 (3.31, 4.11) 3.714 (3.26, 

4.04) 0.71

% of ACA‡
105 (60.7%) 59 (38.6%) 1.00E-04 63 (65%) 41 (46.6%) 0.018 164 (50.3%) 104 (56%) 0.23

Smoking 
History‡ 40 (23.1%) 61 (39.9%) N/A 23 (23.7%) 36 (41%) 0.02 101 (31%) 59 (32.2%) 0.16

*Median (1st, 3rd quartiles).
†Light and Heavy were determined by a median cutoff for the smoking packyears.
‡P-values were calculated using Chi-squre tests. All other p-values were calculated using Student’s t-test. 
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p = 0.008, R2 = 0.007]) except in cg11875268 (in 
SMUG1; p = 1 × 10−14, R2 = 0.068) (Figure 3A). Variation 
in cg22515201 (PLA2G6) was explained the most by 
smoking pack-years with a marginal R2 = 0.098. Marginal 
R2 values between smoking and methylation at the five loci 
were quite low (ranging from 0.007 to 0.098), suggesting 
that cigarette smoking alone does not fully explain 
changes in methylation status at these loci, and further 
implying the likely presence of other environmental and/
or genetic determinants for epigenetic variations. 

To check the robustness of the dose-response 
analyses, we also conducted sensitivity analyses which 1) 
removed extreme M-values and 2) substituted extreme 
M-values with less extreme values (the detectable largest/
smallest values; Supplementary Figure S2). All validated 
CpG sites retained significant dose-response relationships 
with smoking in the analyses where extreme outliers were 
removed except cg11875268 (p = 0.052). All validated 
CpG sites retained significant dose-response relationships 
with smoking in the substitution analyses.

Cell-type restricted sub-analyses and sensitivity 
analyses 

To identify cancer-specific methylation markers, 
sub-analyses were conducted by stratifying by cell-
type and obtaining cell-type-specific estimates for 
the 98 internally validated CpG loci in the internal 
discovery, validation, and pooled samples respectively 
(Supplementary Files S2 and S3). The cell-type restricted 
subanalyses were then conducted in GSE56044 in an 
equivalent manner. In the internal subgroup analyses, the 
cell-type specific estimates retained directions of effect 
consistent with the effect estimates from the main analyses 
for all five externally validated loci. Interestingly, the 
strength of association was consistently more significant in 
the LUSC subgroup, with the strongest signal originating 
from cg16200946 in NFIX (β = −1.20, p = 6.6 × 10−10, 
R2 = 0.144) (Supplementary File S3 and Supplementary 
Figure S1D). The cell-type specific association between 
DNA methylation of the five externally validated loci 
(cg25771041, cg11875268, cg16200496, cg22515201 

and cg24823993) and smoking was presented in 
Supplementary Tables S2 and S3, and their dose-response 
relationship was presented in Supplementary Figure S1. 
Further discussion of the cell-type-specific EWAS is 
available in the supplement. 

Sensitivity analyses were conducted by reanalyzing 
the main, cell-specific, and external validation datasets 
after removing cases with KRAS or EGFR mutation from 
our analytical model. Each sensitivity analysis yielded 
consistently similar results to those from the main, cell-
specific, and external validation analyses, respectively 
(Table 2), providing compelling support for the biological 
plausibility of our reported findings. 

DISCUSSION

Our results identify five candidate methylation 
loci which may be influential in how smoking modifies 
DNA methylation, and thus also the development of lung 
cancer. Of our 98 internally validated CpG sites, five were 
externally validated in an independent data set: cg16200496 
(NFIX), cg25771041 (WWTR1), cg11875268 (SMUG1), 
cg22515201 (PLA2G6), and cg24823993 (NHP2L1). 
Four of these loci localized near transcription start sites 
or within the first exons of their genes (WWTR1, NFIX, 
PLA2G6 and NHP2L1), and all four demonstrated negative 
associations between smoking and methylation status. We 
examined cancer stage as a confounder for smoking and 
DNA methylation. We utilized a missing indicator method 
to adjust for the available cancer stage information while 
keeping all subjects in the analyses. The analyses showed 
that our externally validated loci were more statistically 
significant than without adjustment. This suggests that 
smoking may alter neoplasm development with increased 
pack years being associated with higher cancer stage. 

