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Abstract

Objectives:We sought to create a deep learning algorithm to determine the degree of

inferior vena cava (IVC) collapsibility in critically ill patients to enable novice point-of-

care ultrasound (POCUS) providers.

Methods: We used publicly available long short term memory (LSTM) deep learning

basic architecture that can track temporal changes and relationships in real-timevideo,

to create an algorithm for ultrasound video analysis. The algorithmwas trained on pub-

lic domain IVC ultrasound videos to improve its ability to recognize changes in varied

ultrasound video. A total of 220 IVC videos were used, 10% of the data was randomly

used for cross correlation during training. Data were augmented through video rota-

tion and manipulation to multiply effective training data quantity. After training, the

algorithmwas tested on the 50 new IVCultrasound video obtained frompublic domain

sources and not part of the data set used in training or cross validation. Fleiss’ κ was
calculated to compare level of agreement between the 3 POCUS experts and between

deep learning algorithm and POCUS experts.

Results:Therewas very substantial agreement between the 3POCUSexpertswith κ=
0.65 (95% CI = 0.49–0.81). Agreement between experts and algorithm was moderate

with κ= 0.45 (95%CI= 0.33–0.56).

Conclusions: Our algorithm showed good agreement with POCUS experts in visually

estimating degree of IVC collapsibility that has been shown in previously published

studies to differentiate fluid responsive from fluid unresponsive septic shock patients.

Such an algorithm could be adopted to run in real-time on any ultrasound machine

with a video output, easing the burden on novice POCUS users by limiting their task to

obtaining andmaintaining a sagittal proximal IVC view and allowing the artificial intel-

ligencemake real-time determinations.
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1 INTRODUCTION

Point-of-care ultrasound (POCUS) assessment of the inferior vena

cava (IVC) has evolved over time in response to various studies

either supporting or questioning its use as a non-invasive corol-

lary for patient volume status, central venous pressure, and right

atrial pressure.1–3 Although initially heralded as an accurate assess-

ment of patient volume status dating back to the 1990s, IVC ultra-

sound use has been appropriately challenged due to the variabil-

ity of study results and inter-rater reliability challenges.4,5 Practical

clinical experience and a careful analysis of confounding literature

indicate that IVC collapsibility is most useful in its extremes, either

relatively flat with significant collapse, or a plethoric state with lit-

tle to no diameter variation throughout the respiratory cycle in the

spontaneous breathing patient. Recent literature has supported IVC

collapsibility index ([IVC expiratory diameter–IVC inspiratory diam-

eter]/IVC expiratory diameter) use to predict critically ill patient

fluid responsiveness in shock states.6,7 Two recent studies have indi-

cated that a 25% collapsibility index may be adequately sensitive

to differentiate between fluid responsive shock patients and fluid

unresponsive ones, resulting in an ROC of 0.82 for predicting fluid

responsiveness.6,7

Some authors have suggested significant difference in area under

the curve (AUC) results betweennovice sonologists performingmanual

measurements and calculating IVC collapsibility at the patient’s bed-

side and the same measurements by POCUS experts made at a later

time when reviewing DICOM video of these patients.7 Similarly, other

studies have noted significant inter-rater variability between novice

and expert sonologist.8,9 Although not surprising, this raises the ques-

tion of reliability in clinical situations and also highlights the workload

burden imposed on novices if they have to freeze images, move for-

ward and backward 1 frame at a time through a cine loop to find max-

imal and minimal diameters of an IVC, and then carefully measure at

the same location. Automation of the process holds the potential to

improve inter-rater reliability and even automating the steps of per-

forming anddocumenting the ultrasoundexamination in evaluating the

IVC.10

Artificial intelligence is rapidly infiltrating modern medicine. Deep

learning, a branchof artificial intelligence, is currently themost promis-

ing application for medical image analysis and interpretation. Consid-

erable work has been performed in consultative diagnostic imaging

including automatic analysis of computed tomography (CT), chest x-

ray (CXR), and magnetic resonance imaging (MRI).11–13 Deep learning

applications can also be found in ultrasound, but have been largely lim-

ited to costly imaging platforms.14,15 However, applications focused

on POCUS, which is directly used by clinicians in patient manage-

ment including for immediate decisionmaking about fluid resuscitation

and vasopressor use, has had relatively little deep learning applica-

tion growth commercially and academically. Recently,wehave seen the

introduction of deep learning applications in POCUS devices, including

automated left ventricular ejection fraction (EF) assessmentwithmore

automation promised.16

We developed a deep learning algorithm with temporal tracking to

assist in real-time video interpretation required for ultrasound assess-

ment of IVC collapsibility and possible prediction of fluid responsive-

ness in critically ill patients or patient fluid status.

