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Abstract: The minimization principle of the second moment of the mass distribution (M2) is
responsible for the unique structure of three-dimensional clusters by using emulsion droplet
evaporation. Herein we study the structure of two-dimensional clusters of colloidal particles
bound at the interface of liquid droplets in the plane. We found that, differently from the
three-dimensional system, the two-dimensional clusters have multiple degenerate configurations
(isomers). An interesting feature of such two-dimensional clusters is that they have the same packings
as those belonging to a class of geometric figures known as polyiamonds. In particular, except for
the six-particle cluster, many higher order clusters of polyiamond have not been reported previously.
Using a simple geometrical approach, based on the number of ways to generate a packing, we
calculated the occupation probabilities of distinct isomeric clusters. The level of agreement with the
results of metropolis Monte Carlo simulations was good for clusters containing up to nine particles,
suggesting that our two-dimensional cluster structures are not a result of the minimization of the
second moment. In addition, the structure of these clusters is somewhat insensitive to the range and
depth of the interparticle potential, in good agreement with the results in the literature.

Keywords: two-dimensional cluster; pickering emulsion; colloidal molecule; droplet evaporation

1. Introduction

The formation dynamics and structures of colloidal clusters have been extensively studied
because of their important role in a variety of applications, such as sensors, plasmonics and photonic
crystals [1–3]. Furthermore, colloidal clusters that contain a small number of constituent colloids
can serve as building blocks for hierarchically organized superstructures [4,5]. Manoharan et al. [6]
developed an assembling route based on the use of emulsion droplets as a three-dimensional (3D)
template to obtain identical colloidal clusters with high yields. In this approach, colloidal microspheres
absorbed at the interface of emulsion droplets reduce the interfacial free energy. During the subsequent
evaporation of the oil droplets, colloidal particles are forced to pack into clusters by capillary forces
and strongly bound together by van der Waals attractions.

Following the pioneering work of Manoharan and coworkers [6], numerous studies based on
emulsion droplet evaporation have been performed. Some of these focused on different types of
materials/solvents [7–10], others on submicron-sized particles [11–13] and others still on clusters with
large sizes [14,15]. Interestingly, a common feature of the small colloidal clusters is that their geometric
structures are in many cases unique for a given number of constituent colloids, nc. The uniqueness of
clusters for each nc suggests that they are optimal packings and appear to be controlled by minimization
of the second moment of the mass distribution in the cluster [16,17]. Manoharan et al. [18,19]
examined the structure and free energy of colloidal clusters of hard spheres with a short-range
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attraction, albeit without geometrical confinement. The authors found that except in trivial cases with
nc ≤ 5, the clusters possess multiple configurations whose occupation probabilities are determined
by geometrical rules. In addition, rotational entropy disfavors high-symmetry clusters (octahedron
occurs less frequently than poly-tetrahedron for a cluster of six particles).

Despite the strong interest in 3D cluster structures, little work has been done to investigate the
emulsion-assisted formation of two-dimensional (2D) colloidal clusters. Perry and co-workers [20]
studied, both experimentally and theoretically, transitions between ground states and excited states of
2D clusters of spherical colloids bound by depletion interactions. The ground state clusters adopt three
distinct configurations that are dictated primarily by symmetry (permutational entropy). Because the
number of ground and excited states increases rapidly with nc, the authors considered only the case
of clusters made of six particles. The experimental studies of Hurd and Schaefer [21] and Oneda [22]
on colloidal suspensions, confined to two dimensions at the air–water interface, showed, depending
on the strength of attractive forces, either an irreversible or reversible clustering process. However,
the authors did not identify the observed cluster structures. Iwamatsu [23] analyzed the lowest energy
structure of 2D colloidal clusters as a function of nc using a realistic model potential, which consists of
a short-ranged van der Waals attractive interaction and a long range dipolar electrostatic repulsion.
Although all of the predicted cluster configurations match exactly those of Lennard–Jones 2D clusters,
they are not always consistent with experimental structures [24,25]; for example, for nc = 7 the
predicted cluster adopts a regular hexagonal structure, whereas the experimentally observed cluster
forms a circular shell structure. Note that the particles self-assemble spontaneously into such clusters,
which are just intermediate states during the formation/dynamics of larger assemblies, because there
is no restriction on the size of a cluster driven by attractive forces.