Among the five genes, a number have been 
previously implicated in smoking and lung cancer 
disease pathways. WWTR1 (also known as TAZ) is a 
well-described oncogenic transcriptional co-activator in 
many cancers including breast, liver, colon, thyroid, and 
lung [37, 38]. It is a part of the Hippo signaling pathway 
which is highly conserved in mammals and is thought 

Figure 1: Manhattan plot of p-values for internally validated (No. of loci = 98) and externally validated (No. of loci = 5) 
CpG sites by chromosome. Bonferroni genome-wide significance (6.73) is represented as a horizontal solid line. Red dots are internally 
validated sites; green dots are internally and externally validated sites.
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Figure 2: Methylation signal profiles for genes with externally validated methylation sites (A. WWTR1; B. NHP2L1; C. 
PLA2G6; D. NFIX; E. SMUG1). The analyses are plotted by genomic datasets. TCGA represents the TCGA dataset, and External-Binary 
(Ext-Bin) and External-Ordinal (Ext-Ord) represent the external validation analyses conducted in the GSE56044 dataset using binary and 
ordinal categorizations of smoking status. Signal strength is plotted via transformed p-values (-log10(p)) by genomic location (Mb) for 
each gene.
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to disrupt cell contact inhibition, an attribute commonly 
lost in cancer cells [39]. In one study, tumor-propagating 
cells were found to have gene expression signatures 
enriched for genes in the Hippo signaling pathway. Further 
experimentation with WWTR1/TAZ knockdowns resulted 
in decreased lung tumor progression, while constitutively 
active WWTR1/TAZ was found to be sufficient to drive 
lung tumor progression [40]. Additionally, higher TAZ 
expression levels in lung tumors have been shown to be 
predictive of worse prognoses [41, 42]. 

Another significant cancer-associated gene in 
our analyses was SMUG1, a glycosylase that removes 
damaged uracil in the base excision repair pathway [43]. 
The base excision repair pathway plays a critical role 
in removing oxidized and methylated bases from DNA, 
and has been implicated in a number of cancer subtypes 
including gastric, renal, lung, and colorectal cancers [44]. 
Importantly, SMUG1 has also been hypothesized to play 
a critical role in nucleic acid repair in lung fibroblasts 
suffering from cigarette-smoke induced oxidative stress 

Figure 3: Dose-response relationships for externally validated CpG sites by M-values (logit transformed beta values) 
and smoking in pack years. The plots are based on generalized additive models with penalized spline using thin plate smoothing basis. 
Degree of Freedom (DoF) is provided for each plot. The solid black line represents the linear spline model of the change in M-value by pack 
years (smoking). The red, dotted line represents the upper and lower 95% confidence bounds. (A) cg11875268 in SMUG1; (B) cg16200496 
in NFIX; (C) cg22515201 in PLA2G6; (D) cg24823993 in NHP2L1; (E) cg25771041 in WWTR1.
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[45]. This offers compelling biological implications for 
our finding of significant association between smoking and 
methylation status at cg11875268. 

A third well-established cancer gene in our significant 
results was NFIX (Nuclear Factor I/X (CCAAT-binding 
transcription factor)). NFIX is a member of a family of 
transcription factors that are involved in regulating the 
transcriptional activity of genes [46, 47]; and has been 
involved in cancer progression in a number of cancers 
including breast and esophageal [46, 48]. In breast 
cancer, NFIX may interact with methyl-CpG binding 
protein 2 (MeCP2), an important epigenetic regulator, to 
suppress Z-DNA-mediated transcriptional suppression, 
thus enabling the overexpression of ADAM-12,  
a prominently up-regulated, metastasis-promoting protein 
in many cancer types.[49] In esophageal cancers, the down-
regulation of NFIX allows for microRNA miR-1290 to 
promote tumor proliferation, migration and metastasis [46]. 