2 METHODS

2.1 Study design

This was a study of deep learning algorithm development to auto-

matically assess whether selected ultrasound videos showed IVC col-

lapsibility to be ≥25%. The study was Institutional Review Board-

exempted with all data coming from public domain open access

sources with no patient identifiers, without actual patient data being

used.

2.2 Data

Ultrasound video data of sagittal proximal IVC ultrasound examina-

tions was obtained from public domain open access sources with all

patient identifying information removed. Ultrasound video sources

included anonymized image bank repositories, internet posted videos,

stock videos, ultrasound vendor video and videos covering IVC eval-

uation, and cardiac evaluation categories. Internet search criteria

included “video,” “ultrasound,” “IVC,” “inferior vena cava,” “volume

status,” “shock,” “dehydration,” and “resuscitation.” Videos from

the internet were downloaded using open source software called

Youtube-DL. Severity of illness related to subjects of the videos was

gauged from the associated vignette or history provided. Researchers

specifically avoided to more closely mirroring real-life patient distri-

butions in a clinical setting. Video data types included WMV, MP1,

MP2, MOV, AVI, and MP4, and extracted single frames were all JPG.

A total of 220 proximal IVC videos were imported into the training

dataset. No patient identifiers were present on any of the image

sources. Extracted videos included critically ill patients undergoing

resuscitation as well as patients who were not critical. IVC status

ranged from severely volume overloaded to severe volume depleted.

No sample size or power calculations were made for this study. All

reviewed and identified videos that were extracted were used for the

project.
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2.3 Data manipulation and labeling

All videos, used for deep learning algorithm training, were kept in

their original aspect ratio and size and sorted into 1 of 2 categories.

A POCUS expert with 28 years of research, education, and clinical

use experience and >200 peer reviewed research manuscript publi-

cations, ranked all videos as either collapsing at least 25%, or collaps-

ing <25%. The assessments were made visually using video editing

software MicroDicom (Sofia, Bulgaria) that allowed frame-by-frame

advance and reverse viewing (Figure 1). Diameters were compared

to the reference centimeter scales present on ultrasound videos for

greater accuracy.

All training videos were then augmented using FFMPEG open

access software. This is a common technique in deep learningwhen lim-

ited data are available. The total size of the training video dataset was

increased6-fold by adding copies of theoriginal videos thatwere trans-

formed by flipping them horizontally, vertically, and 45◦ clockwise and

counterclockwise.Videoswerenot otherwise adjusted suchas through

manipulation of contrast, sharpness, and changing image quality. This

approach is also helpful in preparing the algorithm for videos of IVCs

that are not perfectly horizontal on the screen and can significantly

increase the robustness of an algorithm for interpreting novel imaging

data.

2.4 Algorithm design

We made use of the Python programming language version 3.72 with

Anaconda to manage packages and help in scripting and use of a VGG-

16 convolutional neural network incorporated into a bidirectional long

short term memory (LSTM) network. Code for VGG-16 is available

from various public sources including github.com. VGG-16, which won

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) com-

petition in 2014, is an early convolutional neural network using 16 lay-

ers and has been shown to be superior for ultrasound deep learning

applications in prior work.17 LSTM refers to a structure that incorpo-

The Bottom Line

Inferior vena cava collapsibility (cIVC) of 25% predicts fluid

responsiveness in critically ill patients. The authors of this

study developed a deep learning algorithm to assist with

real-time cIVC measurement during POCUS using publicly

available videos. Their deep learning algorithm showed good

agreement with 3 POCUS experts in determining the degree

of cIVC.

rates a convolutional neural network into a structure that tracks tem-

poral changes on ultrasound images and is used in non-medical circles

to identify specific action on sports video and even predict outcomes

of movements or actions. The bidirectional aspect means the video is

moved forward andbackward through the LSTMnetwork. This bidirec-

tionality helps the network to better understand the video context.We

used this same basic architecture and adapted it to ultrasound video

analysis.

