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Single-cell RNA sequencing reveals B cell–related molecular
biomarkers for Alzheimer’s disease
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In recent years, biomarkers have been integrated into the diagnostic process and have become increasingly indispensable for
obtaining knowledge of the neurodegenerative processes in Alzheimer’s disease (AD). Peripheral blood mononuclear cells (PBMCs)
in human blood have been reported to participate in a variety of neurodegenerative activities. Here, a single-cell RNA sequencing
analysis of PBMCs from 4 AD patients (2 in the early stage, 2 in the late stage) and 2 normal controls was performed to explore the
differential cell subpopulations in PBMCs of AD patients. A significant decrease in B cells was detected in the blood of AD patients.
Furthermore, we further examined PBMCs from 43 AD patients and 41 normal subjects by fluorescence activated cell sorting (FACS),
and combined with correlation analysis, we found that the reduction in B cells was closely correlated with the patients’ Clinical
Dementia Rating (CDR) scores. To confirm the role of B cells in AD progression, functional experiments were performed in early-
stage AD mice in which fibrous plaques were beginning to appear; the results demonstrated that B cell depletion in the early stage
of AD markedly accelerated and aggravated cognitive dysfunction and augmented the Aβ burden in AD mice. Importantly, the
experiments revealed 18 genes that were specifically upregulated and 7 genes that were specifically downregulated in B cells as the
disease progressed, and several of these genes exhibited close correlation with AD. These findings identified possible B cell-based
AD severity, which are anticipated to be conducive to the clinical identification of AD progression.
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INTRODUCTION
Alzheimer’s disease (AD) has long been one of the great
challenges in medicine and imposes a constant burden on our
aging population. Recent statistics show that approximately 50
million people worldwide suffer from AD or some other form of
dementia1. The World Health Organization has estimated that the
total number of people with dementia worldwide will reach 82
million by 2030 and 152 million by 20502. Of the top 10 leading
causes of death based on United States cancer statistics,
cardiovascular disease ranks first, tumors rank second and AD
ranks sixth3. AD, an insidious progressive neurodegenerative
disease, is clinically characterized by cognitive dysfunction,
psychiatric symptoms, behavioral disorders, and even a gradual
decline in the ability to carry out activities of daily living4,5.
Considered a heterogeneous disease, the disease may be
attributed to family history, head trauma, low educational level,
thyroid disease, too high or too low maternal reproductive age,
and viral infection6. At present, AD can be diagnosed by
neuropsychological tests, hematological examinations, neuroima-
ging examinations, electroencephalograms, cerebrospinal fluid
tests, genetic tests and so on7,8. In the past few years, the

International Working Group (IWG) has integrated biomarkers into
the diagnostic process, and in 2014, the IWG began to divide AD
biomarkers into diagnostic markers and progression markers to
cover all stages of the disease (from asymptomatic status to the
most severe stage of dementia)9,10.
Human blood, which can contain crucial biomarkers, has been used

to reflect the physiological and pathological condition of patients. The
key role of peripheral blood in the diagnosis of AD has been identified
in previous studies11,12, and peripheral blood mononuclear cells
(PBMCs) have been reported to play an active role in a variety of
neurodegenerative events13. PBMCs consist of multiple cell subsets,
which are commonly divided into myeloid and lymphoid cells;
myeloid cells comprise monocytes and their descendants, along with
granulocytes such as neutrophils and basophils, while lymphoid cells
primarily include T cells, B cells and NK cells14. Total PBMC-based
genome-wide expression measurements can detect the proportions
of various cell subpopulations in a given sample13,15, whereas the
lesser transcriptional alterations in some subsets cannot be
determined by single-cell RNA sequencing (RNA-seq) of bulk PBMCs16.
Thankfully, the reliable measurement of transcriptional heterogeneity
has been made possible by microfluidic control of cell capture and
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preparation of RNA-seq libraries from single individual cells, which has
been successfully applied to identify cell subsets and critical
biomarkers in multiple distinct biological settings, such as neurogen-
esis, tumorigenesis and embryonic development17–20. Single-cell RNA-
seq possesses the capacity to identify specific biomarkers so that
multiple candidate biomarkers can be selected for diagnostic and
prognostic use.
In the current study, differentially abundant cell subpopulations

among PBMCs and differentially expressed genes in B cells were
identified in 4 AD patients and 2 controls by single-cell sequencing
analysis. Moreover, we collected PBMCs from 43 AD patients and 41
normal subjects for fluorescence activated cell sorting (FACS), and
some correlations were found among the Clinical Dementia Rating
(CDR) score of AD patients, the numerical variation of B cells and
the changes in the expression of marker genes as the disease
developed. The indispensable function of B cells in AD progression
was further validated using AD mice. We achieved proof-of-concept
identification of possible pathogenic cell types and molecular
biomarkers underlying AD, revealing the feasibility of identifying
disease biomarkers in specific cell types rather than whole blood;
the development of an AD diagnostic or early warning kit based on
single-cell RNA-seq should be an urgent priority.

MATERIALS AND METHODS
Participants
Two normal individuals (Normal-1 (N1) and Normal-2 (N2)) and four AD
patients (2 with mild AD, designated Early AD-1 (EA1) and Early AD-2
(EA2)), and 2 with severe AD, designated Late AD-1 (LA1) and Late AD-2
(LA2) were involved in single-cell sequencing analysis. Moreover, PBMCs
from 43 AD patients and 41 normal subjects were collected for FACS and
correlation analysis with the patients’ CDR scores. The patients fulfilled the
following inclusion criteria21: a clinical diagnosis of mild or severe AD, a
Mini-Mental State Examination (MMSE) score >19, an age range of 60–90
years, and stable administration of anti-dementia or mood-stabilizing
medication. They were all informed of the purpose of the study and signed
an informed consent form. Detailed information on these patients is shown
in Supplementary Table 1. PBMCs were collected from patients and
controls. All procedures involving the participants were approved by the
Ethics Committee of Biomedical Research for West China Hospital
(approval number 20150263; Chinese Clinical Trial Registry number
ChiCTR1900022805), and this study was conducted in accordance with
the Declaration of Helsinki.

