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Abstract: In response to viral infection, host cells activate various antiviral responses to inhibit virus
replication. While feline herpesvirus 1 (FHV-1) manipulates the host early innate immune response
in many different ways, the host could activate the antiviral response to counteract it through some
unknown mechanisms. MicroRNAs (miRNAs) which serve as a class of regulatory factors in the
host, participate in the regulation of the host innate immune response against virus infection. In this
study, we found that the expression levels of miR-26a were significantly upregulated upon FHV-1
infection. Furthermore, FHV-1 infection induced the expression of miR-26a via a cGAS-dependent
pathway, and knockdown of cellular cGAS significantly blocked the expression of miR-26a induced
by poly (dA:dT) or FHV-1 infection. Next, we investigated the biological function of miR-26a during
viral infection. miR-26a was able to increase the phosphorylation of STAT1 and promote type I
IFN signaling, thus inhibiting viral replication. The mechanism study showed that miR-26a directly
targeted host SOCS5. Knockdown of SOCS5 increased the phosphorylation of STAT1 and enhanced the
type I IFN-mediated antiviral response, and overexpression of suppressor of the cytokine signalling 5
(SOCS5) decreased the phosphorylation of STAT1 and inhibited the type I IFN-mediated antiviral
response. Meanwhile, with the knockdown of SOCS5, the upregulated expression of phosphorylated
STAT1 and the anti-virus effect induced by miR-26a were significantly inhibited. Taken together,
our data demonstrated a new strategy of host miRNAs against FHV-1 infection by enhancing IFN
antiviral signaling.
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1. Introduction

FHV-1 is a member of the Varicellovirus genus of the subfamily Alphaherpesvirinae [1,2],
which mainly infects domestic cats as well as other members of Felidae [3–8], and leads to feline viral
rhinotracheitis. Like other herpesviruses, latent chronic infection is a characteristic of FHV-1 infection.
FHV-1 can hide in the trigeminal ganglia of cats in latency and can reactivate under certain conditions,
which is also a latent infectious source [9,10]. Previous studies indicated that α-herpesviruses usually
encoded 65–80 open reading frames (ORFs) [11], and similarly, FHV-1 encoded 74 viral proteins [12].
These viral proteins contribute to manipulating the host innate immune response. Our previous
studies found that a total of 11 viral proteins (UL30, ICP0, UL11, UL55, UL1, UL45, UL27, UL3.5,
UL48, UL4 and US3) could inhibit the IFN-β promoter activity [13]. Activated type I IFN signalling is
suppressed within 12 h after FHV-1 infection [13], but it is unclear how and what ways the host would
use to counteract viral immune evasion.
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MicroRNAs are short noncoding RNAs of approximately 20–24 nt that are processed by two RNase
III enzymes (Drosha and Dicer) from long primary RNAs [14–16], which play a crucial part in the
regulation of gene expression post-transcriptionally through mRNA degradation or translational
inhibition via seed regions complementary to the 3′ UTR of target genes [17,18]. Many miRNAs have
been demonstrated to play important regulatory roles in the innate immune response [19]. Some studies
have demonstrated that JAK-STAT signalling could be regulated by host miRNAs by targeting the
proteins of the suppressor of the cytokine signalling (SOCS) family, such as SOCS1, SOCS2, SOCS3 and
SOCS5 [20]. miR-155 feedback enhanced type I IFN signalling by suppressing SOCS1 and inhibiting
viral replication [21]. miR-30a-5p downregulated the expression of SOCS1 and SOCS3 via directly
targeting their 3’ UTRs [22], which also enhanced IFN-I antiviral signalling. miR-130b and miR-432
enhanced the expression of IFN-β by targeting cellular SOCS5 [23,24]. During viral infection, host
innate immunity is blocked at an early stage, and our previous studies also suggested that activated
type I IFN signalling was quickly suppressed after FHV-1 infection [13], but some miRNAs are still
upregulated to enhance IFN signalling pathways [21,23]. More importantly, it has been reported
that some microRNAs can also inhibit virus replication by targeting viral genomes directly [25,26].
Given the critical roles of miRNAs in regulating type I IFN signalling, it is unknown whether the host
uses these miRNAs to restart the IFN signalling pathways upon FHV-1 infection.

To explore the vital role of miRNAs involved in the process of host resistance to FHV-1 infection,
small RNA high-throughput sequencing was performed following FHV-1 infection ([27] unpublished).

The results showed that miR-26a was significantly upregulated upon infection. In this study,
we demonstrated that miR-26a could suppress FHV-1 replication by enhancing type I IFN-induced
antiviral signalling by directly targeting a negative regulator of this pathway, SOCS5. FHV-1 infection
induced the expression of miR-26a in a cGAS-dependent manner. Moreover, SOCS5 plays a vital
role in the host response to FHV-1 infection, and knockdown of SOCS5 would reduce the antivirus
effect induced by miR-26a. This study reveals a new strategy in which host miRNAs are involved in
inhibiting FHV-1 replication by regulating the innate immune signalling pathway.

2. Materials and Methods

2.1. Cells and Virus

F81 (feline kidney cells) [28] and 293T cells were both purchased from ATCC and cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% foetal bovine serum (FBS; Excel, Australia) in a 37 ◦C incubator with 5% CO2.
HR-1, an FHV-1 strain saved in our laboratory, was separated from a domestic cat in Harbin [13].
The titres of virus stock were measured by TCID50 assay. Multiplicity of infection (MOI) represents the
number of viruses per cell (plaque-forming unit (PFU)/cell).

