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Abstract: Maritime moving target detection and tracking through particle filter based
track-before-detect (PF-TBD) has significant practical value for airborne forward-looking scanning
radar. However, villainous weather and surging of ocean waves make it extremely difficult to
accurately obtain a statistical model for sea clutter. As the likelihood ratio calculation in PF-TBD is
dependent on the distribution of the clutter, the performance of traditional distribution-based PF-TBD
seriously declines. To resolve these difficulties, this paper proposes a new target detection and
tracking method, named spectral-residual-binary-entropy-based PF-TBD (SRBE-PF-TBD), which is
independent from the prior knowledge of sea clutter. In the proposed method, the likelihood ratio
calculation is implemented by first extracting the spectral residual of the input image to obtain
the saliency map, and then constructing likelihood ratio through a binarization processing and
information entropy calculation. Simulation results show that the proposed method had superior
performance of maritime moving target detection and tracking.

Keywords: forward-looking scanning radar; sea clutter; track-before-detect; particle filter;
spectral residual

1. Introduction

The rapid development of global trade has greatly promoted the demand for marine transport
and tourism, which also increases marine accidents [1–3]. Therefore, marine search and rescue has
become an important research issue and receives a lot of attention in recent years [4,5]. The primary
task of marine search and rescue is to discover the target under complex sea condition quickly and
accurately, especially small targets, such as lifeboats carrying survivors. The airborne forward-looking
scanning radar is a main detection means for marine search and rescue because of its all-weather and
all-time capacity [6–9]. Through the sequential scanning of radar, multi-frame data can be quickly
acquired and the maritime target in the observation area can be monitored in real time.

In general, fine weather condition and calm sea surface benefit target detection and tracking
because of the high signal clutter ratio (SCR) of the radar echo. In this situation, the target can be
effectively detected by traditional constant false alarm rate (CFAR) technologies [10–12], and then
the trajectory can be estimated through the tracking filter [13,14]. However, villainous weather and
surging of ocean waves will lead to heavy-tailed clutter and fluctuation of target scattering. In addition
to the weak scattering of the target, the SCR will become quite low. In this case, traditional detection
and tracking method will generate massive false alarms, making it hard to detect the true target [15].

Different from the traditional detection and tracking method, the TBD method utilizes the motion
characteristics of the target and processes consecutive scans jointly to realize the fine detection and
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tracking of low SCR targets. Therefore, the TBD method has drawn extensive attention [16].
TBD includes batch methods, such as dynamic programming [17] and Hough transform [18],
and recursive methods based on the Bayesian approach, such as particle filter (PF) [19]. Because PF
can effectively deal with nonlinear non-Gaussian problems, it adapts to the target detection and
tracking under sea scene. The earliest use of the PF-TBD method in radar system is presented in [20].
Subsequently, Rutten et al. proposed a more efficient implementation method of PF-TBD [21], and
analyzed the characteristics of the method in detail [22]. Recently, PF-TBD is applied in different radar
systems, such as over-the-horizon radar (OTHR) [23], passive radars [24], SAR [25] and multi-station
system [26]. However, these studies consider the Rayleigh clutter distribution, which is only applicable
to low resolution radars or low sea conditions. When the high-resolution radar observes the sea surface
at a small grazing angle, the clutter distribution presents a significant non-Gaussian characteristic [27].
In [28], the PF-TBD method based on K-distribution adapts to the non-Gaussian characteristic of the
sea clutter amplitude, and the calculation of likelihood ratio is deduced in detail. However, due to the
complexity of the K-distribution, the analytical solution of the likelihood ratio calculation cannot be
obtained, and this method must be resolved by a time-consuming numerical integration operation.
This is a great challenge for real-time demand in applications.

Moreover, the distribution-based methods need to assume the prior distribution of clutter.
However, the complex ocean dynamics mechanism gives the sea surface non-stationary
characteristic [29], which means it is difficult to accurately model the sea surface with a hypothetical
distribution model. To reduce the dependence on the prior knowledge of clutter, the saliency detection
approach is proposed based on visual saliency principle [30–32]. A fast saliency detection approach
proposed in [33] obtains the saliency map by analyzing the log-spectrum of an input image and
extracting the spectral residuals of the image in the frequency domain, and then realize target detection.