Magnetic resonance imaging
A 3.0 T magnetic resonance scanner (Ingenia, Philips, Netherlands) was
used to detect cerebral structural changes in AD patients. The protocol and
parameters for T1-weighted (T1W) imaging in all participants were as
follows: repetition time (TR)/echo time (TE)= 500/20 milliseconds (ms),
(number of signal averaged) NSA= 4, (field of view) FOV= 180 × 180mm,
matrix=224 × 224. The thickness of slices was set at 2 mm each.

PBMC isolation
PBMCs in the blood samples obtained from normal individuals (N1 and N2)
and AD patients (EA1 and EA2 for early AD; LA1 and LA2 for late AD) were
purified by Ficoll gradient separation according to the manufacturer’s
instructions (Ficoll-Paque Plus, GE Healthcare, Sweden). In short, 3 mL of
Ficoll-Paque gradient was pipetted into two 15-mL centrifuge tubes. The
blood was diluted at a ratio of 1:1 in phosphate-buffered saline (PBS) and
carefully layered over the Ficoll-Paque gradient. The tubes were
centrifuged for 30min at 400 × g. The cell interface layer was harvested
carefully (8 mL/tube), and the cells were washed twice in PBS for 10min
each (at 100 × g). PBMCs were resuspended in 1mL complete culture
medium (DMEM supplemented with 10% newborn calf serum and 1% PS).
Cells were counted using a hemocytometer and trypan blue. PBMCs at a
density of 3 × 106 cells per tube were frozen in a liquid nitrogen tank.

10x genomics single-cell package and library preparation
Single-cell libraries were generated using a GemCode single-cell instru-
ment and a 10x Genomics Single Cell 3′ Library & Gel Bead Kit v2 and Chip
Kit according to the kit manufacturer’s protocol (Ou Yi Bio, Shanghai)22.

Briefly, PBMCs were suspended in 0.04% BSA–PBS and then counted with a
Countess® II Automated Cell Counter. The cell concentration was adjusted
to the desired concentration of 1 × 106/mL. Approximately 13000 cells
were added to each channel. Nanoliter-scale gel beads in emulsion (GEMs)
containing barcode information were generated and then reverse
transcribed in a C1000 Touch Thermal Cycler (Bio-Rad). PCR amplification
was performed using cDNA as a template. Subsequently, the amplified
cDNA was fragmented into approximately 200–300 bp fragments by a
Bioruptor sonication device, and the traditional second-generation
sequencing process was followed, including, for example, sequencing
linker P5 and sequencing primer R1. Finally, the DNA library was amplified
by PCR.

Single-cell RNA-seq
The library was quantified using Qubit, and the eligible libraries were
placed in cBot for bridge amplification. All libraries prepared for this study
were sequenced on a HiSeq 4000 system (Illumina) with 150 bp paired-end
sequencing, and each library was sequenced for a whole lane. Briefly,
fluorophore-labeled deoxyribonucleotide triphosphates (dNTPs) of A, T, G,
and C were added during each cycle. According to AT and GC pairing, the
corresponding dNTPs were bound to the template DNA strand by DNA
polymerase, and the unbound dNTPs were washed out. After removal, the
binding position released a fluorescent signal that could be captured by
the computer and converted accordingly. Thereby, the base information
for the binding position was obtained. The Cell Ranger software pipeline
(version 2.2.0) provided by 10× Genomics was used to demultiplex cellular
barcodes, map reads to the genome and transcriptome using the Spliced
Transcripts Alignment to a Reference (STAR) aligner, and downsample
reads as required to generate normalized aggregate data across samples,
producing a matrix of gene counts versus cells. We processed the unique
molecular identifier (UMI) count matrix using the R package Seurat23

(version 2.3.4). To remove low-quality cells and likely multiplet captures,
which is a major concern in microdroplet-based experiments, we filtered
out cells with UMI/gene numbers more than 4 standard deviations away
from the mean value, assuming that the UMI/ gene numbers of the cells
followed a Gaussian distribution. Following visual inspection of the
distribution of cells by the fraction of mitochondrial genes expressed, we
further discarded low-quality cells in which >10% of the counts belonged
to mitochondrial genes. After the application of these quality control (QC)
criteria, 46244 single cells (1304 cells filtered out from a total of 47548
cells) and 9279 genes remained and were included in downstream
analyses. Library size normalization was performed in Seurat on the filtered
matrix to obtain the normalized count.

Data processing
The raw image data files obtained by single-cell RNA sequencing were
converted into the original sequences by base-calling analysis. The
resulting data were called raw data or raw reads. These results were
stored in the FASTQ (.fq) file format, which contains the sequence
information (reads) and its corresponding sequencing quality information.
The top variable genes across single cells were identified using the method
described by Macosko et al.24. Briefly, the average expression and
dispersion were calculated for each gene, and the genes were
subsequently divided into 18 bins based on expression. Principal
component analysis (PCA) was performed to reduce the dimensionality
of the log-transformed gene-barcode matrices of the top variable genes.
Cells were clustered based on a gene-based clustering approach and
visualized in 2 dimensions using t-distributed stochastic neighbor
embedding (t-SNE) dimensionality clustering analysis (tsne.fit_transform
(data_zs)). The cell type signature genes are listed in Table 1, the number
of each cell subsets shown in Supplementary Table 2. A likelihood ratio test
that simultaneously tests for changes in mean expression and in the
percentage of expressed cells was used to identify significantly differen-
tially expressed genes between clusters. The R package SingleR, a novel
computational method for unbiased cell type recognition of single-cell
RNA-seq, was used to infer the cell origin of each single cell independently
and identify cell types by referring to the transcriptomic datasets
“Blueprint Epigenomics”25 and “Encode”26. Differentially expressed genes
(DEGs) were identified using the Find Markers function (test.use =MAST) in
Seurat, and Pearson correlations between samples were calculated in R
(cor(data, method= “pearson”)) based on the mean expression of the 693
highly variable genes. The criteria of p value < 0.05 and |log2(fold change)|
> 0.26 were set as the thresholds for significantly differential expression.
Heatmaps, volcano plots, and violin plots were generated using R.
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The enriched pathways associated with the differentially expressed genes
were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (https://www.kegg.jp/). Venn diagrams and circular heat maps were
generated with TBtools (https://doi.org/10.1016/j.molp.2020.06.009).