2.2. siRNAs, miRNAs and Transfection

siRNAs, miRNA mimics and inhibitors were synthesized as listed in Table S1 by Gene Pharma
Company (Shanghai, China). Mimics are chemosynthetic double-strand RNAs that are similar to
miRNA sequence, used for upregulating miRNA expression level; and inhibitors are chemosynthetic
single-strand RNAs that are completely complementary to miRNA sequence, used for inhibiting
endogenous miRNA expression level. Negative control (NC) mimics and inhibitors or siRNAs are
chemosynthetic RNAs that have no effect on cellular miRNAs, serving as controls in the experiments.
All siRNAs or miRNAs and plasmids were transfected with Opti-MEM (Gibco, USA) into cells using
RNAiMAX (Invitrogen, Carlsbad, CA, USA) and Lipofectamine 2000 (Invitrogen, USA), respectively,
according to the manufacturer’s protocol.



Viruses 2020, 12, 2 3 of 17

2.3. Antibodies and Western Blot

F81 cells were lysed on ice for 30 min using RIPA lysis buffer (moderate) (Beyotime, Shanghai China)
supplemented with PMSF (Beyotime, China) and cocktail protease inhibitor II (MedChemExpress, MCE,
Monmouth Junction, NJ, USA) before boiling with 5×SDS loading buffer for 10 min. Then, the proteins
were separated by 10% SDS-PAGE gel and transferred onto BioTrace™NT Nitrocellulose (NC) Transfer
Membrane (Pall Life Sciences, New York, NY, USA). Next, the membrane was blocked using 5%
skimmed milk for 1 h and incubated with primary antibodies as follows for 1 h at room temperature or
overnight at 4 ◦C: rabbit anti-cGAS (ab176177), rabbit anti-p-STAT1 (phospho Y701) (Abcam, Cambridge,
UK, ab109457, 1:1000), rabbit anti-STAT1 (Abcam, ab92506, 1:1000), rabbit anti-SOCS5 (Abcam, ab97283,
1:500), rabbit anti-GAPDH (Sigma-Aldrich, St. Louis, MI, USA, G9545, 1:3000), mouse anti-Flag
(Sigma-Aldrich, F1804, 1:3000) and mouse anti-FHV-1 UL42 (1:200). After washing with TBST buffer,
the membrane was incubated with IRDye® 800CW goat anti-rabbit or anti-mouse secondary antibodies
(LI-COR, Lincoln, NE, USA) for 1 h at room temperature. After washing again with TBST buffer,
the proteins were detected using Odyssey CLx Image Studio 3.1 (LI-COR, USA). The anti-FHV-1 UL42
antibody was generated by immunizing six-week-old BALB/c mice with prokaryotically-expressed
FHV-1 UL42 protein for three times at two weeks intervals. The serum of mice was served as polyclonal
antibodies against FHV-1 UL42.

2.4. microRNA Target Gene Prediction and Plasmid Construction

RNA22 (https://cm.jefferson.edu/rna22/Interactive/) was used to predict the target genes of miR-26a
in the FHV-1 genome. Additionally, the target genes of miR-26a in the host were predicted by Targetscan
7.1 (http://www.targetscan.org/vert_71/), and SOCS5 was selected as a potential target for further
research. The 3′ UTR sequences of feline SOCS5 around the miR-26a target site were amplified
and cloned into the pmirGLO luciferase reporter vector (Promega, Madison, WI, USA) using the
ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, China). The mutant SOCS5 plasmid was
constructed by mutating seed regions in the 3′ UTR of SOCS5 using a homologous recombination
kit (Vazyme, China). Likewise, the full-length ORF of feline SOCS5 (GenBank: 101080522) was also
amplified and cloned into pCMV-3×flag using this method. All the primers used are listed in Table S2.

2.5. Quantitative Reverse Transcription-PCR (qRT-PCR)

Total RNA was extracted from F81 cells using the AxyPrepTM Multisource Total RNA Miniprep
Kit (Axygen, Corning Inc., Corning, NY, USA) according to the manufacturer’s instructions. A total
of 1 µg of RNA was synthesized into cDNA using the FastKing RT kit (with gDNase) (TIANGEN,
Beijing, China). Then, real-time PCR was further utilized for gene expression analysis using SYBR Green
Mix (Bioer, Zhejiang, China) with a JENA qTOWER 2.2 instrument (Germany) and was performed as
follows: 95 ◦C for 1 min, followed by 40 cycles of three steps (95 ◦C for 15 s, 55 ◦C for 30 s and 72 ◦C
for 15 s). For miRNA analysis, total RNA obtained via TRIzol reagent (Ambion, Austin, TX, USA) was
reverse transcribed using AMV reverse transcriptase (Takara, Kusatsu, Japan) together with specific
stem-loop RT primers. Then, the real-time PCR amplification procedure was 95 ◦C for 1 min, followed
by 40 cycles of two steps (95 ◦C for 15 s, 60 ◦C for 30 s). All samples were carried out in triplicate on the
same plate, and the 18S gene or U6 snRNA was utilized as the reference gene. The expression level of
genes was calculated by normalizing to that of 18S or U6 using the comparative ∆∆Ct method, and the
values were expressed as 2-∆∆Ct. All primers used are listed in Table S2 and were synthesized by
Comate Bioscience Company (Jilin, China).

2.6. Dual-Luciferase Reporter Assays

To verify miRNA target genes, the constructed plasmids pmirGLO-socs5-26a (WT) and
pmirGLO-socs5-26a (Mut) were transfected into 293T cells with NC, miR-26a mimics for 36 h using
Lipofectamine 2000. Then, the cells were lysed for testing luciferase activities using a Dual-Luciferase
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Reporter Assay Kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions.
The data were processed by normalizing firefly luciferase activities to Renilla luciferase activities.
All samples were independently repeated at least three times on the plate.