Inspired by the saliency detection approach, this paper proposes a new target detection and
tracking method, named spectral-residual-binary-entropy-based PF-TBD (SRBE-PF-TBD), which is
used to detect and track maritime moving target for airborne forward-looking scanning radar. In the
proposed method, the likelihood ratio calculation is implemented by first extracting the spectral
residual of the input image to obtain the saliency map, and then constructing likelihood ratio through
a binarization processing and information entropy calculation.

The proposed SRBE-PF-TBD method does not require prior knowledge of the clutter, enhancing
the adaptability and robustness. The effectiveness and performance of the proposed method are
verified by simulation experiments based on the simulated data, which are obtained by a Swerling I
target and the K-distributed clutter.

This paper is arranged as follows. Section 2 introduces the target dynamic model and
forward-looking scanning radar measurement model. Section 3 shows the proposed SRBE-PF-TBD
method. Section 4 presents the simulation results and performance analysis. Section 5 gives
the conclusions.

2. Models

In this section, the target dynamic model and the airborne forward-looking scanning radar
measurement model are given, which are used in this paper.

2.1. Target Dynamic Model

Considering the maritime target moving in a two-dimensional plane, the state vector of the

target in frame k is represented as xk =
[

xk, ẋk, yk, ẏk
]T

, where
(

xk, yk
)

is the position of the target

and
(

ẋk, ẏk
)

denotes the velocity along x-axis and y-axis, respectively. Assuming a constant-velocity
process model is used, the evolution of the target state can be written as

xk+1 = Fxk + wk (1)
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where

F =


1 τ 0 0
0 1 0 0
0 0 1 τ

0 0 0 1

 (2)

τ is the frame sampling period, and wk represents the process noise, which obeys Gaussian distribution
with mean zero and covariance Q:

Q = q×


τ3/3 τ2/2 0 0
τ2/2 τ 0 0

0 0 τ3/3 τ2/2
0 0 τ2/2 τ

 (3)

where q is the process noise coefficient [34].
To indicate the existence or non-existence of target in the observation area, the random variable εk

is introduced as the target existence state variable and εk ∈ {0, 1}, where εk=1 means there is a target
in the observation area in frame k and vice versa. The above process can be modeled as a two-state
Markov chain, as shown in Figure 1.

0 1

birthP

deathP

1 deathP1 birthP

Figure 1. Diagram of state transition.

In Figure 1, Pbirth is the probability of target birth and Pdeath is the probability of target death,
which are respectively equal to P

(
εk = 1|εk−1 = 0

)
and P

(
εk = 0|εk−1 = 1

)
. Thus, the two state

Markov chain can be defined as

Π =

[
1− Pbirth Pbirth

Pdeath 1− Pdeath

]
(4)

2.2. Airborne Forward-Looking Scanning Radar Measurement Model

The geometry illustration for airborne forward-looking scanning radar is shown in Figure 2.
For the common overlapping area of multi-frame images, the observation area Ωk of frame k can be
represented as

Ωk =


σk

x1,y1
σk

x1,y2
· · · σk

x1,yNy

σk
x2,y1

σk
x2,y2

· · · σk
x2,yNy

...
...

. . .
...

σk
xNx ,y1

σk
xNx ,y2

· · · σk
xNx ,yNy

 (5)

where σk
xm ,yn

(
m = 1, 2, · · · , Nx, n = 1, 2, · · · , Ny

)
is the scattering coefficient of the point (xm, yn, 0)

in the observation area, and Nx and Ny are the numbers of resolution cells along x-axis and y-axis,
respectively. Assume the airplane is moving along y-axis at speed v, the waveform of transmitted
signal is s (η), where η is the fast time, the scanning speed of radar beam is ω and the antenna pattern
is wa (t). At slow time t, the coordinate of radar is set as (0, vt, H), and then the echo signal of the
observation area in forward-looking scanning radar can be expressed as
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uk (η, t) = ∑
m,n

σk
xm ,yn wa (t) s

(
η −

2Rxm ,yn (t)
c

)
(6)

where
Rxm ,yn (t) =

√
R2

xm ,yn + (vt)2 − 2Rxm ,yn vt cos θxm ,yn cos ϕ (7)

shows the instantaneous slant range of the point (xm, yn, 0), while Rxm ,yn is the initial slant range, θxm ,yn

is the initial azimuth angle and ϕ is the grazing angle. In practice, due to the narrow azimuth beam,
fast scanning speed and small grazing angle [7], the slant range can be approximated as