Fluorescence-activated cell sorting (FACS)
PBMCs from 43 AD patients and 41 normal subjects were isolated by FACS
to further validate the results of single-cell sequencing. Briefly, all PBMCs
were washed, counted and suspended in ice-cold PBS, and cell-surface
antigen staining was subsequently performed. Monoclonal antibodies
against CD3, CD45, CD56, CD19 (CD45/CD56/CD19/CD3 detection kit,
Beckman Coulter, USA) and CD16 (CD16-PE, Beckman Coulter, USA) were
used in immunofluorescence staining. The stained cells were analyzed and
sorted by BD Influx (BD, USA), and data were analyzed using CytExpert 2.0.

Animal care and grouping
Sixteen-week-old APP/PS1 transgenic mice (AD mice) and wild-type (WT)
mice on a C57BL/6 genetic background were provided by the Center for
Experimental Animals at Kunming Medical University. The animals were
kept under standard conditions in a specific-pathogen-free (SPF)
laboratory. All experimental procedures, including animal care and testing,
conformed to the Animal Care and Use Committee of Kunming Medical
University (kmmu2019058). All studies were conducted in accordance with
the United States Public Health Service’s Policy on Humane Care and Use
of Laboratory Animals. AD mice were randomly divided into an AD+ B cell
depletion treated (BCDT) group and an AD+ PBS group. Mice in the AD+
BCDT group received an intraperitoneal injection of 200 μL B cell depletion
antibodies composed of 92 μL PBS, 55.5 μL CD19 and 52.5 μL B220 (anti-
mouse CD19: 5.41mg/mL, Bioxcell, Catalog #BE0150; anti-mouse B220:
5.71mg/mL, Bioxcell, Catalog #BE0067) once every 5 days for 3
consecutive months, while the negative control mice received equivalent
doses of PBS.

Open field test
In this study, the open field test was mainly used to characterize the
autonomous behavior, exploratory behavior and anxiety-like behavior of
mice in the WT, AD control and AD treatment groups in an unfamiliar
environment. The experimental setup consisted of two parts: the open
field reaction box, which was 40 cm high with a 40 cm × 40 cm base and
white interior walls, and the automatic data acquisition and processing
system (Shanghai XinRuan Information Technology Co.). The enclosed part
of the reaction box had a square floor area composed of 16 squares of
10 cm × 10 cm, with a digital camera positioned 2m above the floor of the
box. Each animal was placed in the center of the arena floor and had its
behavior simultaneously videotaped and timed. Each mouse was observed
for 10min. The number of times the mouse reared and groomed as well as
the cumulative time spent rearing and grooming was recorded. Between
tests, the inner walls and floor of the box were cleaned.

Morris water maze test
The Morris water maze was used to evaluate the spatial memory and
learning abilities of AD mice. The pool, measuring 1.8m in diameter and
filled to a depth of 0.5m, was divided into 4 equal quadrants, with a small
round platform placed 1.5 cm below the surface of the water in the center of
one quadrant. White food coloring was added to the water to hide the
platform. The water maze experiment included a place navigation test and a
spatial probe test. In the navigation test, the mice were placed at the
midpoint of one randomly selected quadrant, and the time that the mice
took to find the hidden platform (the latency) was recorded. For training,
each mouse was released at the center of each of the 4 quadrants once

per day for 5 days in a row; they were given up to 60 sec per trial to find the
platform. If the mice failed to find the platform within 60 s during a training
trial, they were guided to the platform by laboratory staff. On the sixth day,
the platform was removed, and the spatial probe test began. The mice were
placed in the water in the quadrant opposite the original location of the
platform. The number of times each mouse crossed the target region, and
the time and last day of training of distance that the mice traveled before
reaching the target region were recorded and measured. Finally, the mice
were dried after each experiment and returned to their home cages. The
interval between training sessions was 15–20min.

Y-maze test
Mice were subjected to the Y-maze test at 3 months after BCDT injection.
The Y maze consisted of three white plexiglass arms (each 35 cm long,
5 cm wide and 15 cm high) at an angle of 120° to each other. They were
placed at the end of one arm and allowed to move through the maze. This
test was divided into the following two parts. (1) Spontaneous alternating
experiment: The order of entries into the three arms and the total number
of entries into each arm were recorded. The alteration rate was calculated
as the number of alterations/(total number entries-2) × 100. (2) Spatial
reference memory: In the first training test, a certain arm (the novel arm)
was closed, and the mice were allowed to explore freely for 15min. Before
the second test, the animals were returned to their cages for 1 h. During
the second trial, the novel arm was made accessible, and the mice were
allowed to move freely within the maze for 8 min. The number of times
each mouse entered the novel arm and the total time spent in the novel
arm were measured and analyzed.

Tissue harvest
Twenty-four hours after behavioral experiments, all mice were anesthe-
tized, killed, and immediately perfused with precooled 0.9% normal saline
and 4% paraformaldehyde until the liver turned white and the body
became stiff. Their brains were cut and fixed in 4% paraformaldehyde for
72 h, and trimmed blocks of brain tissue were dehydrated and embedded
in paraffin. The region 2.66 mm~4.3 mm posterior to bregma was
sectioned into coronal slices (5 μm thick), which were subsequently
baked at 60 °C for 24 h and stored at room temperature for subsequent
staining.