We trained our LSTM algorithm using a PC with an 11 GB NVIDIA

GeForce RTX 2080 Ti GPU and 64 GB of RAM. Researchers manipu-

lated optimizers, learning rates, and batch size during training for opti-

mal training times and accuracies, but avoided exploding gradients that

result in training failure. The number of epochs (that is defined as 1

round of training through all of the data) was adjusted for optimal

results while avoiding overfitting. Best performance was eventually

obtained with 80 Epochs. Batch sizes of 15 videos ultimately proved

to result in the best algorithm training performance.

2.5 Algorithm validation and testing

The LSTM algorithm automatically performs cross validation after

every epoch. Cross validation accuracy, learning, and training losses

F IGURE 1 Maximal (left) andminimum (right) inferior vena cava (IVC) diameter frames from a proximal IVC video used in deep learning
algorithm training
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F IGURE 2 Diagram of a step-by-step approach for algorithm
design, training, and testing

were used to guide algorithm training adjustments. After results

were optimized, and no further adjustments resulted in performance

improvements, the algorithmwas tested on the 50 newly obtained IVC

test videos, which were the same videos sent to POCUS experts for

blinded review. No video augmentation was performed on the 50 test

video set. Three POCUS experts (16, 12, and 11 years of POCUS expe-

rience, respectively) with fellowship training and extensive research,

academic, and clinical scanning experiencewere asked to review the50

IVC test videos in blinded fashion. EachPOCUSexpert received a drop-

box link containing all 50 videos, randomly arranged and numbered.

Experts were asked to quickly view each video and make a decision

whether the IVC collapsed 25% or greater, looking at 3 cm distal to the

diaphragm/right. The POCUS experts were asked to take a quick look

(but were not timed) to better simulate real-life decisionmaking with

POCUSwhereprolonged image review is prohibitive. Experts recorded

their findings on an Excel spreadsheet for each IVC video. POCUS

expert ratingswere incorporated into 1database andmatched for each

video along with the deep learning algorithm predictions on the same

videos. Additionally, the 3 POCUS experts were asked to rate the diffi-

culty of interpreting each IVC video to determine if it collapsed 25% or

moreona10-point Likert scale. Figure2 summarizes the steps involved

with algorithm construction, training, and testing.

2.6 Statistical analysis

Fleiss’ κ was calculated to compare level of agreement between the

3 POCUS experts and deep learning algorithm and POCUS experts.

Fleiss’ κ is a measure of inter-rater agreement used to determine the

level of agreement between 2 ormore raters. The single POCUSexpert

who rated degree of collapse for the 220 training IVC videos did not

rate the 50 test videos, and therewere no comparisons of the 3POCUS

experts and the deep learning to any criterion standard. Because there

is no actual disease presence or absence, and the comparison of the

deep learning prediction is compared to that of 3 POCUS experts,

sensitivity, specificity, and likelihood ratios are not calculated because

all the required components (true–positives, true–negatives, false–

positives, and false–negatives) are not available. This is a common fea-

ture of imaging deep learning studies.

3 RESULTS

All 3 POCUS experts were able to complete rating each of the 50 test

IVC videos. Decisions regarding degree of collapse by each POCUS

expert and the deep learning algorithm for each IVC video are listed

in Table 1. Summary results relating to video classification into collapse

andnon-collapse groups are shown inTable2.Asked to ratedifficulty of

interpretationof eachvideoandquality, the experts reportednovideos

that could not be evaluated because of poor quality. Reported difficulty

in IVC video interpretation by POCUS expert reviewer ranged from 1–

7, 1–9, and 1–9, respectively. Median difficulty scores rating the dif-

ficulty POCUS reviewers had in determining if collapse was >25% or

<25% for test IVC videos, and rating for IVC collapse and non-collapse

subgroups are reported in Table 2. Percentage of IVC videos rated as

showing 25% or greater collapse for the deep learning and 3 POCUS

reviewers are shown in Table 2.