2.7. Plaque Assays

To measure the effects of miR-26a on FHV-1 replication, F81 cells were inoculated with 10-fold
diluted viral supernatants for 1 h at 37 ◦C, and then 2×DMEM and 2% low melting-point agarose were
mixed in equal volume and added to the plates after discarding the virus suspensions. When the gels
were solidified, the plates were cultured in a 37 ◦C incubator upside down for 3–5 days. The number of
plaques was calculated after staining with crystal violet.

2.8. Statistical Analysis

All the experimental results were obtained from at least three independent experiments.
The statistical significance between the two groups was assessed by GraphPad Prism 7.0 software using
unpaired t-tests. Significant differences are indicated as follows: * p < 0.05, ** p < 0.01 and *** p < 0.001.

3. Results

3.1. FHV-1 Infection Increases the Expression of miR-26a

High-throughput sequencing results have shown that miR-26a was upregulated after FHV-1
infection (Table S3). To investigate the biological function of miR-26a during viral infection,
the expression level of miR-26a in F81 cells infected with FHV-1 was first evaluated using a stem-loop
RT-qPCR method. Compared with the control group, miR-26a was significantly increased after
FHV-1 infection at an MOI of 1 from 6 h to 36 h post-infection (Figure 1A). In addition, with the
increase in viral inoculation dose, the expression levels of miR-26a displayed a gradually rising trend
(Figure 1B). Both results demonstrate that miR-26a was upregulated with FHV-1 infection in a time-
and MOI-dependent manner. We further analysed another two miRNAs, miR-10a-3p and miR-133a-5p,
both of which were not affected upon infection as revealed by the high-throughput sequencing results.
Results from the stem-loop RT-qPCR method showed that miR-10a-3p and miR-133a-5p were not
significantly changed during the FHV-1 infection (Figure 1C,D). Therefore, FHV-1 infection results in
the upregulation of miR-26a.
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Figure 1. Feline herpesvirus 1 (FHV-1) infection increases miR-26a expression. (A,B) The miR-26a
expression was measured in F81 cells infected with FHV-1 (MOI = 1) at the indicated time points (6, 12,
24, 36 h) (A) or with different multiplicity of infections MOIs (0.01, 0.1, 1, 5) at 24 hpi (B) by stem-loop
qRT-PCR. (C,D) The miR-10a-3p and miR-133a-5p expression levels were measured in F81 cells infected
with FHV-1 (MOI = 1) at the indicated time points (6, 12, 24, 36 h) (C) or at different MOIs (0.01, 0.1, 1, 5)
at 24 hpi (D) by stem-loop qRT-PCR. The expression levels of various miRNAs were calculated by
normalising to that of snRNA U6, and the uninfected groups served as the mock group. All samples
were independently repeated three times, and data are representative of three independent experiments.
The significant differences are indicated as follows: NS > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001.

3.2. FHV-1 Infection Upregulates the Level of miR-26a via the cGAS-Mediated Signalling Pathway

A previous study showed that VSV and SeV induce miR-155 mainly through the retinoic
acid-inducible gene 1 (RIG-I)-dependent pathway in macrophages [21]. RIG-I, as an RNA virus sensor,
recognises viral double-stranded RNA to detect invading viruses [29]. Our previous study demonstrated
that FHV-1 early infection could activate the DNA virus sensor, cyclic GMP-AMP synthase (cGAS),
to induce the IFN-β [13]. Then, we investigated whether miR-26a was induced through the cGAS during
FHV-1 infection. To confirm this, F81 cells were treated with poly(dA:dT), a synthetic double-stranded
DNA, which can be sensed by the cGAS-STING pathway [30]. Then, the expression level of miR-26a
was examined by qPCR. Indeed, miR-26a expression level was significantly increased after treatment
with poly (dA:dT) for 12 h or 24 h (Figure 2A). To further examine the role of cGAS in the expression of
miR-26a, endogenous cGAS was knocked down by the siRNA method (Figure 2B) and then FHV-1-
or poly (dA:dT)- induced miR-26a expression level was analysed by qPCR. The results showed that
knockdown of cGAS impaired miR-26a expression upon FHV-1 infection (Figure 2C) or poly (dA:dT)
treatment (Figure 2D) and led to approximately 50% less expression than the mock transfection group.
These data suggested that miR-26a was induced after FHV-1 infection through the cGAS-mediated
signalling pathway.

3.3. miR-26a Inhibits FHV-1 Replication

Due to the significant changes after FHV-1 infection, we examined whether miR-26a may be
involved in FHV-1 replication. To explore the role of miR-26a in FHV-1 replication, F81 cells were
transfected with miR-26a mimics or inhibitors for 24 h and inoculated with FHV-1 at an MOI of 0.1.
At 24 hpi, the supernatant was harvested for the plaque assay, and the protein and RNA levels from
cells were analysed through WB and qPCR, respectively. UL42, a DNA polymerase subunit of FHV-1,
is an essential gene for viral replication, which can reflect the replication level of FHV-1, therefore, it was
selected to detect FHV-1 replication level in the cells. As shown in Figure 3A, compared with the NC
(negative control) mimics transfection group, transfection with miR-26a mimics (miR-26a) significantly
reduced the expression of viral UL42 (Figure 3A Down) and resulted in a 10-fold decrease in virus
production (Figure 3A Up), as well as a 7-fold decrease in DNA abundance (Figure 3B). Moreover,
miR-26a inhibitors (miR-26a-I) exhibited significant promoting effects on viral protein expression and
virus titres, as well as genome abundance relative to NC inhibitors (NC-I) (Figure 3A,B). All these data
demonstrated that miR-26a could significantly suppress FHV-1 replication.
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Figure 2. FHV-1 infection induces miR-26a expression via the cyclic GMP-AMP synthase (cGAS)-mediated
signalling pathway. (A) miR-26a expression level was detected in cells transfected with 2 µg/mL poly
(dA:dT) for 12 h or 24 h by stem-loop qRT-PCR. (B) The efficiency of cGAS knockdown was evaluated
by western blotting (WB). (C,D) Knockdown of cGAS suppressed the expression of miR-26a induced
by poly (dA:dT) or FHV-1 infection. F81 cells were transfected with sicGAS (60 nM) for 36 h followed
by poly (dA:dT) treatment (2 µg/mL) (C) or FHV-1 infection (MOI = 1) (D) for another 24 h, and then
cellular miR-26a was measured by stem-loop qRT-PCR. The expression level of miR-26a was calculated
by normalizing to that of snRNA U6, and the uninfected groups served as the mock group. All samples
were independently repeated three times, and data are representative of three independent experiments.
The significant differences are indicated as follows: NS > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001.