Immunohistochemistry staining
The prepared brain sections were first deparaffinized and hydrated. After
antigen retrieval with sodium citrate, these sections were washed 3 times
with 0.01 M PBS for 5 min each, and then incubated with 3% hydrogen
peroxide for 10min to eliminate endogenous peroxidase. After three more
washes with PBS, the sections were incubated with 5% goat serum and
0.3% Triton X-100 for 30min at 37 °C. Afterward, primary antibodies (anti-
β-amyloid 1–16, 6E10, Mouse, 1:1500) diluted in 2% goat serum were
added and incubated for 18 h at 4 °C. Sections in the negative control
group were treated with 2% goat serum. After being rinsed 3 times with
PBS, they were incubated with an immunostaining chromogenic agent
(MaxVision-HRP, mouse/rabbit) for 15 min at 37 °C and then developed by
adding DAB solution. Finally, sections were dehydrated in gradient ethanol
and xylene and sealed with neutral resins. The morphological changes in
the brain tissues were observed under a light microscope. In five randomly
selected fields, the Aβ plaque number and area and optical density value
was calculated by Image Plus Pro.

Statistical analysis
The sequencing data were analyzed using R software and Cell Ranger. All
data are presented as the primary data or mean ± SEM. Statistical analysis
was performed using SPSS 19.0 software. One-way analysis of variance
(ANOVA) with Tukey’s post hoc test was applied for comparisons among
multiple groups. The correlation among the number of T, B or NK cells; the
expression levels of genes; and CDR scores (the severity of AD) was
analyzed using the Pearson or Spearman correlation coefficient. The
Pearson correlation coefficient was calculated based on the average
expression of all cells in the corresponding group using R software (R: cor
(data, method= “pearson”)) to visualize the intergroup variability across
samples. A high correlation value represents high consistency in cell type
distribution among samples, indicating low technical or biological
variability across samples in the dataset27. The correlation between the
patients’ age and the changes in the expression of differentially expressed
genes in B cells was assessed using binary regression analysis. The genetic
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interaction was analyzed with String (https://www.string-db.org/), and
interaction networks were generated by Cytoscape (Version 7.1). GraphPad
Prism software version 7.0 (GraphPad Software Inc.) was used for
quantification histogram generation. Any difference with a p value <
0.05 was considered significant.

RESULTS
Analysis of the heterogeneity of PBMC populations by single-
cell RNA-seq
MRI scans showed cerebral atrophy and ventricular dilatation
in late AD patients compared to normal individuals (Fig. 1a).
PBMCs from AD patients were collected for single-cell RNA-seq
based on 10x Genomics droplets. The numbers of captured
cells in the 6 samples were 8241 for N1, 7335 for N2, 7120 for
EA1, 3690 for EA2, 10180 for LA1 and 10982 for LA2, which
decreased to 7906, 6842, 6957, 3648, 9959 and 10932,
respectively, after quality control (Fig. 1b). Data from multiple
sequencing runs were merged using the Cell Ranger pipeline.
All cells were sorted according to the number of genes
detected; a median of approximately 1000 genes were
identified in these 6 samples, and more genes were identified
in LA2 (a sample from a late AD patient) than in other samples
(Fig. 1c). The data did not indicate that all cells in each sample
had a total of 1,000 genes detected, and a median gene count
of <1000 has been reported in previously published papers28–
30. The intergroup variability in the datasets was visualized
using the average expression of highly variable genes through
Pearson correlation coefficients, which provided an overview of
all variation between samples, with pairwise correlation values
ranging from 0.8101 to 0.9496 (Fig. 1d). The correlation
outcomes are shown in Supplementary Table 3, and the list
of highly variable genes is available in Supplementary Table 4.
Our datasets reveal high consistency in cell type distribution
among samples.

Verification of the differences in subsets of PBMCs in AD
patients
KEGG analysis of differentially expressed genes in 6 cell subsets
revealed that the upregulated genes identified by single-cell RNA-
seq were mainly enriched in the pathways Measles, Influenza A,
Chagas disease (American trypanosomiasis), Bladder cancer,
Malaria, Leishmaniasis, Fc gamma R-mediated phagocytosis,
Hematopoietic cell lineage, Osteoblast differentiation and T cell
receptor signaling pathway, while the downregulated ones
showed enrichment in Ubiquitin-mediated proteolysis, Chronic
myeloid leukemia, Acute myeloid leukemia, Renal cell carcinoma,
RNA transport, FoxO signaling pathway, TNF signaling pathway,
Apoptosis, Sphingolipid signaling pathway and mRNA surveillance
pathway (Fig. 2a, b). Through the gene-based cluster analysis, the
top 6 cell subsets in these 6 samples were screened and overlaid
in 2 dimensions (Fig. 2c), and their proportion in each sample was
displayed (Fig. 2d, Supplementary Table 2). Collectively, the
quantification data showed high densities of T cells and NK cells
in each sample (Fig. 2d, Supplementary Table 2). In the PBMCs of
early and late AD patients, the percentage of B cells was visibly
decreased compared with that of normal controls (Fig. 2e, f,
Supplementary Table 2).

Gene expression profiles of cell subpopulations of PBMCs in
AD patients
We performed clustering analysis to examine cellular hetero-
geneity in each subset of PBMCs. To identify cluster-specific genes,
the difference in the expression of each gene at different stages of
AD was calculated. The heatmap demonstrated the difference in
the expression of the significantly upregulated and downregu-
lated genes in single-cell gene expression data of the 6 cluster-
specific cells (B cells, CD4, CD8, HSCs, monocytes and NK cells) of
AD patients and normal individuals (Fig. 3a). As shown,
differentially expressed genes in each cell subset was divided
into upregulated and downregulated genes according to the