The LSTM deep learning algorithm was able to provide a prediction

for each of the 50 videos. The algorithm took 9:24 min to train on the

220 augmented training videos. It took 30 seconds to review andmake

predictions on all 50 test IVC videos. Reviewerswere not asked to time

how long it took them to review and make a decision regarding col-

lapse for the 50 test videos. There was very good agreement between

the 3 POCUS experts with κ = 0.65 (95% CI = 0.49–0.81). Agreement

betweenexperts and algorithmwas goodwith κ=0.45 (95%CI=0.33–

0.56).

4 DISCUSSION

Our results indicate that a deep learning neural network using LSTM

and trained on public domain IVC ultrasound videos can achieve good

agreement with POCUS experts in visually estimating if patient IVC

collapsed 25% or greater. This cutoff is similar to other suggested ones

and is supported by recent studies as being useful for determining if

septic shock patients will be fluid responsive or not.6,7 Only a small

number of studies have been published to date on either deep learning
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TABLE 1 Three POCUS expert reviewer assessments as well as the DL prediction of the degree of IVC collapse for each test IVC video

IVC video number POCUS 1 POCUS 2 POCUS 3 DL algorithm

IVC 1 Collapsing Collapsing Collapsing Collapsing

IVC 2 Collapsing Not collapsing Not collapsing Not collapsing

IVC 3 Collapsing Collapsing Collapsing Not collapsing

IVC 4 Collapsing Collapsing Collapsing Not collapsing

IVC 5 Collapsing Collapsing Collapsing Not collapsing

IVC 6 Collapsing Collapsing Collapsing Not collapsing

IVC 7 Collapsing Collapsing Collapsing Collapsing

IVC 8 Collapsing Collapsing Not collapsing Not collapsing

IVC 9 Collapsing Collapsing Collapsing Not collapsing

IVC 10 Collapsing Collapsing Collapsing Not collapsing

IVC 11 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 12 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 13 Collapsing Collapsing Collapsing Not collapsing

IVC 14 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 15 Not collapsing Collapsing Not collapsing Not collapsing

IVC 16 Not collapsing Collapsing Collapsing Collapsing

IVC 17 Collapsing Collapsing Collapsing Not collapsing

IVC 18 Collapsing Not collapsing Not collapsing Not collapsing

IVC 19 Collapsing Collapsing Collapsing Not collapsing

IVC 20 Collapsing Collapsing Collapsing Not collapsing

IVC 21 Collapsing Not collapsing Not collapsing Collapsing

IVC 22 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 23 Collapsing Collapsing Collapsing Collapsing

IVC 24 Collapsing Not collapsing Not collapsing Not collapsing

IVC 25 Collapsing Collapsing Collapsing Not collapsing

IVC 26 Not collapsing Not collapsing Collapsing Collapsing

IVC 27 Collapsing Not collapsing Not collapsing Not collapsing

IVC 28 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 29 Collapsing Not Collapsing Not Collapsing Not collapsing

IVC 30 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 31 Collapsing Not collapsing Not collapsing Collapsing

IVC 32 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 33 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 34 Collapsing Not collapsing Not collapsing Not collapsing

IVC 35 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 36 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 37 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 38 Collapsing Collapsing Collapsing Collapsing

IVC 39 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 40 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 41 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 42 Collapsing Collapsing Collapsing Not collapsing

IVC 43 Collapsing Collapsing Collapsing Collapsing

IVC 44 Collapsing Not collapsing Collapsing Collapsing

(Continues)
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TABLE 1 (Continued)

IVC video number POCUS 1 POCUS 2 POCUS 3 DL algorithm

IVC 45 Collapsing Collapsing Collapsing Not collapsing

IVC 46 Collapsing Collapsing Collapsing Collapsing

IVC 47 Collapsing Collapsing Collapsing Collapsing

IVC 48 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 49 Not collapsing Not collapsing Not collapsing Not collapsing

IVC 50 Not collapsing Not collapsing Not collapsing Not collapsing

DL, deep learning; IVC, inferior vena cava; POCUS, point-of-care ultrasound.