Viruses 2019, 11, x FOR PEER REVIEW 6 of 18 

 

miR-26a induced by poly (dA:dT) or FHV-1 infection. F81 cells were transfected with sicGAS (60 nM) 
for 36 h followed by poly (dA:dT) treatment (2 μg/mL) (C) or FHV-1 infection (MOI = 1) (D) for 
another 24 h, and then cellular miR-26a was measured by stem-loop qRT-PCR. The expression level 
of miR-26a was calculated by normalizing to that of snRNA U6, and the uninfected groups served as 
the mock group. All samples were independently repeated three times, and data are representative 
of three independent experiments. The significant differences are indicated as follows: NS > 0.05,  
* p < 0.05, ** p < 0.01, *** p < 0.001. 

3.3. miR-26a Inhibits FHV-1 Replication 

Due to the significant changes after FHV-1 infection, we examined whether miR-26a may be 
involved in FHV-1 replication. To explore the role of miR-26a in FHV-1 replication, F81 cells were 
transfected with miR-26a mimics or inhibitors for 24 h and inoculated with FHV-1 at an MOI of 0.1. 
At 24 hpi, the supernatant was harvested for the plaque assay, and the protein and RNA levels from 
cells were analysed through WB and qPCR, respectively. UL42, a DNA polymerase subunit of FHV-
1, is an essential gene for viral replication, which can reflect the replication level of FHV-1, therefore, 
it was selected to detect FHV-1 replication level in the cells. As shown in Figure 3A, compared with 
the NC (negative control) mimics transfection group, transfection with miR-26a mimics (miR-26a) 
significantly reduced the expression of viral UL42 (Figure 3A Down) and resulted in a 10-fold 
decrease in virus production (Figure 3A Up), as well as a 7-fold decrease in DNA abundance (Figure 
3B). Moreover, miR-26a inhibitors (miR-26a-I) exhibited significant promoting effects on viral protein 
expression and virus titres, as well as genome abundance relative to NC inhibitors (NC-I) (Figure 
3A,B). All these data demonstrated that miR-26a could significantly suppress FHV-1 replication. 

 
Figure 3. miR-26a suppresses FHV-1 replication. miR-26a mimics (80 nM) or inhibitor (160 nM) were 
transfected into F81 cells for 24 h, followed by FHV-1 infection at an MOI of 0.1 for 24 h. Then, the 
supernatants were collected for measuring virus titres via the virus plaque assay (A), and cell pellets 
were used to analyze FHV-1 protein expression (A) by WB or detect viral DNA copies (B) by absolute 
quantification PCR, respectively. GAPDH was used as an internal control in qPCR, and NC mimics 
(NC) and NC inhibitors (NC-I) served as negative controls. All samples were independently repeated 
three times, and data are representative of three independent experiments. The significant differences 
are indicated as follows: NS > 0.05, ** p < 0.01. 

 

3.4. miR-26a Directly Targets SOCS5 

Previous studies have reported that some miRNAs may inhibit virus replication by directly 
targeting viral genome [23], so, to further elucidate the underlying mechanism of miR-26a attenuating 

Figure 3. miR-26a suppresses FHV-1 replication. miR-26a mimics (80 nM) or inhibitor (160 nM)
were transfected into F81 cells for 24 h, followed by FHV-1 infection at an MOI of 0.1 for 24 h.
Then, the supernatants were collected for measuring virus titres via the virus plaque assay (A), and cell
pellets were used to analyze FHV-1 protein expression (A) by WB or detect viral DNA copies (B) by
absolute quantification PCR, respectively. GAPDH was used as an internal control in qPCR, and NC
mimics (NC) and NC inhibitors (NC-I) served as negative controls. All samples were independently
repeated three times, and data are representative of three independent experiments. The significant
differences are indicated as follows: NS > 0.05, ** p < 0.01.
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3.4. miR-26a Directly Targets SOCS5

Previous studies have reported that some miRNAs may inhibit virus replication by directly
targeting viral genome [23], so, to further elucidate the underlying mechanism of miR-26a attenuating
FHV-1 replication, we first analysed miR-26a targets within both FHV-1 sense and antisense RNA
sequences using RNA22 (https://cm.jefferson.edu/rna22/Interactive/), but found no potential target
sites in FHV-1 RNA. Then, the potential targets of miR-26a in the host were predicted using Targetscan
software (http://www.targetscan.org/vert_71/). Computational analysis showed that the 3′ UTR of
feline SOCS5, a negative regulatory factor for the JAK-STAT pathway, contains potential target sites of
miR-26a, which is complementary to the seed region of this miRNA and conserved in other mammals
(Figure 4A). To verify whether miR-26a directly targets SOCS5, the 3′ UTR of the target sites and its
mutants were cloned into the luciferase reporter vector pmiRGLO. Dual-luciferase reporter assays
indicated that miR-26a mimics significantly decreased luciferase activity by nearly 50%, while miR-26a
inhibitors markedly increased that in the cells transfected with pmiRGLO-SOCS5 (Figure 4B Left).
In contrast, miR-26a mimics and its inhibitors did not affect luciferase activity in the cells transfected
with pmiRGLO-SOCS5 mutants (Figure 4B Right). These data suggest that SOCS5 may be a target
gene of miR-26a. To further verify the results, we examined the protein levels of cellular SOCS5 after
transfecting miR-26a mimics or its inhibitor. Overexpression of miR-26a significantly decreased the
expression of endogenous SOCS5 in F81 cells, whereas the inhibition of miR-26a increased SOCS5
expression (Figure 4C). All these data demonstrate that SOCS5 is a target gene of miR-26a.