Fig. 1 Heterogeneity of PBMC population analysis by single-cell RNA-seq. a MRI scanning images of the brains of a normal person and a
representative late AD patient. b The number of single cells in each sample captured by single-cell RNA-seq 10X genomics. c The violin plot
shows the gene number of each sample. d Pearson’s correlation plot visualizing the correlation (r) values between samples. N1, Normal-1; N2,
Normal-2; EA1, Early AD-1; EA2, Early AD-2; LA1, Late AD-1; LA2, Late AD-2.
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Fig. 2 Verification of the differences in cell subsets of PBMCs in AD patients. a Heat map of differentially expressed genes in samples from
AD patients and normal controls and (b) KEGG analysis of pathways involved in upregulated genes and downregulated genes. c t-SNE shows
the top 6 cell subsets in all samples and (d) quantification of the proportion of cells in each sample. e, f The t-SNE map shows the different
distribution of 6 clusters in normal, early AD, and late AD patients. The data were presented as the mean. The heatmap was generated by the
pheatmap R package, and the rows were clustered. Pearson distance measurement assigns values to the clustering rows. The bubble diagram
was generated by the ggplot R package. The color of the bubbles varies from red to green. The redder the bubbles are, the greater the
-log10(p value), that is, the smaller the p value. The larger the bubble is, the more genes are enriched. N1, Normal-1; N2, Normal-2; EA1, Early
AD-1; EA2, Early AD-2; LA1, Late AD-1; LA2, Late AD-2.
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Fig. 3 Gene expression profiles of cell subpopulations of PBMCs in AD patients. a Heat map of changes in the RNA expression of
upregulated and downregulated genes in the top 6 cell types in normal people and early and late AD patients. N values below the cell names
represent the cell counting results. b The gene expression changes trends of upregulated and downregulated genes in 6 different cell types.
c KEGG pathway analysis of upregulated genes in 6 cell types. The heatmap was generated by the pheatmap R package, and the rows were
clustered. Pearson distance measurement assigns values to the clustering rows. The line chart was generated by the ggplot R package. The bar
chart of KEGG analysis was made by the hist function of R language in accordance with the -log10 (p value).
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trends in their expression as the disease proceeded (Fig. 3a, b).
KEGG analysis of differentially expressed genes in each cell
subtype was carried out, revealing the top five pathways in which
the upregulated genes of each cell type was enriched. The
pathways were as follows. B cells: Alzheimer’s disease, Oxidative
phosphorylation, Huntington’s disease, Parkinson’s disease, Non-
alcoholic fatty liver disease (NAFLD); CD4+ T cell: Oxidative
phosphorylation, Metabolic pathways, Ribosome, Parkinson’s
disease, Osteoclast differentiation; CD8+ T cell: Oxidative phos-
phorylation, Alzheimer’s disease, Huntington’s disease, Metabolic
pathways, Parkinson’s disease; HSCs: Pathogenic Escherichia coli
infection, Proteasome, Epstein-Barr virus infection, Phagosome,
Influenza A; Monocytes: Oxidative phosphorylation, Proteasome,
Metabolic pathways, Parkinson’s disease, Huntington’s disease; NK
cell: Spliceosome, Oxidative phosphorylation, Proteasome, Hun-
tington’s disease, Alzheimer’s disease (Fig. 3c). The pathways in
which downregulated genes were enriched were almost entirely
consistent with the results shown in Fig. 2a. In summary,
upregulated genes in B cells, CD8+ T cells and NK cells all
exhibited enrichment in Alzheimer’s disease, which took first place
in B cells, second in CD8+ T cells and fifth in NK cells among the
top five enriched signaling pathways.

Differential gene expression profiles in B cells
A Venn diagram made with TBtools (https://doi.org/10.1016/j.
molp.2020.06.009) revealed the numbers of specific upregulated
and downregulated genes in the 6 different cell types. Excluding
the overlapping areas, there were 361 specific upregulated genes
and 438 specific downregulated genes found in B cells, 108
upregulated and 724 downregulated genes in CD4+ T cells, and
176 upregulated and 278 downregulated genes in CD8+ T cells
(Fig. 4a, b). A circular heat map made with TBtools (https://doi.org/
10.1016/j.molp.2020.06.009) displayed how the genes that were
specifically expressed in B cells were expressed in the other 5 cell
types, and the results revealed that the genes that were
specifically upregulated or downregulated in B cells did not
exhibit obvious changes in other cell subsets (Fig. 4c, d). In
addition, according to inclusion criteria for AD, PBMCs from 43 AD
patients and 41 normal subjects were collected for FACS, we
found that AD patients had fewer T cells (23.9%) and B cells
(3.37%) than normal controls (36.9% and 8.54%, respectively;
Fig. 4e, f, g; p= 0.000 and p= 0.001, respectively). The relative
number of NK cells was not significantly different. Furthermore,
the correlation analysis between the number of B cells and CDR
score showed that the number of B cells was negatively related to
the severity of AD; that is, the fewer B cells there were, the more
serious the development of AD was (Fig. 4h, i, j, p= 0.0004). Based
on these findings, B cells were determined to be a specific
biomarker for AD.

B cell depletion causes cognitive decline in AD mice
To further verify the function of B cells in the progression of AD,
16-week-old AD mice were subjected to B cell depletion. After
three months of consecutive BCDT, cognitive function was
evaluated by the open field test, Morris water maze test and
Y-maze test. As shown, the AD mice treated with PBS and BCDT
performed worse, as indicated by decreased rearing duration and
number of rearing events, than the dementia-free WT mice (Fig.
5a, p < 0.05), and the mice in the AD+ BCDT group suffered more
severe dysfunction than those in the AD+ PBS group (p < 0.05).
The mice in the AD+ BCDT and AD+ PBS groups also performed
worse in the Morris water maze and Y-maze tests than WT
controls. A prolonged escape latency time, an increased distance
traveled to the platform, and a reduced number of platform area
crossings demonstrated that AD mice had significant spatial and
learning disabilities compared to controls, and the disabilities in
the AD+ BCDT group were much more severe than those in the
AD+ PBS group (Fig. 5b, c, d, e, f, p < 0.05). The decreased working

memory abilities of AD mice were indicated by shorter duration in
the novel arm, fewer entries into the novel arm, and lower
spontaneous alteration than control mice in the Y-maze test
(Fig. 5g, p < 0.05).