Polyiamonds are plane figures formed by joining congruent equilateral triangles edge to edge.
Polyiamonds are considered distinct (free polyiamonds) if they are different in shape—more specifically,
they are invariant under reflection, translation and rotation. The number of free polyiamonds without
holes as a function of nt, where nt is the number of equilateral triangles, is given by the Online
Encyclopedia of Integer Sequences (OEIS): A070765 [26]. Polyiamonds, one problem in combinatorial
geometry, have applications in statistical mechanics of macromolecules [27] and percolation [28].
However, to our best knowledge, there is no report about the occupation probability of these
polyiamonds of a given nt, and a connection between polyiamonds and colloidal clusters.

In this work, similar in spirit to a model originally developed for 3D systems [29,30], we formulate
a model of colloid-droplet mixtures in 2D. The structures and occurrence probabilities of small clusters
of colloidal particles assembled in the spherical confinement of emulsion droplets are analyzed. We find
that each cluster of nc particles possesses a unique configuration for nc ≤ 5, but multiple, degenerate
configurations for nc > 5. We suggest that the known ground state clusters for systems of particles
interacting through the weak depletion interaction [20] are also relevant to colloidal clusters assisted
by evaporating emulsion droplets. In particular, our cluster structures exactly correspond to those of
polyiamonds.

This paper is organized as follows. In Section 2 we introduce the model and simulation
methodology a binary colloid-droplet mixture. Our results are presented in Section 3. Conclusions are
given in Section 4. A detailed description of polyiamonds is given in Appendix A.

2. Model and Simulation Method

We consider a binary mixture of Nc colloidal particles of diameter σc and Nd droplets of diameter
σd in the plane. Similar to three dimensional (3D) systems that have been studied [30], the colloids
interact via a long-range screened Coulomb repulsion (Yukawa potential) and short range attraction,
which can be expressed as
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φcc(r) =


∞ r < σc

−εSW σc < r < λσc

εY
exp[−κ(r− σc)]

r
otherwise,

(1)

where εSW is the depth of the square-well potential and λ = 1+ ∆/σc with ∆ the width of the attractive
well. Two any colloids form a bond when their center-to-center separation is smaller than or equal
to λσc. We chose the simulation parameters to have a sufficiently large attractive component of
the potential function, so that physical bonds between colloids, once formed, would be irreversible,
to mimic short-range van der Waals. The parameter εY measures the strength of the Yukawa repulsion
and the inverse shielding length κ controls the range of the Yukawa interaction. Models of this type,
as illustrated in Figure 1a, have proven useful in studies of the formation of colloidal shells [31] and
the clustering of colloidal particles [29,30,32,33].
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Figure 1. (a) Colloid–colloid pair potential, φcc(r) is the sum of attractive and repulsive parts
(see Equation (1)), at βεSW = 15, λ = 1.09, βεY = 25.7, κσc = 5, with β = 1/kBT, where kB is
the Boltzmann constant and T is the temperature. (b) Colloid-droplet pair potential at various size
ratios—q = σd/σc = 4.0, 3.0, 1.5 and 1.0—having a minimum at the droplet interface in order to induce
the Pickering effect (see Equations (2) and (3)). The value of the interfacial energy is of order 100 kBT,
so that the colloids are confined efficiently to the droplet surface. Both are scaled by the hard-sphere
diameter of the colloids σc.

Emulsion droplets stabilized by colloidal particles, so-called Pickering emulsions, are considered
to be highly stable, due to a significant reduction in the surface free energy [34]. The loss of the
interfacial energy, dependent on the particle size, surface tension and equilibrium three-phase contact
angle, is typically of the order of hundreds or millions of kBT [35]. To model this effect of the interfacial
energy, Schwarz et al. [29] first introduced a colloid-droplet energy function which is related to the
surface tension γ by γS, where S is the droplet surface that is covered by the colloid (details in [29]).
In an analogous fashion, for two-dimensional systems, we consider a line tension instead of the surface
tension and a contact line instead of the contact surface. Thus, the colloid-droplet energy can be
expressed for σd > σc, as