Rxm ,yn (t) ≈ Rxm ,yn − vt cos ϕ (8)

For the convenience of spatial data analysis, the time variable t and η can be represented by the
spatial variables R and θ based on t = (θ − θ0)

/
ω and η = 2R/c, where θ0 is initial scanning angle

of the antenna. After the processing of matched filtering and range immigration correcting along
the range dimension, the echo can be modeled as a convolution of the scattering coefficients and the
two-dimensional system function [6], which is

uk (R, θ) = ∑
m,n

σ̂k
xm ,yn δ

(
R− Rxm ,yn , θ − θxm ,yn

)
⊗ h (R, θ) (9)

where

σ̂k
xm ,yn = σk

xm ,yn · exp
(
−j

4π

λ
Rxm ,yn (t)

)
(10)

and δ
(

R− Rxm ,yn , θ − θxm ,yn

)
is the Dirac function at

(
Rxm ,yn , θxm ,yn

)
. h (R, θ) is the two-dimensional

system function, which can be written as

h (R, θ) = wa (θ) sinc
(

2B
c

R
)

(11)

where B is the bandwidth of the transmitted signal.
In azimuth, the resolution of radar image can be significantly enhanced by super-resolution

processing, contributing to an improved two-dimensional system function [35].
After coordinate transferring of Equation (9), the final image in spatial domain can be

represented as
zk (x, y) = ∑

m,n
σ̂k

xm ,yn δ (x− xm, y− yn)⊗ h′ (xm, yn) (12)

where h′ (xm, yn) is the two-dimensional system function in spatial domain. The imaging procedure of
the forward-looking scanning radar is given in Figure 2.

Assuming the size of resolution cell in the observation area is ∆x × ∆y, the measurement data in
frame k can be expressed as

zk =
{

zk (m, n) : m = 1, 2, · · · , Nx, n = 1, 2, · · · , Ny

}
(13)

The hypothesis of the existence or non-existence of a target in resolution cell (m, n) can be
defined as:

zk (m, n) =


∣∣∣Ik exp

(
jφk
)
· h′ (xm, yn) + ςk (m, n)

∣∣∣ εk = 1

∣∣∣ςk (m, n)
∣∣∣ εk = 0

(14)

where Ik is the amplitude of target, φk is the random phase of target, and ςk (m, n) is the amplitude
distribution of sea clutter, which is related with the sea condition and parameters of the surroundings.
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Figure 2. Geometry illustration for forward-looking scanning radar and the flowchart of imaging processing.

3. The Proposed Method

In this section, the proposed SRBE-PF-TBD method is specified. The PF-TBD used in the proposed
method is based on Bayesian recursion, which is derived in detail in [21]. In the PF-TBD, the particles
are divided into two parts: the continuing particles, which represent the continuing presence of the
target, and the birth particles, which represent the newly appearing target. By using the likelihood
ratio to update the mixing weights of the two part particles, these particles can be mixed into a large
set, and then the target state is estimated by the large set of particles.

Therefore, the likelihood ratio calculation plays an import role in the PF-TBD. As described
above, the traditional distribution-based likelihood ratio calculation is infeasible in the situation of
non-stationary sea surface. The proposed method implements likelihood ratio calculation from the
perspective of image information, which is independent from the prior knowledge of clutter. Based
on information theory, the information of an image can be decomposed into two parts: the prior
knowledge and the innovation [33]. The prior knowledge part represents the statistical invariant
properties of the environment, which can be considered as the redundant information and should be
suppressed for target detection. The innovation part is the novel part, which contains information
about target. Inspired by this rationale, the proposed method uses spectral residual calculation to
remove the redundant information, and then the saliency map can be obtained. Finally, the likelihood
ratio expression is constructed through a binary processing and information entropy calculation, which
is named as SRBE likelihood ratio.

Based on the above, this section first presents the calculation of spectral residual binary entropy
(SRBE) likelihood ratio, and then shows the implementation of the proposed SRBE-PF-TBD method.