B cell depletion increased Aβ deposits in the brains of AD mice
The immunohistochemistry results showed that the amyloid
plaque burden in the hippocampus and cortex were increased
in PBS and BCDT AD mice compared to WT mice (Fig. 6a, p < 0.05).
The optical density value of plaques, the number of plaques and
the total plaque area in the cortex and hippocampus were all
significantly elevated in the AD mice relative to the WT mice (p <
0.05), and those of AD mice with BCDT were increased more than
those of AD mice treated with PBS (Fig. 6b, p < 0.05). The
distribution of Aβ plaques in the four regions of the hippocampus
was further specified. The plaques were mainly distributed in the
CA1 region and DG of the hippocampus in the AD mice (Fig. 6c),
as indicated by the increased OD value of plaques in those regions
among AD mice compared to WT mice (p < 0.05). The BCDT AD
mice exhibited higher plaque OD values in the CA1 and DG than
PBS-treated AD mice (Fig. 6d, p < 0.05). Meanwhile, the number of
plaques and the ratio of plaque area to total hippocampus area
were elevated in all four regions of hippocampus in the AD mice
compared to WT mice, and those in BCDT AD mice were even
higher than those in PBS-treated controls (Fig. 6d, p < 0.05).

Identification of specific differential gene expression in B cells
The top 100 upregulated genes (ranked by fold change) expressed
in B cells during the progression of AD were identified, and the
overlapping area showed 18 prominent genes as the disease
proceeded: AC109826.1, LINC00239, CTC-505O3.3, DTHD1, CFH,
NFE2, QPCT, DAB2, PHLDA1, PPP2R2B, SIRPG, KIR2DL3, FOLR3,
KIR3DL2, AOAH, IFNG, CD160, and FCRL6. These factors were then
imported into String, and their correlation and interaction were
revealed and displayed by Cytoscape (Fig. 7a). Likewise, the
overlapping downregulated genes were also determined and
imported into String to elucidate their interactive relationships;
these genes were TTC39C-AS1, FRAT2, WWC3, C15orf48, RFX3,
RP11-298J20.3, and SPG20. In B cells, the upregulated genes
KIR3DL2, QPCT, and PPP2R2B are all involved in neural function
and neurodegenerative diseases, and the downregulated genes
FRAT2 and WWC3 are involved in the Wnt/β-Catenin signaling
pathway, which is associated with AD pathogenesis31,32 (Fig. 7b).
Downregulated SPG20 could mediate mitochondrial calcium
homeostasis. Dysfunction in regulating mitochondrial calcium
homeostasis can bring about intracellular accumulation of reactive
oxygen species (ROS), resulting in oxidative stress, which is one of
the early features of AD. Thus, these 6 genes were selected for
further focus. We further analyzed the aforementioned differen-
tially expressed genes in B cells from single-cell RNA-seq data; we
found that KIR3DL2, QPCT and PPP2R2B were increasingly
expressed above the normal baseline in B cells as the disease
progressed, while the expression of SPG20, FRAT2 and WWC3
decreased from the normal baseline as the disease developed
(Fig. 7c, d).

Expression of specific genes in each cell subset with the
progression of AD
To verify the specific expression trends of the abovementioned
upregulated and downregulated genes in B cells, we analyzed the
expression trends of these 6 genes in B cells together with those
in other cell clusters (CD4, CD8, HSC, monocytes, NK cells) from the
single-cell RNA-seq data. As shown, the expression of KIR3DL2 and
PPP2R2B was significantly upregulated in B cells in early and late
stages of AD (Fig. 7e, p < 0.05), while the same was not true in
other cell clusters. WWC3 and SPG20 exhibited marked down-
regulation in B cells as AD proceeded (Fig. 7e, p < 0.05).
Additionally, in monocytes, the levels of PPP2R2B were
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significantly elevated while those of SPG20 showed an obvious
decrease during the progression of AD (Fig. 7f, p < 0.05).
Depending on whether the changes in the expression of these 6
factors deviated from the values in normal patients, the expression

data were divided into those with normal tendencies and those
with abnormal tendencies, and the patients’ age was included for
binary regression analysis. The results showed that age was not a
risk factor for genetic change (p= 0.994).

Fig. 4 Differential gene expression profiles in B cells. Venn diagram of (a) upregulated and (b) downregulated genes in different cell types.
The specifically (c) upregulated and (d) downregulated genes in B cells and significant alterations in B cells revealed by the circular heat map.
e, f PBMCs of 43 AD patients and 41 normal subjects were harvested and subjected to flow cytometry with a panel of T cell, B cell and NK cell
marker monoclonal antibodies. g The positive cell numbers of T cells, B cells and NK cells (mean ± SEM). h–j Correlation analysis of CDR with
the number of T cells, B cells and NK cells. The Venn diagram and Circosheatmap were generated by TBtool.
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DISCUSSION
In this study, differentially expressed cell subpopulations were
screened in PBMCs of AD patients by single-cell sequencing
analysis; B cells represented a crucial cell subset in the progression
of AD, as verified through in vivo functional experiments in AD
mice. In addition, differentially expressed genes in B cells were
identified; both the upregulated genes (KIR3DL2, QPCT, PPP2R2B)

and the downregulated genes (FRAT2, WWC3, SPG20) had certain
connections with neurodegenerative diseases. In the late stage of
AD, KIR3DL2, QPCT and PPP2R2B in B cells were expressed at
considerably higher levels than in early AD, while FRAT2, WWC3
and SPG20 showed the opposite expression pattern.
The study of biomarkers for the diagnosis of AD has been a

challenging undertaking. Morphophysiological characterization

Fig. 5 Functional verification of B cells in AD mice. a The time spent and the number of rearing in the mice from the WT, AD+ PBS and AD
+ BCDT groups. b The latency to target, c, e the motion trail at 5th day and 6th day of mice from WT, AD+ PBS and AD+ BCDT groups in
Morris water maze. d The distance traveled and (f) the number of target crossings in mice of three groups. g The alteration rate, the time spent
in the novel arm and the novel arm entry rate of mice in the three groups in the Y-maze. WT wild-type (mice), BCDT B cell depletion treated.

L.-L. Xiong et al.