φcd(r) =

−µl
σd − σc

2
< r <

σd + σc

2
0 otherwise,

(2)
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and σd < σc,

φcd(r) =


−µπ

σd
2

r <
σc − σd

2
−µl

σc − σd
2

< r <
σc + σd

2
0 otherwise,

(3)

where µ is the line tension and l is the length of the contact line, given by

l =
σd
2

cos−1

[
1

σdr

(
σ2

d
4
− σ2

c
4

+ r2

)]
. (4)

The interfacial energy for various droplet-colloid size ratios is pictured in Figure 1b, from which it
can be seen that the potential shape is very similar to that in the three-dimensional case [29]. Moreover,
for simplicity, we assume that the coalescence of the droplets is negligible. The droplet–droplet
interaction has a hard-core repulsion of effective diameter σd + σc to avoid one colloid being shared by
two droplets.

We performed kinetic Monte Carlo (MC) simulations of colloid-droplet mixtures in the canonical
ensemble. The trial state was generated by giving the particles small maximum displacements,
0.01σc for the colloidal particles and 0.01σc

√
σc/σd for the droplets. This ensured that kinetic

Monte Carlo simulations approximated Brownian dynamics simulations [36]. The evaporation
dynamics were introduced by forcing the droplets diameter σd to shrink at a fixed rate. As a result,
the resulting transient structures during evaporation were out-of-equilibrium. The evaporation rate
was chosen so that all the droplets vanished after one-half of the simulation time (5× 106 MC sweeps).
This left another 5× 106 MC sweeps to investigate the (quasi-)stability of the clusters against thermal
fluctuations. During the span of the MC simulations, a cluster, a series of colloids connected to
each other by a path of bonds, can be formed spontaneously or formed via the evaporation of the
emulsion droplets. Therefore, the collective modes of motion of particles in the cluster, i.e., collective
translational and rotational cluster moves [37,38], are taken into account. In a MC cluster move
(and its reverse), the clusters are rotated around a random rotation axis with a maximum angle
θr

cls = 0.01σc/σcls and translated with a maximum linear displacement dt
cls = 0.01σc/ 4

√
nc with nc

number of constituent colloids in the cluster and σcls the effective diameter of the cluster taken to be
σcls =

√
ncσc. The choice of translational and rotational motions that satisfies the conditions for the

translational diffusion constant (as discussed later) is to approximate a hydrodynamic damping of a
circular cluster. Moreover, these cluster moves are proposed and accepted according to the principle of
detailed balance; i.e., any cluster–cluster aggregation or cluster–particle aggregation is rejected [29].

The simulations were performed in a cubic box with periodic boundary conditions for 500 colloidal
particles with packing fraction ηc, and at a fixed droplet packing fraction ηd for a number of droplets
of 6–12. For a given set of parameters, the statistical data of the sampled quantities were analyzed
by running 30 independent simulations. To study the role of the interaction range on the cluster size
distribution and cluster structure, we chose the width of the attractive well ∆ in the range 0.09–0.21.
Additionally, it is known that the cluster size distribution is driven by various factors, including (i) the
droplet (colloid) packing fraction, (ii) the initial droplet size, (iii) the interaction parameter and (iv) the
rotational and translational dynamics of clusters. Therefore, for a large parameter space, we restricted
ourselves to simulation parameters (ηc = 0.05− 0.15, ηd = 0.15, σd(0) = 8σc and the interaction
parameters given in the caption of Figure 1) that provide a distribution of small-size clusters (nc ≤ 9).
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3. Result and Discussion

Here we roughly estimate the physical time per MC sweep via the diffusion coefficient because
this quantity provides a link between the mean square displacement of the particles and the simulation
time. The self-diffusion coefficient of clusters Dcls is defined by the Einstein relationship [39]:

2Dclsτ = lim
n→∞

1
2n

〈
4r2

cls(n)
〉

, (5)

where n is the number of MC sweeps and τ is the physical time per MC sweep. The mean square
displacement of the clusters after n sweeps,

〈
4r2

cls(n)
〉
, is given by [30]

〈
4r2

cls(n)
〉
=

1
Nnc

Nnc

∑
i=1

(4rcls,i(n))
2, (6)

where Nnc is the number of clusters containing nc colloids, and 4rcls,i(n) is the displacement of a
cluster from its center-of-mass after n sweeps.