The roles of PLA2G6 and NHP2L1 are not well 
understood in LUSC and LUAD. One candidate gene 
pathway analysis identified PLA2G6, a member of the cell 
cycle pathway, as bearing a statistically significant single 
nucleotide polymorphism associated with lung cancer risk 
[50]. NHP2L1 is less understood, but is important in cell 
viability in yeast models and as an RNA-binding protein, 
specifically a small nucleolar RNA-protein complex, in 
eukaryotic models [51, 52]. Our study is the first to link 
these CpG sites to LUAD and LUSC in humans. Further 
research should examine the roles of these CpG sites in 
carcinogenesis given the strength of this finding.

In the internally validated-only CpG loci, 
cg16654732 was our strongest signal (pooled p-value 
= 8.1 × 10−20). This site localizes within 200bp of the 
TSS of gene FGF18, which was found to be down 
regulated in Italian LUAD cases compared to normal 
lung tissue [53]. In the present analyses, we found that 
methylation at cg16654732 was negatively associated 
with smoking, where higher pack years corresponded with 
lower methylation levels. In addition, cg13204512 and 
cg16579555 (within RNF135) were strongly, negatively 
associated with smoking pack-years (pooled p-value = 4.8 
× 10−15 and 4.2 × 10−20, respectively). RNF135 gene has 
been well studied in malignant peripheral nerve sheath 
tumors and lymphoblastic leukemia [54, 55], but our 
study is the first to link these loci to smoking in non-small 
cell lung tumors. The TP53I13, TP53 inducible gene 13 
also had two strong signals from the analyses of TCGA 
data (cg00032419, p = 1.8 × 10−19 and cg00265578, 
p = 1.6 × 10−15). TP53-inducible genes have been well 
documented to control many biological processes 
including cell cycle control, apoptosis, and DNA repair 
and may function to inhibit cancer progression [56]. 
The internal analysis showed these two CpG loci were 
negatively associated with smoking dosage, which may 
indicate these genes were active in the neoplastic tissue. 
Despite the strength of the association in our analyses, 

cg16654732, cg13204512, cg16579555, cg00032419 and 
cg00265578 were not found to be statistically significant 
in the external dataset suggesting this finding may have 
mechanistic heterogeneity and may not be generalizable 
to other studies. 

For the five externally validated CpG sites, the binary 
effect estimates were larger than the ordinal effect estimates. 
It is difficult to distinguish whether there is a dose-response 
increase from never- to ever- and then current-smokers or 
a plateau effect that ever-/current-smokers share similar 
effects. While years since quitting smoking may help 
address the issue, such information was not collected in 
TCGA data. Research by van Osch et al. (2016) suggests 
that a plateau effect of smoking on bladder cancer risk and 
that heavy smokers are at high risk regardless of the timing 
of cessation for given packyears [57].

In considering the importance of tissue sample 
location, we utilized LUSC and LUAD neoplasms. Other 
studies have used whole blood samples in their EWAS, 
but few have used neoplasm site-specific analyses. In 
one site-specific analysis, Teschendorff et al. used buccal 
cells in their EWAS of epithelial cancers. However, we 
were unable to replicate their findings [58]. This lends 
credibility to the notion that the effect of smoking on 
differential methylation is site-specific. Despite smoking 
carcinogen presence in buccal cells, it seems there may 
be a different mechanism through which smoke may act 
on methylation profiles in different genes in different 
environments. 