1896

Experimental & Molecular Medicine (2021) 53:1888 – 1901



with slice physiology has been regarded as the standard in AD
prognosis for decades33, but this method has many problems,
such as insufficient sampling, difficulty in quantitative classifica-
tion of cell types and limited extensibility in terms of neuron
diversity33,34. Single-cell RNA-seq allows unbiased, high-
throughput quantitative investigations of molecularly defined cell

types in any species, including human beings35,36. However, its
scalability has been limited by throughput (a maximum of 96 cells
per microfluidic chip), high cost, and sampling bias arising from
poor capture of smaller nonneuronal nuclei on microfluidic
chips37. Transcriptome analysis can identify different functional
cell types making up complex tissues, and the inclusion of

Fig. 6 The effect of B cell depletion on Aβ deposition. a Histological images of Aβ plaque distribution in the brain among the WT, AD+ PBS
and AD+ BCDT groups. Scale bar = 20 μm and 50 μm. b Quantification data including integrated optical density (IOD) of Aβ plaque, the
number of plaques and the area of plaques in WT, AD+ PBS and AD+ BCDT groups. c The distribution of Aβ plaques in the hippocampus
(CA1, CA2, CA3, DG) among the three groups. Scale bar = 100 μm and 400 μm. d The IOD, amount and area of Aβ plaques in the four regions
of the hippocampus among the three groups. WT, wild-type (mice); BCDT, B cell depletion treated.
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epigenetic information can provide a more complete picture of
how these expression profiles are regulated or maintained. Such
recognition of cell-type-specific regulation will help improve the
understanding of the genetic programs that define the processes
of cell commitment and differentiation38. In addition, since the
common genetic variants associated with different traits and
diseases are mainly located in intronic or intergenic regions and
enriched in tissue-specific regulatory sites39, the generation of cell-

specific regulome maps may provide additional valuable insights
into the important mechanisms underlying diseases40. Single-cell
RNA-seq has been used to classify cells in the spleen, lung
epithelium, and embryonic brain41. Thus, higher-throughput
single-cell RNA-seq approaches specifically applicable to humans
are necessary.
Increasing evidence demonstrates the therapeutic relevance of

PBMCs to AD13. Immune cells, particularly lymphocytes, may be

Fig. 7 The identification and verification of specific genes. a Venn diagram of the top 100 upregulated genes with the highest fold change
among normal people and patients at different stages of AD (left) and interactive relationships among the 18 overlapping genes by Cytoscape
(right). The darker the red color is, the greater the fold change in expression in the late-stage group, and the more significant the upregulation
of genes. b Venn diagram of the top 100 downregulated genes with the highest fold change among normal people and patients at different
stages of AD (left) and interactive relationship among the 7 overlapping genes by Cytoscape (right). The darker the blue color is, the greater
the fold change in expression in the late-stage group, and the more significant the downregulation of genes. c The t-SNE map shows the
expression variation of three specifically upregulated genes in B cells at normal, early, and late stages of AD. d The t-SNE map shows the
expression variation of three specifically downregulated genes in B cells at normal, early, and late stages of AD (mean ± SEM). e, f Violin plots
showing the expression variation of KIR3DL2, PPP2R2B, QPCT, FRAT2, WWC3 and SPG20 in 6 types of cells (B cells, CD4, CD8, HSCs, monocytes
and NK cells) in normal controls and patients with early and late stages of AD. *p < 0.05 vs. normal group, #p < 0.05 vs. early AD group.
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involved in the pathogenesis of AD42. Hence, elucidation of
specific cellular and gene expression changes may be helpful in
the early diagnosis of AD. To understand cellular heterogeneity
and identify key genes, appropriate experimental and computa-
tional methods are needed to make full use of the application of
single-cell RNA-seq. In this study, single-cell RNA-seq was
employed to analyze differential cells and genes in PBMCs of AD
patients. The single-cell RNA-seq results in this work provide a
detailed view of PBMCs in normal and AD patients, in which the
top 6 cell subsets were B cells, CD4+ T cells, CD8+ T cells, HSCs,
monocytes and NK cells, and the cell difference in each cluster can
be clearly seen. Furthermore, while studying signaling pathways,
KEGG analysis revealed that the upregulated genes in the PBMCs
were mainly enriched in the pathways Measles, Influenza A,
Chagas disease (American trypanosomiasis), Bladder cancer,
Malaria, Leishmaniasis, Fc gamma R-mediated phagocytosis,
Hematopoietic cell lineage, Osteoblast differentiation and T cell
receptor signaling pathway, while the downregulated genes in the
PBMCs showed enrichment in the pathways Ubiquitin-mediated
proteolysis, Chronic myeloid leukemia, Acute myeloid leukemia,
Renal cell carcinoma, RNA transport, FoxO signaling pathway, TNF
signaling pathway, Apoptosis, Sphingolipid signaling pathway and
mRNA surveillance pathway, all of which were independent of
Alzheimer’s disease. However, when the gene expression of each
cell subpopulation was targeted, Alzheimer’s disease enrichment
ranked first among the signaling pathways enriched for upregu-
lated genes in B cells. In addition, upregulated genes in CD8+
T cells and NK cells were also enriched in Alzheimer’s disease,
ranking second and fifth, respectively. Immediately, the investiga-
tion value of B cells in AD stands out of other cell subsets.
Afterward, the results were continuously expanded in 43 AD
patients and 41 normal subjects through FACS, B cells were found
to be specifically reduced in PBMCs of AD patients after the initial
analysis, and the decreased number of B cells was closely
correlated with AD severity. Similar findings were shown in a
previous study, in which the absolute number and percentage of B
cells in the lymphocyte subsets of AD were depressed relative to
normal controls, whereas the other subsets displayed no
significant difference43–45, which further confirmed the reliability
of our single-cell RNA-seq results. To verify the role of B cells in AD
progression, we investigated their function by depleting B cells
from 16-week-old APP/PS1 mice. After 3 months (once every
5 days) of intraperitoneal injection of anti-CD19/B220 antibodies,
neurobehavioral tests were performed at the 28th week, and
immunohistochemical staining was performed at the 30th week,
which revealed that AD mice with B cell inactivation suffered
much more severe cognitive deficits than AD controls. Corre-
spondingly, the brains of B cells removed exhibited a significantly
increased number and area of Aβ plaques in the cortex and
hippocampus. Specifically, Aβ plaques were mainly distributed in
the CA1 region and DG of the hippocampus of AD mice.
Functionally, the rostral and caudal hippocampus is known to
be involved in different forms of learning and memory46.
Consistent with our observation, one MRI study of 120 participants
with AD demonstrated that hippocampal subregions underwent
differential atrophy47.
In our data, inactivation of B cells in the early stage significantly