For two-dimensional liquids, unlike three-dimensional liquids, the validity of the Stokes–Einstein
relation that relates the diffusion coefficient of a Brownian particle and the fluid shear viscosity
ηcls over a wide range of density or temperature is still unclear [40]. Hence, instead of using the
two-dimensional Stokes–Einstein relation [40], Dcls = kBT/1.69πηcls, which is only valid at high
densities [41], we calculate the self-diffusion coefficient from the Enskog equation in the first Sonine
approximation; that is [42,43],

Dcls =
1

2ρσclsgcc(σc)

(
kBT
πmc

)1/2
(7)

Here ρ = 4φc/πσ2
c is the number density; mc is the colloid mass; and gcc(σc) is the equilibrium pair

correlation function at contact. The relevant mesoscopic time scale is the Brownian time τB = σ2
cls/Dcls,

which is the time required for an isolated cluster to diffuse over a distance equal to its diameter, where
the diameter of the circular cluster σcls =

√
ncσc. An estimate of τ in terms of τB is, therefore, given by

nτ

τB
'
〈
4r2

cls(n)
〉

4ncσ2
c

(8)

with

τB = 2ncρσ3
c gcc(σc)

(
πmc

kBT

)1/2
(9)

At room temperature, for the clusters containing six colloidal particles and typical values of mc, σc,
we found that τB ≈ 10−2 s and nτ ≈ 10 s; those values are much smaller than the realistic long-time
dynamics in experiments (usually the order of minutes or hours). Despite the difference in timescale
between the simulation and experiments, we do not expect the timescale to affect the final cluster
structures [30].

Figure 2 shows representative snapshots of the simulation trajectory for the binary mixture of
colloids and droplets. The initial configuration consists of non-overlapping of free colloids (purple)
and droplets (pink) (Figure 2a). After 3.5× 106 MC sweeps, accompanied by the slow evaporation
of the droplet phase, a statistical number of particles is strongly confined in the droplet surface
(Figure 2b). Since the droplet diameter σd changes continuously during the simulation, the system
is not at equilibrium. After this out-of-equilibrium assembly, a process towards equilibrium starts,
which leads to the rearrangement of the particles to a cluster. In reality, stable clusters can be achieved
only when the system is close to its equilibrium structure, a structure that forms on a very long
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timescale. The presence of the droplet-induced clusters as a final phase with respect to thermal
fluctuations is shown in Figure 2c at the end of the simulation (after 107 MC sweeps). As a test,
we performed an additional run with 107 MC sweeps and observed no change in the number of
resulting clusters and none in their structures (Figure 2d).

(a) (b) (c) (d)

Figure 2. Representative snapshots from simulation trajectories: (a) initial state, (b) 3.25× 106 MC
sweeps, (c) final state (after 107 MC sweeps) and (d) an additional run of 107 MC sweeps to check the
(quasi-)stability of the clusters formed. Droplets are depicted as pink spheres; colloidal particles are
colored according to their states during the simulation process: free colloids (purple), colloids adsorbed
at the droplet surface (green), colloids in a cluster (cyan).

Another feature is that the minimum separation between colloids at the initial stage of the
simulations is larger than the bond length. In order to form a bond, the colloids must be provided with
sufficient thermal energy to cross the repulsive energy barrier (15 kBT) of the colloid–colloid interaction.
This probability is very small, and consequently, in the restricted simulation timescale, the colloidal
clusters can be considered to be (quasi-)stable. However, for longer times, further clustering might
occur.

The geometric structure of clusters as a function of the number of constituent particles in the
plane has been studied theoretically. The optimal packings are obtained using the Lennard–Jones
potential [23], minimal second moment of the mass distribution (M2 = ∑nc

i=1 |ri − rcm|2, where ri is the
position of the particle i and rcm is the position of the cluster center-of-mass) [44,45] and depletion
interaction [20].