3.1. SRBE Likelihood Ratio Calculation

Given the airborne forward-looking scanning radar image zk (m, n), m = 1, 2, · · · , Nx,
n = 1, 2, · · · , Ny of frame k. The Fourier spectrum of the image can be calculated by

Z k ( fm, fn) = F
[
zk(m, n)

]
(15)



Sensors 2019, 19, 1586 6 of 19

where F [·] means the operation of two-dimensional Fourier transform, and the corresponding
amplitude spectrum and phase spectrum can be denoted as

Ak ( fm, fn) = A
[
Z k ( fm, fn)

]
(16)

Pk ( fm, fn) = P
[
Z k ( fm, fn)

]
(17)

where A [·] means getting the amplitude of the input, while P [·] obtains the phase. Then, the log
spectrum of the image amplitude can be expressed as

Gk ( fm, fn) = ln
[

Ak ( fm, fn)
]

(18)

Thus, the spectral residual can be obtained by

Rk ( fm, fn) = Gk ( fm, fn)− χr ( fm, fn)⊗ Gk ( fm, fn) (19)

where χr ( fm, fn) is a local mean filter, and defined by a r× r matrix:

χr ( fm, fn) =
1
r2


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 (20)

By performing two-dimensional inverse Fourier transform and Gaussian filtering, the saliency
map in spatial domain can be expressed as

Sk (m, n) = g (m, n)⊗F−1
[
exp

(
Rk ( fm, fn) + Pk ( fm, fn)

)]2
(21)

where F−1 [·] means the operation of two-dimensional inverse Fourier transform. The Gaussian filer
g (m, n) is defined by

g (m, n) =
1

2πγ2 exp
(
−m2 + n2

2γ2

)
(22)

where γ is the filter parameter.
Then, the normalized saliency map can be obtained by

S̄k (m, n) =
Sk (m, n)

max
[
Sk (m, n)

] (23)

By a given binarization threshold TB, the normalized saliency map is binarized and the
corresponding binary image Bk is generated, which indicates the potential target area. Then, the
information entropy of Bk is calculated by

Hk = −pk
0 · log2

(
pk

0

)
− pk

1 · log2

(
pk

1

)
(24)

where p0 and p1, respectively, indicate the probabilities of the pixel value 0 and 1 in the binary image Bk.
The final SRBE likelihood ratio can be written as

LSRBE

(
zk|εk

)
=

pk
1

pk
0
· exp

(
S̄k (m, n)

Hk

)
(25)
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For the target with state xk, the coordinate of the corresponding cell can be calculated by mxk =
⌊

xk

∆x

⌋
nxk =

⌊
yk

∆y

⌋ (26)

where b·c denotes the operation of rounding down. The SRBE likelihood ratio corresponding to xk can
be calculated by

LSRBE

(
zk|xk, εk

)
=

pk
1

pk
0
· exp

(
S̄k (mxk , nxk

)
Hk

)
(27)

The flowchart of SRBE likelihood ratio calculation is shown in Figure 3.

 

 

 

 ln

 ,r m nf f
 exp  1 2

 ,g m n

 
 max

+

 ,kz m n

  BT

Count '0'

Count '1'

 exp

 
1

 2log

 2log

 
1

 
1

 SRBEL

: convolution operation

: multiplication operation

: additive operation

Binary Entropy Calculation

Saliency Map Calculation

 

Figure 3. Flowchart of SRBE likelihood ratio calculation.

As shown in Figure 3, the proposed SRBE method has two key operations: one is obtaining the
saliency map of the radar image by the spectral residual method, and the other is calculating the binary
entropy of the normalized saliency map. Because the maritime target is generally composed of metal
material and has dihedral and trihedral structures, the scattering of the target is normally higher than
the scattering of the sea clutter, meaning that the target is more salient than the sea clutter in the radar
image. Therefore, the saliency map can effectively indicate the potential target regions. Through the
information theory, the binary entropy of the saliency map can be used to measure the cluster-degree
of the saliency map. The larger the entropy value is, the smaller the cluster-degree is, indicating that
the saliency map is more likely caused by the sea clutter scattering. Contrarily, the lower entropy value
represents the larger cluster-degree, which means the higher probability of target existence. Therefore,
the binary entropy of the saliency map can effectively indicate the confidence of target existence. Based
on the above analysis, the SRBE likelihood is constructed as Equation (27) to update the particles,
which utilizes the information of the potential target regions and the confidence of target existence in
the radar image.