There were many strengths in our study analysis. 
We had a large sample size (n = 511), improving the 
power of our EWAS interrogation of 271,316 CpG 
sites. Furthermore, we obtained data collected from an 
appropriate target tissue—lung neoplasms. Many studies 
have performed EWAS using blood samples, but blood 
samples are not the ideal tissue to measure carcinogenesis 
in lung tissue and can only serve as a proxy for lung cancer 
rather than a direct sample of the cancer itself. Because our 
study used lung neoplasms, we were able to directly assess 
the methylation patterns of CpG sites within LUSC and 
LUAD. Cell-type specific analyses were also conducted 
to better understand differential methylation due to 
smoking in adenocarcinoma and squamous cell carcinoma 
separately. Not only were our results internally validated 
within the TCGA data, we were also able to replicate some 
of our findings in the external GSE56044 GEO dataset. 
The multi-step internal and external validation conducted 
in our analysis lowers the likelihood of obtaining false-
positive CpG hits. 

Although our study has strengths, there are some 
limitations. While our data suggest that smoking regulates 
methylation patterns in neoplasms, we are unable to 
directly link smoking and lung cancer. Our sample is based 
solely on patients with LUSC or LUAD neoplasms; we 
lack healthy participants and are therefore could not assess 
methylation patterns in the lung tissue of healthy smokers. 
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Therefore, we were unable to directly assess lung cancer 
etiology. Furthermore, it is unclear whether the validated 
CpG sites had significant methylation profiles solely 
due to smoking or because of other unmeasured factors. 
Dichotomous cell-type adjustment of adenocarcinoma 
and squamous cell carcinoma may be coarse, but it is 
standard and widely available information in clinical 
practice. Without depending on more costly pathological 
profiling, the identified methylation biomarkers may have 
better translation utility. Alternatively, one may adjust for 
inferred cell mixture based on a bioinformatics algorithm 
[59] if the research interest is in the epigenetic association 
with smoking within a homogeneous cell population. 
Here we are more interested in such an association 
within a patient with non-small cell lung cancer, lung 
adenocarcinoma or lung squamous cell carcinoma. 

We note that the five CpG hits in the external 
validation analyses were significant after adjustment of 
multiple comparisons. However, since 1) these sites were 
internally validated and 2) the external validation analyses 
did not stand alone, we were less concerned about the 
potential false positive due to multiple comparisons. 
Furthermore, the external validation data measured 
categorical smoking status rather than smoking pack-years, 
which may render the external validation less power and thus 
being non-ideal for conservative multiplicity adjustment. 

Our data indicate that CpG sites in WWTR1, 
NFIX, PLA2G6, NHP2L1 and SMUG1 have differential 
methylation in LUAD and LUSC neoplasms. These 
internally and externally validated CpG sites may give 
insight into the mechanism by which smoking may cause 
lung cancer. Additional research should focus on how 
these CpG sites are mechanically altered after repeated 
smoke exposure and if there are hierarchical interactions 
with microRNA and proteins from other CpG sites. 

MATERIALS AND METHODS

Study sample

Subject data (n = 820) were obtained from The 
Cancer Genome Atlas (TCGA) (https:// tcga-data.nci.nih.
gov/tcga), a collaborative project between the National 
Cancer Institute (NCI) and the National Human Genome 
Research Institute (NHGRI) that curates publicly available 
cancer datasets which have been comprehensively 
genotyped and assayed. Specific information on sample 
quality control has been previously reported [60]. We 
selected sample based on the availability of 1) epigenome-
wide DNA methylation data from untreated neoplastic 
LUAD and LUSC tumor cells (classified as stages I–IV), 
and 2) clinical measures of smoke exposure. Subjects with 
missing methylation data (n = 139) and missing smoking 
measures (n = 170) were excluded, resulting in an analytical 
sample of 511 (268 LUAD and 243 LUSC) subjects. 

Data processing

Key clinical and demographic variables of interest 
were re-categorized for analysis: smoking exposure 
in pack years, sex, age, race, KRAS mutation, EGFR 
mutation, and cell-type. Pack-years, defined as the packs 
of cigarette smoked multiplied by the duration of smoking, 
was log transformed due to skewness. Both KRAS and 
EGFR mutation types were re-categorized into binary 
variables based on whether any mutations were present: 
the presence of any mutation (e.g., exon 19 deletion, 
L858R, and others) or not. Race was re-categorized as 
a nominal, categorical variable with race designations 
“white”, “black”, and “other.” Missing information in 
age was imputed with the median values of age in the full 
sample. 