The geometry of two-dimensional Lennard–Jones clusters where the particles interact via the
Lennard-Jones potential was predicted based on genetic algorithm [23]. The first few Lennard–Jones
clusters are moniamond for nc = 3, diamond for nc = 4, triamond for nc = 5, tetriamond (chevron)
for nc = 6, pentiamond (nc = 7), and hexiamond (hexagon) for nc = 8. Notably, all of predicted
cluster structures, which can be regarded as a spreading of triangular networks, seem to be the
same as those of M2-minimal clusters for a given value of nc [23,44]. The minimum colloid–colloid
pair interaction, which is the sum of van der Waals attraction and dipolar repulsion, also produces
configurations identical to that of both the Lennard–Jones cluster and M2-minimal cluster [23].
However, for hard-discs interacting via a short-ranged depletion attraction, the geometric structure
of clusters, for example, for nc = 6, adopts three different ground state configurations; namely,
parallelogram, chevron and triangle [20]. We note that three such configurations are known as the
tetriamond (4-iamond). A unique set of nt-iamond sequences for nt up to 5 are illustrated in Figure 3;
each case is indexed by a pair (nt, m), where nt is the number of equilateral triangles and m is the
index of the configuration in the nt-iamond sequence. Hence, for a given nt, the maximum value of
m corresponds to the number of different configurations in each n-iamond. As shown in Figure 3,
there is only one configuration for the moniamond (nt = 1), diamond (nt = 2) and triamond (nt = 3),
while the tetriamond (nt = 4), pentiamond (nt = 5) and hexiamond (nt = 6) possess three, four and
twelve possible configurations, respectively. The number of distinct polyiamonds of size nt increases
rapidly as nt increases. Elements of the sequence for nt = 7 and 8 are given in Appendix A. It should
be noted that the polyiamonds mentioned above are considered distinct if they have different number
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of equilateral triangles or different shapes. However, if account is to be taken of the number of
vertices or point group rather than the number of equilateral triangles, then a few configurations in the
sequence, e.g., the configurations (6,4), (6,6) and (6,9), are equivalent to each other. In the present work,
we classify the colloidal clusters obtained via emulsion droplet evaporation by referring to the models
mentioned above.

Figure 3. Elements of nt-iamonds for nt ≤ 6. Each structure is labeled by the pair (nt, m)

corresponding to its number of congruent equilateral triangles and the tile number for that nt,
respectively. The graphics were produced with MATHEMATICA following [46]. Above are the
names of the polyiamonds. The two (5,3) and (6,11) configurations (single-red underline) are equivalent
under rotational symmetry if only their set of vertices rather than their shape is considered. Similarly,
(6,4), (6,6) and (6,9) fall into a group (double-red underline).

Figure 4 shows all clusters observed in simulations (ηc = 0.15, λ = 1.09). For very small clusters,
i.e., nc = 2–5, the structures are unique depending on nc. These structures are identical to those of
Lennard–Jones clusters, M2-minimal clusters and clusters of attractive hard discs. This indicates that
the nature of the colloid–colloid potential has little effect on the optimal structure of small clusters.
However, for nc = 6, in addition to a familiar configuration of a "chevron" shape (labeled as (4,2)
in Figure 3), we obtain two other isomers: one is a (4,1) parallelogram and the other a (4,3) triangle.
Four distinct isomeric structures are observed together for nc = 7, as pictured in Figure 4. Surprisingly,
they are exactly the same as the configuration of pentiamonds (Figure 3). Of these isomeric structures,
the (5,3) configuration, an equivalent version to the (6,11) configuration with a sixfold axis of symmetry,
corresponds to the theoretically predicted Lennard–Jones cluster and M2-minimal cluster. In the eighth
clusters (nc = 8), we find seven isomeric structures compared to nine possible structures of hexiamonds
(only nine different configurations are counted because the (6,11) and (5,3) configuration; the (6,4),
(6,6) and (6,9) are equivalent to each other under point symmetry). Two missing structures are (6,3)
and (6,4), in which case (6,4) has same as the structure as the Lennard–Jones cluster. For higher order
clusters (nc ≥ 9), all cluster structures obtained from computer simulations are also members of the set
of polyiamonds (see Appendix A), although the number of cluster structures is much less than that
enumerated in the sequence of polyiamonds. For higher order clusters (nc ≥ 9), all cluster structures
obtained from computer simulations are also members of the set of polyiamonds (see Appendix A),
although the number of cluster structures is much less than that enumerated in the sequence of
polyiamonds. This is because the number of higher order clusters, or equivalently the number of



Nanomaterials 2020, 10, 156 8 of 15

different structure types possibly formed, directly relates to cluster size distribution, which in turn is
driven by various factors (i) a droplet (colloid) packing fraction ηd(ηc), (ii) relative size ratio σd(0)/σc.