Since FHV-1 infection induced the expression of miR-26a, and miR-26a directly targets SOCS5,
SOCS5 expression should be decreased and p-STAT1 expression should be increased after FHV-1
infection. Therefore, we examined the mRNA and protein expression levels of SOCS5 in F81 cells
following with FHV-1 infection at different time points or different MOIs. As shown in Figure 4D,E,
after FHV-1 infection at an MOI of 1, a significant reduction in the mRNA and protein levels of
SOCS5 and a marked increase of p-STAT1 expression level was observed from 6 hpi to 36 hpi.
Besides, FHV-1-mediated inhibition of SOCS5 mRNA and protein also displayed an MOI-dependent
manner (Figure 4G,H). In combination with the results above (Figure 1A,B), SOCS5 showed a negative
correlation with the kinetic expression profiles of miR-26a at different time points post-infection
(Figure 4F) and different MOIs (Figure 4I). These data further suggested that FHV-1 infection induces
the expression of miR-26a, which decreased the expression of SOCS5.

3.5. miR-26a Enhance JAK-STAT Antiviral Signalling

Activated JAK-STAT signalling induces hundreds of ISGs to inhibit viral infection, which is
a common target regulated by host miRNAs through inducing the degradation of the suppressor of the
cytokine signalling (SOCS) family [20]. SOCS5, serving as a target of miR-26a, is a negative regulator of
JAK-STAT. So, to explore the effect of miR-26a on IFN antiviral signalling cascades, we analysed the level
of phosphorylation of STAT1 (p-STAT1) (Y701) by WB assay. F81 cells were transfected with miR-26a
mimics or inhibitors for 24 h, and the p-STAT1 expression levels were detected in the cells infected with
FHV-1 for 24 h or stimulated with IFN-β for 30 min. With FHV-1 infection or IFN-β stimulation, the
expression levels of p-STAT1 were significantly enhanced in the cells transfected with miR-26a mimics
compared with levels in the NC mimics (Figure 5A), whereas the inhibition of endogenous miR-26a
by inhibitor resulted in a decrease in p-STAT1s level (Figure 5B). Furthermore, we also measured
the expression levels of three antiviral ISGs, including ISG15, Viperin and IFITM1, in the presence
of miR-26a mimics or its inhibitor upon FHV-1 infection or IFN-β stimulation. Consistent with the
p-STAT1 detection results, overexpression of miR-26a significantly upregulated the expression of these
ISGs induced by FHV-1 infection (Figure 5C) or IFN-β stimulation (Figure 5D), and miR-26a inhibitors
decreased the production of these ISGs (Figure 5E,F). All of these results demonstrated that miR-26a
could promote type I IFN signalling.

https://cm.jefferson.edu/rna22/Interactive/
http://www.targetscan.org/vert_71/
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Activated JAK-STAT signalling induces hundreds of ISGs to inhibit viral infection, which is a 
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Figure 4. SOCS5 is a target gene of miR-26a. (A) Diagram of the predicted target sites of miR-26a in the
3′ UTR of SOCS5. The target sites of SOCS5 are indicated with red font, the mutant target sites of SOCS5
are indicated with blue font, and the seed regions of miR-26a are underlined. (B) Verification of target
of miR-26a via the dual-luciferase assay. pmiRGLO-SOCS5-26a wild-type or mutant luciferase reporter
plasmids were transfected into F81 cells, together with 80 nM miR-26a mimics or 160 nM miR-26a
inhibitors. Thirty-six hours post-transfection, relative luciferase activities were tested and calculated by
normalizing firefly luciferase activities to Renilla luciferase activities (FL/RL). (C) Verification of target
of miR-26a via western blot. F81 cells were transfected with miR-26a mimics (80 nM) or inhibitors
(160 nM). Forty-eight hours post-transfection, the cells were lysed for western blot analysis to test the
expression of endogenous SOCS5. GAPDH served as an internal control. NC mimics and NC-I served
as negative controls. (D–F) F81 cells were inoculated with FHV-1 at an MOI of 1, and then the mRNA
(D) or protein (E) levels of SOCS5 as well as the level of p-STAT1 were analyzed by qRT-PCR or WB at
the indicated time points (6, 12, 24, 36 h), respectively. The kinetic expression profile of SOCS5 and
miR-26a with FHV-1 infection at different time points are shown in (F). (G–I) F81 cells were inoculated
with FHV-1 at different MOIs (0.01, 0.1, 1), and the mRNA (G) or protein (H) levels of SOCS5, as well as
the level of p-STAT1, were analysed by qRT-PCR or WB at 24 hpi, respectively. The kinetic expression
profile of SOCS5 and miR-26a with FHV-1 infection at different MOIs are shown in (I). All samples were
independently repeated three times, and data are representative of three independent experiments.
The significant differences are indicated as follows: NS > 0.05, ** p < 0.01, *** p < 0.001.
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Figure 5. miR-26a enhances IFN-I-induced antiviral signalling. (A,B) miR-26a enhanced STAT1
phosphorylation level (p-STAT1), while blocking cellular miR-26a by inhibitors suppressed p-STAT1
expression level upon FHV-1 infection or IFN-β treatment. F81 cells were transfected with miR-26a
mimics (80 nM) (A) or inhibitor (160 nM) (B) for 24 h and then inoculated with FHV-1 (MOI = 1) for
24 h or IFN-β stimulation (200 ng/mL) for 30 min, respectively. Then, the expression levels of p-STAT1
and STAT1 were identified by WB. GAPDH served as an internal control. (C–F) miR-26a enhanced the
expression of downstream ISGs, while miR-26a inhibitors suppressed the production of ISGs induced
by FHV-1 infection or IFN-β stimulation. F81 cells were transfected with miR-26a mimics (80 nM)
(C,D) or inhibitors (160 nM) (E,F) for 24 h and then inoculated with FHV-1 (MOI = 1) for 24 h (C,E) or
stimulated with IFN-β (200 ng/mL) for 12 h (D,F). Then, total RNAs were extracted for qRT-PCR to test
the expression of ISG15, Viperin and IFITM1. The relative expression of these genes was calculated by
normalising to that of cellular 18S RNA. NC mimics and NC inhibitors served as negative controls.
All samples were independently repeated three times, and data are representative of three independent
experiments. The significant differences are indicated as follows: NS > 0.05, * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.6. miR-26a Is Involved in Type I Interferon Production