TABLE 2 DL prediction and 3 POCUS reviewer assessments of IVC collapsibility for the 50 test IVC videos

POCUS reviewer 1 POCUS reviewer 2 POCUS reviewer 3 DL algorithm

Videos judged as collapsing≥25% 30 23 23 12

(60%) (46%) (46%) (24%)

Mean difficulty rating for all IVC videos 2.7 3.0 3.8

(95%CI= 2.06–3.42) (95%CI= 2.42–3.5) (95%CI= 2.93–4.67)

Mean difficulty rating for IVC videos with

collapse≤25%

2.0 2.8 3.5

(95%CI= 1.34–2.58) (95%CI= 2.13–3.47) (95%CI= 2.39–4.65)

Mean difficulty rating for IVC videos with

collapse<25%

3.4 3.2 4.1

(95%CI= 2.27–4.53) (95%CI= 2.23–4.17) (95%CI= 2.72–5.41)

DL, deep learning; IVC, inferior vena cava; POCUS, point-of-care ultrasound. The 10-point Likert scale ratings of difficulty interpreting IVC test videos are

listed for each of the POCUS reviewers.

or other automated analysis of the IVC. The earliest ones predatemod-

ern deep learning techniques, which are only several years old. Our

purpose in this study was not to compare the deep learning algorithm

and 3 POCUS experts to any criterion standard, such as the original

POCUS reviewer of the 220 training videos for the deep learning

algorithm. Instead, our goal was to assess the internal consistency of

the 3 POCUS expert reviewers and the deep learning algorithm.

IVC collapsibility has been explored in several published research

studies on automatic interpretation and analysis. The first com-

mercially available automated IVC analysis application by a POCUS

ultrasound vendorwas introduced nearly 4 years ago, butwas not orig-

inally designed using artificial intelligence.18 The goal of any automa-

tion is to enable less experienced health care providers and those with

less medical training to be able to assess volume status and potentially

fluid responsiveness in sick patients who may be suffering from some

type of shock. A group of researchers specifically focused on elimi-

nating the time and labor intensive IVC measurement burden in clini-

cal settings by creating and testing an automated process in 8 pigs.19

A total data set of 48 IVC evaluations was generated from the ani-

mals, and researchers were able to create a method to automatically

identify and measure the IVC, offline and not in real-time. Although

this is an important laboratory step forward, the authors describe a

lengthy stepwise process required to manipulate the ultrasound cine

loops with various filters and image size adjustment, limiting any real-

time clinical application potential. Despite the limited data, this auto-

mated method accurately identified 97.9% of pig IVCs. The majority of

IVCmeasurements werewithin 15% of thosemade by 2 sonographers.

A final limitation was that the methodology required DICOM data and

took place offline, unless imbedded on an ultrasound device—that was

not tested.19

An important collaboration between clinicians and engineering

experts resulted in the creation of an automated technique for IVC

diameter change assessment using a complex pyramidal structure

that resulted in good agreement with manual measurements. The

authors reported that when measurements between physicians and

the algorithm differed, in 95% of these cases the difference was

<10%.20 The complex algorithm performed well when tested in 50

hemodialysis patients. However, it required multiple steps and sig-

nificant engineering expertise to design and implement. Rather than

undertake complex additional steps, which will inherently increase

the difficulty of implementing such an algorithm on a wide range

of POCUS machines, we sought to use the ability of deep learning

algorithms to find novel associations to make predictions based on

regression (referring to the type of deep learningmethodology used as

opposed to image segmentation and actual measurement). Therefore,

no actual anatomic localization, border identification, or diameter

measurements are required for prediction of outcome. Further,

rather than requiring software to extract optimal individual images or
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breaking ultrasound cine loops into individual images to analyze

offline, we explored a real-time application that could analyze a cine

loop immediately on an ultrasound machine or even run in real-time

while a novice sonologists was scanning the patient’s IVC.