Figure 4. Cluster structures at each nc obtained from computer simulations (ηc = 0.15, λ = 1.09).
Not shown is the dumbbell (nc = 2). The wire frame connecting the center of each particle to its
neighbors illustrates the bond skeleton. Each structure is labeled according to the nomenclature given
in Figures 3, A1 and A2. The observed clusters have one configuration for nc < 6, but multiple
configurations for nc ≥ 6, exactly corresponding to polyiamonds.

As an illustration of the role of colloid packing fraction, consider the cluster size distribution
shown in Figure 5, in which Nnc is the number of clusters with nc colloids—normalized by dividing by
the number of single particles N1. From Figure 5a–d, the yield for high order clusters increases with
increasing colloid packing fraction, signaled by a shift in cluster size distribution toward larger clusters.
A similar trend can be observed in the cluster size distribution (not shown) when the interaction
parameter λ decreases from 1.18 to 1.09. This result can be explained by a larger probability of
capturing colloids by droplets as the colloid concentration increases. Likewise, the bonding between
the constituent colloids of clusters becomes more stable against thermal fluctuations as λ decreases
(see illustration in Figure 1a), leading to an increase in the yield of large clusters.

A previous study [20] enumerated a wide variety of cluster structures of six colloidal particles
with short-ranged depletion interactions. By using complicated free energy calculations, the authors
determined the occupation probabilities of ground-states and excited states, and the structural
rearrangements of clusters. The cluster formation of planar triangular particles is expected to be
influenced by a face-to-face contact alignment, which is quite different from a point-to-point contact
alignment for spherical or disc-like particles. However, in our theoretical model, we explore the
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occupation probability of the clusters simply based on the number of ways to add a single particle to a
given nc-colloid cluster and with constraint that a point-to-face contact alignment is obeyed. We made
this assumption based on the fact that the growth of cluster as a spreading of triangular networks was
observed by the computer simulation [23] and experiments [24,25]. As an illustration, Figure 6 shows
the possible configurations obtained for the three configurations (4,1), (4,2) and (4,3) by addition of one
particle. In the case of (4,1), there are six ways to add one particle (labeled 1–6), but only three of them
((5,1), (5,2) and (5,4)) are inequivalent under rotational symmetries. Similarly, insertion of one particle in
(4,2) can have one of three possible inequivalent configurations: (5,2), (5,3) and (5,4), whereas insertion
of one particle in (4,3) produces a unique configuration; i.e., (5,2). From the number of occurrences,
we calculate theoretically the probability of each inequivalent configuration (p (theo.)), and the results
are given in Table 1. For comparison, we show the corresponding probabilities, p (simul.), which are
directly determined from the number of times a configuration is observed through MC simulations in
the final stage.
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Figure 5. Cluster size distributions at λ = 1.09 for several colloidal packing fractions (a) ηc = 0.05,
(b) ηc = 0.085, (c) ηc = 0.10 and (d) ηc = 0.15. The cluster size distribution is normalized with the
number of single particles N1; the distribution is always equal to unity at nc = 1. The distributions, as
shown in Figure 5a–c, therefore, displayed a monomodal characteristic at packing fractions up to 0.1,
but bimodal at packing fraction of 0.15 (Figure 5d). We interpret this as a result of statistical fluctuations
in a small cluster of dimers (nc = 2).