ISGs induced by initial stimulation would form a positive feedback loop, which increases the
production of IFN-β. To analyse whether the upregulated expression of these ISGs by miR-26a will
increase the production of type I interferon, we transfected miR-26a mimics into F81 cells to examine
the mRNA levels of IFN-β following with FHV-1 infection or poly (dA:dT) stimulation. As a result,
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overexpression of miR-26a significantly increased the expression of IFN-β in cells with FHV-1 infection
(approximately 10-fold) or poly (dA:dT) treatment (approximately 5-fold) (Figure 6A). To further
confirm this result, miR-26a inhibitors were transfected into F81 cells to evaluate the expression of
IFN-β. In contrast, the production of IFN-β was markedly decreased to nearly 50% after FHV-1
infection or poly (dA:dT) treatment in comparison with that of NC inhibitors (Figure 6B). These data
reveal that miR-26a is able to increase IFN-β expression in response to FHV-1 infection.Viruses 2019, 11, x FOR PEER REVIEW 11 of 18 
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Figure 6. miR-26a promotes the expression of type I interferon. (A,B) miR-26a enhanced FHV-1 or
poly (dA:dT)-induced expression of IFN-β, while miR-26a inhibitors impaired IFN-β expression level
induced by FHV-1 infection or poly (dA:dT) treatment. miR-26a mimics (A) or inhibitors (B) were
transfected into F81 cells at a concentration of 80 nM or 160 nM for 24 h, respectively, then followed
by FHV-1 infection at an MOI of 1 or transfection of poly (dA:dT) at a concentration of 1 µg/mL.
Twenty-four hours after FHV-1 infection or poly (dA:dT) treatment, total RNAs were extracted for
qRT-PCR to measure the mRNA expression level of IFN-β. The relative expression of IFN-β was
normalized to that of cellular 18S RNA, and NC mimics and NC inhibitors served as negative controls.
(C) The efficiency of IFNAR1 knockdown was evaluated by qRT-PCR. Three siRNAs targeting on feline
IFNAR1 were transfected into F81 cells at a concentration of 60 nM, respectively. 36 h after transfection,
cellular IFNAR1 mRNA expression level was tested by qRT-PCR. (D) F81 cells were co-transfected with
siIFNAR1#3 (60 nM) and miR-26a mimics (80 nM) for 24 h followed by FHV-1 infection (MOI = 1) for
another 24 h, and then the expression levels of p-STAT1 and STAT1 were identified by WB. All samples
were independently repeated three times, and data are representative of three independent experiments.
The significant differences are indicated as follows: NS > 0.05, ** p < 0.01, *** p < 0.001.

But the upregulation of p-STAT1 by miR-26a may be caused by the increase of IFN-β production,
which further promoted the phosphorylation of STAT1. It was necessary to exclude that miR-26a
promotes the phosphorylation of STAT1 by upregulating the expression of IFN-α/β. First, we screened
an effective siRNA#3 targeting on IFNAR1 (Figure 6C), then analysed p-STAT1 level induced by
miR-26a in the condition of IFNAR1 knockdown. Compared with the siNC control (Figure 6D Lane 3),
knockdown of the IFNAR1 inhibited the level of p-STAT1 (Figure 6D Lane 7) upon FHV-1 infection,
which demonstrated that knockdown of IFNAR1 blocked activation of downstream STAT1. However,
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compared with the NC mimics control (Figure 6D Lane 7), overexpression of miR-26a mimics could still
promote the expression of p-STAT1 (Figure 6D Lane 8) upon virus infection, revealing that knockdown of
IFNAR1 did not block the upregulated expression of p-STAT1 induced by miR-26a. So, the upregulated
expression of p-STAT1 induced by miR-26a does not depend on the upstream IFN-α/β.