3.2. Implementation of SRBE-PF-TBD

By incorporating the SRBE likelihood ratio into the PF-TBD, the specific implementation of the
proposed SRBE-PF-TBD is described as follows.
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1. Calculation of birth density

A set of Nb birth particles is drawn from the proposal density, whose positions are uniformly
distributed within some highest measurements [22]. The sampled birth particles for frame k can
be represented as

xk
(b)i ∼ q

(
xk
(b)|ε

k = 1, εk−1 = 0, zk
)

, i ∈ {1, 2, . . . , Nb} (28)

where q (·) is the proposal density, and the symbol “∼” means the operation of drawing samples
from the proposal density.

Based on the likelihood ratio proposed in Equation (27), the non-normalized weights of these
birth particles can be calculated by

ωk
(b)i =

LSRBE

(
zk|xk

(b)i, εk = 1
)

p
(

xk
(b)i|ε

k = 1, εk−1 = 0
)

Nbq
(

xk
(b)i|εk = 1, εk−1 = 0, zk

) (29)

where the prior probability density p
(

xk
(b)i|ε

k = 1, εk−1 = 0
)

is a uniform distribution. Then, the
normalized weights can be obtained by

ω̃k
(b)i =

ωk
(b)i

Nb
∑

i=1
ωk
(b)i

(30)

2. Calculation of continuing density

Since the auxiliary particle filter (APF) utilizes the information of measurement in the current
frame, the knowledge of current observation is incorporated into the proposal mechanism, and
particles are not moved blindly in the state space, making the current target state estimated
with high reliability [36]. Considering these benefits, this paper adopts APF for continuing
particle filtering.

A set of Nc continuing particles is drawn using the dynamic equation described in Equation (1),
which can be expressed as

µk
(c)i ∼ p

(
xk
(c)|x

k−1
(c) , εk = 1, εk−1 = 1

)
, i ∈ {1, 2, . . . , Nc} (31)

where p (·) represents the transition density from frame k− 1 to frame k.

The non-normalized weights of these particles are calculated with the current measurements
as below.

bk
(c)i =

1
Nc

LSRBE

(
zk|µk

(c)i, εk = 1
)

(32)

The normalized weights of continuing particles can be calculated by

b̃k
(c)i =

bk
(c)i

Nc
∑

i=1
bk
(c)i

(33)

By using weights b̃k
(c)i, the particles

{
xk−1
(c)i

}Nc

i=1
in frame k− 1 are resampled to obtain

{
xk−1
(c)ij

}Nc

j=1
,

where
{

ij}Nc
j=1 denotes the index of particle xk−1

(c)i in frame k− 1.
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Then, particles for frame k by Equation (1) and the resampled continuing particles in frame k− 1
are again drawn, which can be expressed as

xk
(c)j ∼ p

(
xk
(c)|x

k−1
(c)ij , εk = 1, εk−1 = 1

)
, j ∈ {1, 2, . . . , Nc} (34)

The non-normalized weights of newly resampled particles can be calculated by

ωk
(c)j =

LSRBE

(
zk|xk

(c)j, εk = 1
)

LSRBE

(
zk|µk

(c)ij , εk = 1
) (35)

The normalized weights can be obtained by

ω̃k
(c)j =

ωk
(c)j

Nc
∑

j=1
ωk
(c)j

(36)

3. Calculation of mixing probabilities

The mixing probability of birth density is calculated by

Mb = Pbirth

(
1− p

(
εk−1 = 1|z1:k−1

)) Nb

∑
i=1

ωk
(b)i (37)

Similarly, the mixing probability of continuing density is calculated by

Mc = (1− Pdeath) p
(

εk−1 = 1|z1:k−1
) Nc

∑
i=1

ωk
(c)i (38)

Then, the normalized mixing probabilities can be expressed by

M̃b =
Mb

Mb + Mc
(39)

M̃c =
Mc

Mb + Mc
(40)

4. Calculation of scaled particle weights

The particle weights are scaled according to the mixing probabilities, and the scaled particle
weights of birth density and continuing density are obtained:

ω̂k
(b)i = M̃bω̃k

(b)i (41)