Table 1 shows that the theoretical probabilities are in good agreement with the simulation
observations for configurations from (1,1) to (4,4), or, alternatively, clusters containing three to seven
particles. This is intuitively reasonable, since such cluster configurations are known as ground states
whose occupation probabilities are determined primarily by the rotational entropy (permutational
entropy) [20]. At nc = 8, the overall agreement between the theoretical and simulated probability
is generally good. However, in contrast to a high occupation probability of the (6,4) configuration
predicted by the theory (20%), we have not observed the isomeric cluster of (6,4) from the present
simulation. This may be explained as follows. Theoretically, there exist three types of equivalent
configurations mentioned above, i.e., (6,6), (6,9) and (7,18), that contribute to the total occupation
probability of the configuration (6,4). Thus, the predicted probability of (6,4) is high. However,
our theoretical calculation is based on the assumption that each nc-disc cluster containing particles
is formed by addition of single particle at each triangular lattice site to clusters containing (nc − 1)
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particles. Hence, the probability of finding certain cluster shape depends only on the number of ways
to generate a packing. Within this model, we neglect the influence of long-ranged repulsive interaction
and the presence of the droplet phase. In simulations and experiments, the repulsive interactions
hinder spontaneous clustering and the droplets confine a certain number of particles at their surface.
Despite a lack of consistency, our theoretical model is able to predict the simulation results quite
accurately. However, it should be noted that this theory fails to provide the occurrence probability
of clusters with one particle located at the center of the cluster—the internal particle, surrounded by
the other particles. This is because in both experiments [6] and our simulations, while the colloids
adsorbed at the droplet interface, there does not appear to be a route to an internal colloid upon
collapse. A constraint subject to this route may hamper the rearrangement of particles. For nc = 9,
the absence of many isomeric clusters in the simulation compared to the theoretical calculation comes
from the fact that most of them have relatively low probabilities of being found, and therefore can
easily be missed in the simulation data.

Figure 6. Schematic illustration of the cluster growth to calculate the occupation probabilities starting
from the three six-particle clusters denoted by (4,1), (4,2) and (4,3). For the (4,1) configuration, there are
six ways of inserting a particle (labeled 1–6) to construct the triangular lattice, but insertion of this
particle in (1) and (4) gives two equivalent configurations (see text for details).

Table 1. Characteristics across multiple structure types. Each structure is represented by a symbol
given in Figures 3, A1 and A2. nc and nb indicate the number of constituent particles, and the number
of bonds in each structure, respectively. The point group is given in Schoenflies notation; (p (theo.)) is
the theoretical probability, expressed as a percentage; and (p (simul.)) is the probability that a structure
is observed via simulation.

(1,1) (2,1) (3,1) (4,1) (4,2) (4,3) (5,1) (5,2) (5,3) (5,4) (6,1) (6,2)

nc 3 4 5 6 6 6 7 7 7 7 8 8
nb 3 5 7 9 9 9 11 11 12 11 13 13
Point group D3 D2 C2 C2 D1 D3 C2 C1 D6 C1 C2 C2
p (theo.) 100 100 100 40 40 20 13.33 49.33 8 29.33 3.81 10.13
p (simul.) 100 100 100 36.3 42.5 21.2 12.86 56.24 3.21 27.69 3.77 26.42

(6,3) (6,4) (6,5) (6,7) (6,8) (6,10) (6,12) (7,1) (7,2) (7,3) (7,4) (7,7)

nc 8 8 8 8 8 8 8 9 9 9 9 9
nb 13 14 13 13 13 13 13 15 15 15 16 15
Point group C1 C2 C1 C2 C1 C2 D2 C2 C1 C1 C1 C1
p (theo.) 8.7 21.11 21.33 4.89 16.92 4.89 8.22 0.95 6.74 4.61 15.83 2.64
p (simul.) 0 0 26.42 9.43 11.32 3.77 22.64 0 31.58 15.79 5.26 10.53
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Table 1. Cont.

(7,8) (7,10) (7,12) (7,13) (7,14) (7,15) (7,17) (7,19) (7,21) (7,22) (7,24)

nc 9 9 9 9 9 9 9 9 9 9 9
nb 16 15 15 15 15 16 15 16 15 15 15
Point group C2 C1 C1 C1 C1 C2 C1 D2 C1 C2 C3
p (theo.) 12.32 7.21 3.02 5.29 2.2 8.45 7.37 3.71 14.83 1.24 3.56
p (simul.) 0 5.26 0 0 0 0 0 0 26.32 0 5.26

4. Conclusions

We have considered a two-dimensional suspension in which the spherical colloids and droplets
are confined at the interface, making the system quasi-two-dimensional (q2D). In such a q2D system,
the particle translational motion is restricted to a 2D surface and rotational motion is restricted about a
line normal to the plane of the interface. We note the difference between the q2D that we studied and
the q2D confinement of other studies. For example, in the work by Manahoran et al. [20], particles
were confined between two coverslips with a certain spacing to generate 2D templates. Another q2D
monodisperse colloid suspension was performed by construction the chamber with a thickness only
slightly greater than one colloid particle diameter [47], thereby restricting the centers of the colloid
particles to lie close to a plane, but allowing small amplitude deviations from that plane.