3.7. SOCS5 Can Inhibit Type I Antiviral Signalling and Facilitate FHV-1 Replication

SOCS5 is a target of miR-26a, which inhibits FHV-1 infection via enhancing IFN signalling.
To identify the role of SOCS5 in regulating JAK-STAT and anti-FHV-1 replication, SOCS5 was
overexpressed for 24 h, and then the p-STAT1 level was examined after stimulation with FHV-1
infection or IFN-β treatment. SOCS5 overexpression significantly decreased the level of p-STAT1 upon
both treatments (Figure 7A). Furthermore, SOCS5 overexpression also significantly downregulated the
expression of three ISGs (ISG15, Viperin and IFITM1) by IFN-β treatment, compared with the vector
control (Figure 7B). Then, due to the inhibition of JAK-STAT signalling by SOCS5, virus titres (Figure 7C)
and genome copies (Figure 7D) of FHV-1 were further analysed in SOCS5 overexpressed cells by
quantification PCR and plaque assays, respectively. As shown in Figure 7C,D, SOCS5 overexpression
significantly promoted viral replication.

To further verify the function of SOCS5, we downregulated the expression of endogenous SOCS5
using RNA interference method. Evaluation of the knockdown efficiency of three siRNAs targeting
SOCS5 was performed, which revealed that siSOCS5#1 showed the highest inhibition efficiency
(Figure 7E), and was selected for the following experiments. F81 cells were transfected with siSOCS5#1
for 24 h and then inoculated with FHV-1 or IFN-β. Knockdown of endogenous SOCS5 enhanced the
level of p-STAT1 upon FHV-1 infection or IFN-β stimulation (Figure 7F). Furthermore, knockdown
of endogenous SOCS5 also significantly upregulated the expression of three ISGs (ISG15, Viperin
and IFITM1) induced by the IFN-β treatment compared with the NC control (Figure 7G). Moreover,
virus titres (Figure 7H) and genome copies (Figure 7I) were both decreased due to the knockdown of
endogenous SOCS5. These data revealed that SOCS5 negatively regulates the JAK-STAT pathway and
promotes FHV-1 replication.

3.8. miR-26a Enhances IFN Antiviral Signalling Through Regulating Downstream SOCS5

To further verify that miR-26a regulated IFN antiviral signalling pathway by the SOCS5-STAT1
axis, we examined the level of p-STAT1 induced by miR-26a upon FHV-1 infection together with
knockdown of SOCS5. miR-26a mimics were co-transfected into F81 cells together with siSOCS5#1 for
24 h, followed by FHV-1 infection for 24 h. Then, the expression level of p-STAT1, as well as virus titres,
were examined. In the siNC-transfected group (Figure 8A Lane 1–4), miR-26a significantly enhanced
p-STAT1 expression level (Figure 8A Lane 4) compared to the NC group (Figure 8A Lane 3) after FHV-1
infection. However, once SOCS5 expression level was knocked down, the levels of p-STAT1 between
NC (Figure 8A Lane 7) and miR-26a (Figure 8A Lane 8) during FHV-1 infection were comparable, and
miR-26a-mediated upregulation of p-STAT1 was inhibited compared to the NC group. On the other
hand, miR-26a overexpression inhibited FHV-1 infection (Figure 8B). Likewise, the anti-FHV-1 effect
induced by miR-26a was also suppressed in SOCS5-silenced cells (Figure 8B). Therefore, these data
further proved that miR-26a enhanced p-STAT1 expression level via targeting SOCS5, and SOCS5 is
a key factor in miR-26a-mediated anti-FHV-1.
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Figure 7. SOCS5 negatively regulates type I IFN signalling and facilitates FHV-1 replication. (A–D)
Overexpression of SOCS5 blocked IFN- induced signalling cascades and promoted FHV-1 replication.
F81 cells were transfected with p3×Flag-CMV-SOCS5 or empty vectors for 24 h, followed by FHV-1
infection (MOI = 1 for p-STAT1 expression and ISGs mRNA analysis, and MOI = 0.1 for virus titres
analysis) for 24 h or IFN-β stimulation (200 ng/mL) for 30 min. Then, the expression levels of p-STAT1
and STAT1 were identified by WB analysis (A). GAPDH served as an internal control. Total RNA from
another sample was extracted for qRT-PCR to detect the expression of ISG15, Viperin and IFITM1 (B).
The relative expression levels of these genes were calculated by normalising to that of cellular 18S
RNA. The supernatants and cells were collected for testing virus titres via the plaque assay (C) and
virus copies by absolute quantification PCR (D), respectively. (E–I) Knockdown of endogenous SOCS5
enhanced IFN-elicited signalling cascades and suppressed FHV-1 replication. F81 cells were transfected
with three siRNAs targeting SOCS5 for 48 h. The silencing efficiency was evaluated through testing
cellular SOCS5 by western blot (E). siSOCS5#1 was selected for transfection into F81 cells. Thirty-six
hours after transfection, the cells were infected with FHV-1 (MOI = 1 for p-STAT1 expression and ISGs
mRNA analysis, and MOI = 0.1 for virus titres analysis) for 24 h or stimulated by IFN-β (200 ng/mL)
for 30 min. Then, the protein levels of p-STAT1 (F) and the mRNA expression of ISG15, Viperin and
IFITM1 (G) were detected according to the method described above. Virus titres (H) and virus copies
(I) were determined via the plaque assay or absolute quantification PCR, respectively. Empty vectors
and siNC groups served as negative controls. All samples were independently repeated three times,
and data are representative of three independent experiments. The significant differences are indicated
as follows: NS > 0.05, * p < 0.05, ** p < 0.01.
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NS > 0.05, * p < 0.05.

4. Discussion

In this study, we tried to explore some miRNAs involved in the FHV-1 life cycle through
deep sequencing. Among these differentially expressed miRNAs after FHV-1 infection, a miRNA
attracted our attention because the GO analysis indicated that the miRNA, miR-26a, may participate
in the IFN-related pathway. We found that (i) miR-26a can suppress FHV-1 replication; (ii) miR-26a
can significantly enhance IFN-I expression levels or IFN-I-induced signalling cascades by directly
targeting SOCS5, a negative regulator of the JAK-STAT signalling pathway; and (iii) miR-26a was
significantly increased after FHV-1 infection in a cGAS-dependent pathway, while SOCS5 was markedly
decreased. All of these data demonstrate that miR-26a plays an important role in host defence against
FHV-1 infection.