ω̂k
(c)i = M̃cω̃k

(c)i (42)

Then, the particles of birth density and continuing density are combined into one large particle set:{(
xk
(j)i, ω̂k

(j)i

)
|i ∈

{
1, ..., Nj

}
, j ∈ {b, c}

}
(43)

The particles of the large set are resampled to obtain Nc particles with uniform weights:

{(
x̂k
(c)i, 1/Nc

)
|i ∈ {1, ..., Nc}

}
(44)
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5. Calculation of probability of existence

The probability of existence in frame k can be expressed as

p̂
(

εk = 1|z1:k
)
= Mb+Mc

Mb+Mc+Pdeath p(εk−1=1|z1:k−1)+(1−Pbirth)(1−p(εk−1=1|z1:k−1))
(45)

6. Estimation of target state

The detection threshold of existence is assumed as Pth. When p̂
(

εk = 1|z1:k
)
> Pth, the hypothesis

of target existence is accepted and the target state will be estimated by

x̂k =
1

Nc

Nc

∑
i=1

x̂k
(c)i (46)

4. Experimental Results

To verify the proposed method, simulation experiments of maritime moving target detection and
tracking based on simulated data were conducted.

The simulated data of airborne forward-looking scanning radar consisted of 30 frames, whose
frame sampling period was τ = 1s, and per frame contained Nx × Ny = 60× 60 bins. The target
appeared in frame Kb = 6, disappeared in frame Kd = 21, and moved according to the dynamic
equation (Equation (1)), while the process noise coefficient was q = 0.001. The initial state of the target

was set as x0 =
[

12.2 1.2 15.1 0.8
]T

.
There were 4000 particles, where the numbers used for birth density and continuing density

were Nb = 2000 and Nc = 2000, respectively. The initial particle velocities were sampled uniformly
from interval [0, 2], and the particle positions were uniformly distributed within the 200 highest
measurements. The probabilities of birth and death are defined as Pbirth = Pdeath = 0.05, while the
detection threshold was set as Pth = 0.5. The binarization threshold TB was set to 0.5. All simulation
results were averaged over 100 Monte Carlo trials.

4.1. Simulated Data

In practice, since airborne forward-looking scanning radar is used for long-range detection with
small grazing angle, it is reasonable to model the sea clutter amplitude as K-distribution [29], which
can be expressed as

p
(

ςk
)
=

2β

Γ (α)

(
βςk

2

)α

Kα−1

(
βςk
)

(47)

where α is the shape parameter of the distribution, while β represents the scale parameter, and Kα−1 (·)
is the modified second-kind Bessel function of order α− 1.

Due to the movement of the ocean, the RCS of the maritime moving target varies between
radar scans. Therefore, Swerling type I model was used to model the maritime moving target in our
simulation [37]. The amplitude of the target can be written as

p
(

Ik
)
=

2Ik

σ̄
exp

−
(

Ik
)2

σ̄

 (48)

where σ̄ denotes the mean squared target amplitude.
Thus, the SCR can be defined as

SCR = 10log10
σ̄

Pclutter
(49)
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where Pclutter means the mean power of the clutter in frame k and can be expressed by

Pclutter =
4α

β2 (50)

4.2. Simulation Results

4.2.1. Feasibility Analysis

The feasibility of the proposed method was demonstrated when SCR was set to 10dB. Figure 4
shows the radar images of Frames 1, 5, 10, 15, 20 and 25. The target exists in Frames 10, 15 and 20,
and the positions of the target are marked by red rectangles in corresponding images. As shown in
Figure 4, the target was difficult to distinguish from the clutter background.

(a) Frame 1 (b) Frame 5 (c) Frame 10

(d) Frame 15 (e) Frame 20 (f) Frame 25

Figure 4. Sampled images at different frames.

Figure 5 illustrates the distribution of particles calculated by the proposed SRBE-PF-TBD method,
where the red triangles show the true positions of the target. When there was no target in Frames 1
and 5, particles were distributed according to the saliency map of the corresponding frame. In Frames
10, 15 and 20, where the target existed, the particles clustered around the target. When the target did
not exist in Frame 25, the particles were distributed according to the saliency map again.
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(a) Frame 1 (b) Frame 5 (c) Frame 10

(d) Frame 15 (e) Frame 20 (f) Frame 25

Figure 5. Distribution of particles corresponding with frames in Figure 4.