By combining the Einstein relationship and Sonine approximation, we obtaiedn a rough estimate
of the simulation time scale (of order 1 s), which is typically three orders of magnitude smaller than
the experimental time scale.

On the time scale over which the simulation is performed, we observed stable clusters that ranged
from moniamonds to 8-iamonds. From a comparison of the six-particle ground state clusters in [20] to
three possible configurations of tetriamonds, we suggest that all higher order clusters of polyiamonds
(nt ≤ 8) may be expected to be ground states. In particular, using a simple geometrical rule, on the
basis of permutational degeneracy, we have calculated the occupation probabilities of polyiamonds
and found good agreement with those obtained from simulations. This is intuitively reasonable,
since the occupation probability of ground state clusters is largely controlled by symmetry [19,20].

Unlike 3D systems, in which emulsion droplets play the role of a driving force to generate the
uniqueness in cluster structures, in 2D systems droplets have little effect on stable cluster structures
except that they still significantly reduce the probability of clusters that contain an internal particle.
We interpret a coexistence of different structures in 2D clusters as a result of a smaller free-energy
difference between those structures compared to that in 3D clusters.

Our simulation also shows that the model potentials predict the growth of clusters of a span
of triangular lattices, broadly consistent with that obtained for the global minimization of the
Lennard–Jones potential, the second moment of the mass distribution and an attractive van der
Waals interaction. Furthermore, we found no change in the cluster structures for a variety wide of the
tunable parameters of the model. These results suggest that the structures of 2D colloidal clusters are
insensitive to the nature of the potential.

It is worth noting that the simulations described here could lead to the formation of uniform
assembly of colloidal particles characterized by a range of well-defined sizes, shapes and structures.
The availability of well-controlled assembly of colloidal particles will provide an opportunity to
experimentally probe the hydrodynamic, aerodynamic and optical properties. For example, the 2D
structure of polystyrene microspheres could be put to use for microlenses with controllable focal
lengths [48]. In addition, some of the colloidal structures, e.g. the dimers, trimers and tetramers,
can be further explored as a class of new building blocks for self-assembly to generate mesostructured
systems that may find uses in practical applications, such as photonics, electronics, plasmonics and
condensed matter physics [3,48].
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Appendix A

We followed the procedure of Rangel-Mondragón [46] to produce all distinct polyiamonds of
a given size. A polyiamond (nt-iamond) is a planar tile consisting of nt unit equilateral triangles,
where each triangle is represented by a pair {A, t}; A is the complex number a + b exp(πi

3 ) of the
leftmost vertex of the triangle under the assumption that one of its edges rests horizontally (a, b are
integers); and t is taken to have the value −1 or 1, such that the triangle pointing down is for −1
what pointing up is for 1. Underlying every edge-to-edge tiling of the plane by polyiamonds is a
hexagonal lattice whose points can be expressed as all integral linear combinations of two numbers
1 and exp(πi

3 ). Thus, any triangle {{a, b} , 1} has three neighbors {{a, b} ,−1}, {{a, b + 1} ,−1} and
{{a− 1, b + 1} ,−1}, and triangle {{a, b} ,−1} has three neighbors {{a, b} , 1}, {{a, b− 1} , 1} and
{{a + 1, b− 1} , 1}.

In order to generate all nt-iamonds, we start from (nt − 1)-iamonds and proceed as follows.
We take each element of (nt − 1)-iamonds and append a triangle to each of its triangles in all three
possible directions. Once a full list of nt-iamonds is obtained, we transform it into the canonical
representation to remove repetitions and to sort. The two examples shown in Figures 6 and A1 were
drawn for nt = 7 (7-iamonds) and nt = 8 (8-iamonds), respectively.

Figure A1. Same as Figure 3 but for nc = 9 (7-iamond).
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Figure A2. List of 8-iamonds (nc = 10).
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