To date, eight SOCS family proteins have been found in mammals, including SOCS1-7 and
CIS [31], which share a conserved structural domain consisting of an N-terminal region of variable
length and sequence, a central Src Homology 2 (SH2) domain and a C-terminal SOCS box motif [32].
This family mainly functions in negatively regulating the JAK-STAT pathway [33,34], which is essential
for the activation of downstream antiviral ISGs [35]. Herpes simplex virus type 1 (HSV-1) induces both
SOCS1 [36] and SOCS3 [37,38] to block type I IFN at early infection stage within 6 h. HSV-1 infection of
HEL-30 keratinocytes promoted the SOCS-1 promoter and increased its transcription [39]. Within 6 h
post-infection, HSV-1 induced both SOCS1/3 expression, which inhibited the phosphorylation of
STAT1 [38,39]. However, while SOCS1 and SOCS3 were induced after HSV-1 infection, another member
of SOCS family, CIS, was downregulated in these cells. In this study, we found that FHV-1 infection
decreased the expression of SOCS5.

SOCS5 is a member of the SOCS family and is able to bind with the JAK kinase domain to block the
phosphorylation of JAK1 and JAK2 and, therefore, further inhibit the phosphorylation of STAT1 and
STAT2 [40]. In this study, overexpression of SOCS5 can inhibit IFN-induced signalling and promote
FHV-1 replication, while knockdown of endogenous SOCS5 enhances the IFN-I signalling cascade and
suppresses FHV-1 replication (Figure 7), which further verified the negative regulatory role of SOCS5.
Previous studies have reported that some miRNAs are involved in the innate immune response by
targeting SOCS family proteins [22–24]. We found that miR-26a can directly target SOCS5 and decrease
its expression and promote the STAT1 phosphorylation, which is used to inhibit viral replication by the
host. Because SOCS5 showed a significant decrease after FHV-1 infection and displayed a negative
correlation with the kinetic expression profiles of miR-26a (Figure 4F,I). But we cannot ensure that
the downregulation of SOCS5 is entirely regulated by miR-26a, since maybe the regulation of SOCS5
is a very complex process related to many other signalling pathways. Nevertheless, the existing
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experiment results are enough to verify that miR-26a really targets and influences the expression of
SOCS5 to a certain extent.

The IFN system is an important component in the process of the host antiviral response toa virus,
which mainly functions by stimulating the expression of various downstream ISGs, such as ISG15, MX-1,
IFITM1, and OASL, among others [29]. miRNAs, as new regulators in the host, have been illustrated
to play vital regulatory roles in the antiviral process [41–43], including the crucial antiviral defender
type I interferon signalling pathway [44]. Many research results have reported that some miRNAs are
involved in viral life cycles by regulating the innate immune response. For example, miR-146a facilitates
replication of dengue virus by dampening interferon induction by targeting TRAF6 [45], and miR-155
enhances type I interferon expression to suppress infectious burse disease virus (IBDV) replication via
targeting negative regulators, SOCS1 and TANK [46]. Additionally, miRNAs can regulate downstream
IFN-I-induced signalling. miR-29a can facilitate replication of the respiratory syncytial virus (RSV) by
targeting IFNAR1 [47], and miR-373 promotes HSV-1 replication through suppression of the type I IFN
response by targeting the ISG IRF1 [48]. All of these miRNAs and interferon pathway components
form a complex and broader regulatory network.

On the other hand, herpesviruses inhibit the early innate immune response in many different
ways, and this feature is important for the establishment of infection. HSV-1 infection activates a host
type I IFN response in the early infection, but the functionality of this response is subsequently blocked
by viral proteins [49,50], including ICP0 [51], US11 [52], UL36 [53], UL42 [54], VP16 [55], VP24 [56],
US3 [57] and UL46 [58]. Our research group reported that the IFN pathway was activated upon
FHV-1 infection through the cGAS pathway at early infection but was soon blocked by multi-ORFs
of FHV-1 [13]. However, few reports have revealed how hosts activate various antiviral defences to
inhibit viral immune evading following infection. cGAS, as an important sensor, could detect DNA
virus entry. In this study, we found that miR-26a was an antiviral factor that was induced through the
cGAS pathway. Additionally, the host can detect FHV-1 entry through the cGAS pathway and then
upregulates miR-26a to inhibit viral replication. This study is the first to report that cGAS mediates
induction of miR-26a in herpesvirus infection. However, further exploration is required to investigate
the precise mechanism(s).

In this study, we found that miR-26a induced the STAT1 phosphorylation during FHV-1
infection, which also increased the IFN-β expression. Knockdown of the IFNAR1 did not inhibit
miR-26a induced STAT1 phosphorylation upon FHV-1 infection (Figure 6D), but knockdown of
the SOCS5 blocked miR-26a induced STAT1 phosphorylation upon FHV-1 infection (Figure 8A).
So, both results demonstrated that FHV-1 infection induced the miR-26a-SOCS5-STAT1-IFN axis to
inhibit viral replication.

In summary, our present study revealed that miR-26a enhanced IFN-I antiviral signalling and
suppressed FHV-1 infection by targeting SOCS5, a negative regulator of the JAK-STAT signalling
pathway. These findings enrich the network constructed by both innate immune pathways and host
miRNAs and provide new insight into the roles of miRNAs in host defence against viral infections.
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