Level 3 methylation data assayed on the Illumina 
Infinium Human Methylation 450K in LUSC and LUAD 
neoplasms were obtained from TCGA database. All 
CpG sites located in sex chromosomes were discarded, 
retaining only autosomal sites. We adjusted for batch 
effects using the ComBat method in the Surrogate Variable 
Analysis (sva) package from Bioconductor CpG sites with 
low variance were filtered out based on the first quartile of 
the variance for all autosomal CpG sites (σ = 0.147) [61]. 
After quality-control, 271,316 CpG sites were retained for 
EWAS analysis. 

Statistical analysis

Internal discovery and validation analysis

Candidate methylation loci were identified and 
validated using a two-stage approach by randomizing all 
subjects (n = 511) into discovery (n = 326) and validation 
(n = 185) subsets. Randomized assignment was performed 
conditional on cell-type (LUAD or LUSC) in order to 
obtain a balanced distribution of each lung cancer tissue 
in the two subsets. Potential confounders were stratified 
or treated as covariates in regression analyses. In the first 
stage, an epigenome-wide association scan was conducted 
in the discovery subset using a linear model to test the 
relationship between DNA methylation and smoking at 
each CpG locus, with adjustments for cell-type, EGFR 
mutation status, KRAS mutation status, age, sex, and race. 
To adjust for multiple comparisons, we then applied a false 
discovery rate (FDR) < 0.05 threshold in the discovery 
analyses using the FDRtool R package [62]. CpG sites 
surviving the FDR < 0.05 threshold in the discovery stage 
were then re-analyzed in the validation subset using the 
same model specifications as in the discovery stage, and 
those loci with a validation p-value < 0.001 were retained 
for further cell-type-specific sub-analyses. All candidate 
loci surviving both the discovery and validation analyses 
were considered internally validated. Internally validated 
sites were then reassessed in the full study sample (i.e. 
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the combined discovery and validation subsets) to obtain 
the final pooled p-values. Further adjustment for cancer 
stage and cancer stage missingness was conducted for the 
externally validated CpG sites using the missing indicator 
method [63]. 
External validation analysis

To validate our findings in an independent dataset, 
candidate CpG sites identified in the two-stage analyses 
were re-analyzed in the GSE56044 dataset (n = 124), 
which was obtained from the NCBI’s Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE56044). All covariates were 
operationalized as in the main analysis with one exception: 
in the GSE56044 dataset, smoking status was recorded as 
a categorical variable (never smoker, current smoker, and 
former smoker) rather than continuously in pack-years. 
To assess any underlying dose-response relationships, we 
recoded smoking as an ordinal variable (never smoker = 0, 
former smoker = 1, current smoker = 2) and as a binary 
variable (non-smoker = 0, ever-smoker = 1) in GSE56044. 
The model specification used for validation in the external 
dataset was identical to the model used in our main 
analyses.  Finally, we also conducted sensitivity analyses 
to check the robustness of our dose-respond trends by 
re-analyzing the relationships after 1) removing extreme 
M-values and 2) substituting extreme M-values with less 
extreme values (the detectable largest/smallest values; 
Supplementary Figure S2).
Cell-Type specific sub-analyses and sensitivity analyses

To assess association between smoking and 
DNA methylation that may be specific to cell-type, we 
conducted sub-analyses restricting to cell-type. Cell-type-
specific estimates for the 98 internally validated CpG loci 
were obtained in the pooled samples (Supplementary Files 
S2 and S3). The cell-type restricted subanalyses were then 
also conducted in GSE56044 in an equivalent manner. To 
examine the robustness of our findings, further sensitivity 
analyses were conducted by comparing estimates obtained 
by including vs excluding subjects with documented 
EGFR (n = 11) or KRAS (n = 12) mutations within the 
main and cell-type-specific analyses.
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