aggravated the AD-induced cognitive barriers with an elevated
number and area of Aβ plaques in AD mice. Recently, B
cell–related processes in AD have been the topic of many
investigations, some of which consistently revealed that B cells
produce immunoglobulins that are potentially beneficial for
reducing Aβ plaques48 and that they express AD-ameliorating
cytokines49. Nevertheless, a “dark” side of B cells was reported, as
they exacerbated manifestations of AD-like symptoms. B cells in
AD mice appeared to lose their anti-inflammatory activity and
took on an inflamed phenotype, indicated by upregulation of
proinflammatory cytokines50 expression and B cell colocalization

with Aβ plaques and activated microglia. B cells together with
T cells constitute the adaptive immune system, and B cells have
capabilities of fulfilling various cellular and humoral functions that
are dependent on their stage of differentiation and activation
status51. There is no lack of conflicting outcomes reporting the
pathogenic or protective roles of B cells in AD mice. In a recent
study by Kim et al., the loss of B cells benefited AD patients by
reducing Aβ plaque burden and disease-associated microglia,
reversing behavioral and memory deficits and restoring TGFβ+
microglia50. To clarify the causes of the disagreement between our
results and theirs, we carried out a detailed comparison of the
murine experiments between the two articles and summarized
the differences. It is noted in a published study that B cell
deficiency transgenic mice were constructed in 3×TgAD and APP/
PS1 mice by crossing 3×TgAD or APP/PS1 mice with JHT mice, and
transient B cell inactivation or depletion was generated in 60- to
70-week-old 3×TgAD and 35- to 47-week-old 5×FAD mice by
intraperitoneal injection of anti-B cell antibodies, anti-CD20
(100 μg/mouse) and anti-B220 (250 μg/mouse). There was no
overlap with regard to the arrangement of B cell depletion
modeling, as in our study, 16-week-old APP/PS1 mice received
intraperitoneal injection of 200 μL anti-CD19 (300 μg/mouse) and
anti-B220 (300 μg/mouse) for B cell clearance. APP/PS1 mice are
known as a classic model of early onset of AD and exhibit earlier
AD pathology than 3×TgAD mice. B cell depletion in APP/PS1 mice
was initiated in our study when fibrous plaques were observed in
mice at 16 weeks of age (data not shown), which was younger
than the age at which B cell APP/PS1 knockout mice were used
(20–35 weeks). In addition, in their operation on another two
models, B cells were cleared from 3×TgAD (60–70 weeks) and
5×FAD (35–47 weeks) mice. In view of the frequency and duration
of injection, we completed 21 injections within 3.5 months,
including two weeks for behavioral tests to eliminate B cells,
compared to 3–6 injections within 2 months in their research, and
our design maintained consecutively adequate depletion of B cells
in the early onset of AD. Importantly, several factors are needed to
determine the pathogenic or protective roles of B cells, including
the source of B cells (brain, cerebrospinal fluid or blood), antigen
specificity of B cell clonotypes, B cell phenotyping51 and so on.
Hence, the aforementioned discrepancies may lie in the different
B cell depletion antibodies, injection frequency of antibodies,
injection duration, strain and age of animals. In summary, despite
their counterintuitive finding that B cell depletion had a protective
effect in AD, our study proposes that massive B cell depletion in
the early onset would exacerbate AD progression, which is in
concordance with the double-edged role of B cells in neurode-
generative disorders51. In this study, we base our outcomes on
single-cell RNA-seq data of human PBMCs and functional
experiments on transgenic AD mice. The existing insufficient
evidence for the protective effects of B cells in the early onset of
AD warrants further in-depth clinical investigations to facilitate the
development of novel therapies for AD treatment.
It is possible that the alteration of the peripheral B cell

compartment in certain neurodegenerative diseases, such as AD,
is attributed to genetic factors. Consistent with the present study,
single-cell RNA-seq data further uncovered that among 18 speci-
fically upregulated genes, the expression of KIR3DL2, PPP2R2B and
QPCT in B cells was correlated with neural function and
neurodegenerative diseases52–54. Of 7 specifically downregulated
genes, FRAT2 and WWC3 were involved in the Wnt/β-Catenin
signaling pathway, which was associated with AD pathogen-
esis55,56. SPG20 is capable of regulating mitochondrial calcium
homeostasis57, indirectly associated with AD, because intracellular
accumulation of ROS would occur as a result of dysfunction in
regulating mitochondrial calcium homeostasis, leading to oxida-
tive stress, which is one of the early features of AD58. Additional
evidence in this study verified the specificity of these upregulated
and downregulated genes in B cells instead of in other cell subsets
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via t-SNE map analysis. These results implied that the upregulation
of KIR3DL2, PPP2R2B and QPCT and the downregulation of FRAT2,
WWC3 and SPG20 in peripheral B cells can serve as a gene panel
of biomarkers for the diagnosis and prognosis of AD.
Collectively, both differential cell subpopulations in PBMCs and

specifically expressed genes in B cells of AD patients were
identified in this work using single-cell RNA-seq analysis. A
reduction in B cells in the PBMCs of AD patients and differentially
expressed genes in B cells were identified in the present study,
indicating that certain important genes that could be molecular
biomarkers in AD development may be expressed in certain cell
types. The importance of promising single-cell RNA-seq analysis in
AD biomarker investigations has been strengthened. This study in
its present form merely identified possible biomarkers of AD
progression. Limitations exist because the obtained specific genes
lack longitudinal investigations to further determine their specific
roles in the development of AD, which will be worked out in later
clinical and basic research.
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