Enabling providers new to POCUS, such as residents, untrained fac-

ulty, nurses, emergency medical technicians, and others to accurately

assess the IVC through automation may significantly improve patient

assessment, management, and access to care, and hasten interven-

tions. Additionally, real-time feedback will further help novice sonolo-

gists improve their skills. A published study on nurses measuring the

IVC diameter in the emergency department, following 3.5 hours of

didactic and hands-on training, examined the correlation with a sono-

grapher in both longitudinal and transverse IVC diameter measure-

ments: R = 0.68 and 0.59, respectively, in an all-volunteer model.21

Although this study proved that nurses can measure the IVC, correla-

tionwith a sonographerwas suboptimal, and the training time required

might have been better spent focusing on simply on attaining a mid-

sagittal IVC view and holding it steady. As with many medical and non-

medical tasks, deep learning-based automation should significantly

decrease the amount of training required for nurses in this task. Addi-

tionally, evidence shows implemented artificial intelligence can signif-

icantly improve sonographer intra-observer reliability during cardiac

measurements, suggesting artificial intelligence should accomplish this

for novice ultrasound users also.10

Our efforts differ from prior designs and should offer easier imple-

mentation into clinical use when compared to the challenging process

of programming an application to extract individual frames, performing

multiplemeasurements anddoing sooffline.Wemodeledour approach

on aPOCUSexpert’s ability to rapidly view the proximal IVCanddeter-

mine visually if 25% collapse occurs or not. This will allow the resul-

tant deep learning application to be activated once the imaging win-

dow is obtained, hopefully yielding accurate results. Despite a small

dataset for deep learning purposes, we were able to reach good agree-

ment with 3 POCUS experts, suggesting that with a larger dataset cor-

relating IVCbehaviors onultrasound andoutcomesof fluid responsive-

ness testing, should be able to equal or surpass the results posted by

expert POCUS. By embedding such a deep learning application into an

ultrasoundmachine or simply having the application run on a real-time

video feed from the system and displaying over the machines screen, a

novice would only have to obtain an sagittal view of the proximal IVC

and let the deep learning application do the rest, providing a nearly

instant prediction regarding fluid responsiveness. The type of automa-

tionof IVCanalysiswe targetedwouldbeof greater practical use in aid-

ing novice POCUS providers than the current manual process. Rather

than having to acquire a mid-sagittal image of the proximal IVC, then

holding the transducer in the same anatomic position through several

respiratory cycles, freezing the image and scrolling through the cine

loop to identify the best IVC maximum and minimum diameters, and

finallymaking a total of 4measurements to assuremeasurement of the

IVC diameter at the same anatomic point, the novice would instead be

taskedonlywithobtaining the imageandholding still over the anatomy.

Our studyhad anumber of limitations including a very small dataset.

Ideally, the dataset would have been in the thousands of videos and

would likely have resulted in much better correlation. Additionally, if

the videos were in DICOM format, and we were able to obtain accu-

rate distance and diametermeasurements for training, the precision of

the algorithm in differentiating between 25% collapse or greater ver-

sus less would be expected to grow significantly. Thus, the criterion

standard used of a single POCUS expert to review and assess degree

of IVC collapse itself introduces some amount of error. All of the videos

were obtained from public domain sources, and although from actual

patients, they varied in quality as did the equipment used to obtain

them. It was impossible to obtain accurate patient states for all videos,

and it is possible the 220 training and 50 test videos represented an

atypical set of images. Data augmentation significantly increased the

effective dataset size. However, for optimal results, only 1 type of

ultrasound machine would have provided a very large dataset used to

train the deep learning algorithm. This is not a realistic approach clin-

ically, because many hospitals and even departments rely on a vari-

ety of ultrasoundmachines, therefore necessitating a robust algorithm

trained on different ultrasound devices. Although tested on a sepa-

rate set of ultrasound videos not previously seen by the artificial intel-

ligence algorithm, we did not have other data from different medical

centers nor were we able to test it prospectively in different settings.

This would be an important future research topic, but this pilot study

lays an important foundation for this approach.

In conclusion, a non-commercial LSTM deep learning algorithm in

this study showed good agreement with 3 blinded POCUS expert

reviewers in determining degree of IVC collapsibility in ultrasound

videos of spontaneously breathing patients. This study indicates that

an artificial intelligence algorithm has the potential to improve CIVC

measurements.
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