The true target trajectory and the estimated trajectory are shown in Figure 6. In the first two
frames where the target existed, the target positions were not well estimated. However, with the
accumulation of frames, the SRBE-PF-TBD method tracked the target effectively, which verified the
effectiveness of SRBE-PF-TBD method.

Figure 6. The estimation results of the proposed method.

4.2.2. Performance Evaluation

To analyze the performance of the proposed method, this section first gives the definition of the
evaluation criteria [28,38,39], and then prsents the performance evaluation of the proposed method.
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1. Root Mean Squared Error (RMSE) of Estimated Position

The RMSE is calculated by

RMSE (k) =
1
M

M

∑
i=1

√(
x̂k

i − xk
i
)2

+
(
ŷk

i − yk
i
)2 k = Kb, ..., Kd − 1 (51)

where M is the number of Monte Carlo experiments, and
(

x̂k
i , ŷk

i

)
and

(
xk

i , yk
i

)
denote the

estimated position and true position of the target in the ith Monte Carlo experiment, respectively.
2. Average RMSE

The average RMSE is calculated by

RMSE =
1

K∆

Kd−1

∑
k=Kb

RMSE (k) (52)

where K∆ = Kd − Kb.
3. Detection Probability

Pd =
1
M

M

∑
i=1

Knum

[
p̂
(

εk = 1|z1:k
)
> Pth

]
K∆

k = Kb, ..., Kd − 1 (53)

where Knum

[
p̂
(

εk = 1|z1:k
)
> Pth

]
is the number of frames that satisfy the decision

p̂
(

εk = 1|z1:k
)
> Pth in the ith Monte Carlo experiment.

4. False-alarm Probability

Pf a =
1
M

M

∑
i=1

Knum

[
p̂
(

εk = 1|z1:k
)
> Pth

]
K− K∆

k = {1, ..., Kb − 1} ∪ {Kd, ..., K} (54)

5. Earliest Effective Detection Frame

Fe =
1
M

M

∑
i=1

Fi (55)

where Fi represents the frame number that the target is first detected in the ith Monte
Carlo experiment.

Figure 7 shows the probability density functions of the K-distribution corresponding to five
different sets of parameters, while Figure 8 demonstrates the performance of the proposed method
under these different K-distribution parameters. Figure 8a–d, respectively, shows the detection
probabilities, false-alarm probabilities, earliest effective detection frame and average RMSE of the
proposed method with a fixed detection threshold under different SCRs. The results in Figure 8a,c,d
show that, with the increase of SCR, the detection probability increased, while the earliest effective
detection frame and the average RMSE declined. In the case of the same SCR, the proposed method
performed better with larger shape parameters. As for the false-alarm probabilities in Figure 8b, the
false-alarm probabilities basically remained consistent under different SCRs when the distribution
parameters of the K-distribution were fixed. Meanwhile, the false alarm probability decreased when
the shape parameter α became larger. These are reasonable because, when the shape parameter of
the K-distribution increased, the heavy-tailed effect of K-distribution became weaker. One extreme
case was that, when the shape parameter tended to infinity, the K-distribution degenerated into a
Rayleigh distribution.
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Figure 7. Probability density functions of K-distribution with different shape and scale parameters.
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(b) False-alarm probabilities under different parameters
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Figure 8. Performances under different K-distribution parameters.

Then, the proposed method was compared with other two methods: the K-based method [28]
and the ESIR method [21]. Figures 9–11, respectively, show the probabilities of existence and RMSEs
calculated by the three methods in cases of SCR = 8 dB, 12 dB and 16 dB. The shape parameter of
K-distribution was set as α = 2 and the scale parameter aws set as β = 2

√
2, thus Pclutter = 1.

In the results of probability of existence, the frames of true target existence are represented
by the black dash line. From the results of probabilities of existence, the K-based method and the
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proposed method had better target existence estimation with higher SCR. In the case of the same SCR,
the proposed method performed better than the K-based method. The ESIR method had the best
estimation of target existence when there was a target. However, in the case of target non-existence, the
ESIR method still gave a high probability of existence, representing a large false alarm. This is because
the ESIR method is based on Rayleigh distribution, which will generate large false alarm when the
clutter has the heavy-tailed feature.

In the results of RMSEs, the RMSE bound is illustrated by the black dash line. The results show that
the RMSEs of these methods decreased with the increase of SCR, which means the estimated positions
of the three methods gradually converged to the true position of the target with the accumulation of
target existence time. In comparison, the estimation accuracy of the proposed method was superior to
the other two methods.
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(b) RMSE

Figure 9. Probabilities of existence and Results of RMSE in case of SCR = 8 dB.
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Figure 10. Probabilities of existence and Results of RMSE in case of SCR = 12 dB.
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Figure 11. Probabilities of existence and Results of RMSE in case of SCR = 16 dB.

Figure 12 shows the detection probabilities of the three methods under different SCRs in the case
the false-alarm probability was equal to 10−2. In Figure 12a, the K-distribution parameters were set as
α = 2 and β = 2

√
2. In this situation, the K-based method performed best when the SCR was below

8 dB, while the proposed method became superior to the other two methods with the increasing SCR.
Meanwhile, it is worth noting that the detection probabilities of the three method were all smaller than
0.1 when the SCR was lower than 8 dB, indicating the inability to achieve reliable target detection in
practical applications. In Figure 12b, the K-distribution parameters were α = 10 and β = 2

√
2, which

means a smoother K-distributed clutter compared with Figure 12a. While the SCR was lower than
5 dB in Figure 12b, the detection probability of the ESIR method was slightly higher than the other
two methods, which was attributed to the approximate Rayleigh distributed clutter in this case. When
the SCR was beyond 5 dB, the proposed method had better detection performance than the other
methods. Based on these results, it can be concluded that the proposed method can achieve better
detection performance under more extensive clutter distribution parameters compared with the other
two methods.
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Figure 12. Detection probabilities of the three methods in case of Pf a = 10−2.
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4.2.3. Computational Efficiency

Computational efficiency is a key indicator for real-time processing. To compare the computational
efficiency of the three methods, all experiments were done in MATLAB R2018a, while the computer
CPU was Intel (R) Core (TM) i5-7500 3.40 GHz, with 16 GB RAM.

Each frame contained 60× 60 bins, the number of Monte Carlo experiments was 300, and the
average running time of single frame was calculated by

t̄ f =
1

300

300

∑
i=1

t f (56)

where t f is the running time of single frame.
The computational consumption results are given in Table 1, which shows the average running

time of the three methods with different numbers of particles. The results demonstrate that the
proposed method and the ESIR method were obviously superior to the K-based method in term of
running time. The K-based method calculated the likelihood ratio by a numerical solution of integral
operation, causing a huge computational consumption. The computational efficiency of ESIR method
was slightly higher than the proposed method, but, as shown in previous experimental results, the
ESIR method only worked under the Rayleigh distribution clutter and caused high false alarm under
the non-Gaussian clutter background.

Table 1. Computational consumption.

Number of Particles Proposed Method ESIR Method K-Based Method

4000 5.57 ms 5.51 ms 2.19 s
6000 8.79 ms 7.20 ms 3.27 s
8000 11.64 ms 9.06 ms 4.39 s

10,000 15.23 ms 11.46 ms 5.4 s

All these experimental results demonstrate that the proposed method had fine detection and
tracking performance and high computational efficiency.

5. Conclusions

In this paper, an effective maritime moving target detection and tracking method motivated by
the human vision system is presented for airborne forward-looking scanning radar. The key idea of the
proposed method is to use the saliency information of radar image to construct the SRBE likelihood
ratio, which is independent from the prior knowledge of sea clutter. The proposed method effectively
deals with the difficulty in target detection and tracking caused by non-Gaussian and non-stationary
sea clutter. The performance of the proposed method was verified by Monte Carlo experiments using
K-distribution clutter and Swerling type I target model. In the simulation experiments, the proposed
method was evaluated under different K-distribution clutter parameters and compared with other two
methods. The experimental results demonstrate that the proposed method had superior performance
of target detection and tracking. Besides, the proposed method was computationally efficient and
suitable for real-time application.

There are several continuing areas of research for improving the proposed method. The proposed
method has been verified by simulated data, and future research will be to apply the proposed method
to measured data. In addition, the extension of single-target situation to multi-target situation is the
field to be researched.
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