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Objectives: To present results of preclinical studies that supported further development of lefamulin for treating
patients with community-acquired bacterial pneumonia (CABP).

Methods: The effect of bovine lung surfactant on the antibacterial activity of lefamulin against Streptococcus
pneumoniae and Staphylococcus aureus was determined by broth microdilution assay. In vitro accumulation of
lefamulin was evaluated in J774 mouse macrophages. Pharmacokinetics was assessed in female BALB/c (Bagg
albino) mice treated with subcutaneous lefamulin (35 or 70 mg/kg). In neutropenic lung infection experiments,
BALB/c mice received intraperitoneal cyclophosphamide before challenge with single S. pneumoniae or S. aureus
strains; subcutaneous lefamulin (1.25–160 mg/kg) was given twice daily post-infection. Hill models described
relationships between AUC/MIC ratios and changes in log10 cfu.

Results: Lung surfactant did not significantly increase lefamulin MIC values against test strains. Lefamulin up-
take in macrophages was rapid (a plateau was reached in�3 h). In mice, distribution of lefamulin [plasma to epi-
thelial lining fluid (ELF)] was rapid, showing an�2-fold increase in lefamulin exposure in the ELF during the 5.5 h
period. Median plasma AUC/MIC ratios associated with 1 and 2 log10 cfu reductions from baseline were 1.37 and
2.15, respectively, for S. pneumoniae and 2.13 and 6.24 for S. aureus. Corresponding ELF results were 14.0 and
22.0 for S. pneumoniae and 21.7 and 63.9 for S. aureus.

Conclusions: Overall, lefamulin displays desirable pharmacokinetic/pharmacodynamic relationships that are
predictive of the clinical effectiveness of lefamulin and other antibacterial agents used to treat CABP.

Introduction

Pneumonia is common worldwide and is associated with signifi-
cant morbidity and mortality.1,2 Streptococcus pneumoniae, a
common cause of community-acquired bacterial pneumonia
(CABP), is among the bacterial pathogens identified by the US CDC
as posing serious domestic antibiotic resistance threats that re-
quire ongoing public health monitoring and prevention activities.3

Cases of antimicrobial-resistant streptococcal pneumonia result in
about 32000 additional doctor visits and 19000 additional hospi-
talizations each year, leading to $96 million in excess medical costs
annually in the USA.3 Although the prevalence of Staphylococcus
aureus CABP is generally low, MRSA patients in particular tend to
have higher severity of illness scores, higher in-patient mortality
and longer hospital length of stay than patients with non-S. aureus
and pneumococcal CABP, and empirical use of anti-MRSA antibiot-
ics is common.4 Resistance levels among S. aureus, especially
MRSA, to antibiotics commonly used to treat CABP (e.g. macrolides,
lincosamides and fluoroquinolones) are concerning.5,6

Lefamulin is a novel pleuromutilin antibacterial agent
under development for oral and intravenous administration for
the treatment of CABP. It is a protein synthesis inhibitor
that specifically binds to the 50S ribosomal subunit of the pep-
tidyl transferase centre at the A- and P- sites.7,8 Lefamulin has
demonstrated potent in vitro activity against a variety of patho-
gens commonly associated with CABP, acute bacterial
skin and skin structure infections and sexually transmitted
infections.9–11 Lefamulin does not show cross-resistance with
macrolides, tetracyclines, b-lactam antibiotics or fluoroquino-
lones and has demonstrated low potential for resistance devel-
opment.10–14

In the first article of this Supplement (‘In vivo pharmacodynam-
ics of lefamulin, the first systemic pleuromutilin for human use, in
a neutropenic murine thigh infection model’15), the efficacy of
lefamulin was shown to correlate most strongly with the ratio of
AUC0–24 to MIC (AUC/MIC). In this article, we present the results of
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studies investigating the pharmacokinetics (PK) of lefamulin in
mice, its in vitro accumulation in murine lung macrophages, and
the effect of lung surfactant on lefamulin MIC values against test
strains of S. pneumoniae and S. aureus. We also present the results
of neutropenic lung infection studies examining PK and pharmaco-
dynamic (PD) targets for efficacy to support dose selection for the
treatment of patients with CABP.

Methods

Ethics

This research was conducted following approval from the Austrian Agency
for Health and Food Safety Ltd. All studies were carried out in accordance
with local regulations.

Challenge organisms and MIC determination
A challenge panel consisting of clinically relevant strains from the SENTRY
Antimicrobial Surveillance Program was assembled based on virulence and
antibacterial activity (Table 1), including those with clinically relevant lefa-
mulin MIC values that encompassed the observed range and exceeded the
MIC value at which 90% of the isolates are inhibited (MIC90) for S. pneumo-
niae (0.25 mg/L) and S. aureus (0.12 mg/L).14 MIC values were determined
according to CLSI guidelines.16

The effect of lung surfactant on the antibacterial activity of lefamulin
and daptomycin (CubicinVR , Novartis Pharmaceuticals, New York, NY, USA)
was determined by a chequerboard broth microdilution assay.17 Bacterial
suspensions equivalent to a 0.5 McFarland standard (1%108 cfu/mL) were
prepared from colonies grown on fresh agar plates and diluted to
5%105 cfu/mL in CAMHB (Becton Dickinson, Franklin Lakes, NJ, USA) for S.
aureus and in CAMHB supplemented with 2%–5% RemelTM laked horse
blood (ThermoFisher Scientific, Nazareth, PA, USA) for S. pneumoniae. The
calcium concentration was adjusted to 50 mg/mL for experiments with
daptomycin. Bovine lung surfactant (SurvantaVR , AbbVie Inc., Lake Bluff, IL,
USA) was added to 15–1000 mg/L, corresponding to a final surfactant con-
centration ranging from 0.06% to 4% (v/v). Plates were incubated overnight
at 37�C, and growth was inspected visually and scanned using a microplate
reader set to an OD of 600 nm. The MIC was recorded as the lowest anti-
biotic concentration without visible bacterial growth.

In vitro accumulation of lefamulin and azithromycin in
murine macrophages
J774 mouse macrophages (ATCC TIB-67) were grown in Roswell Park
Memorial Institute (RPMI) 1640 medium supplemented with 10% inacti-
vated fetal calf serum (ThermoFisher Scientific, Nazareth, PA, USA), plated
at a concentration of 2%106 cells/mL and incubated at 37�C with 5% CO2

for 24 h to adhere overnight. Cells were then washed and further incubated
in RPMI for up to 5 h at 37�C (5% CO2) with 1 or 5 mg/L lefamulin, azithro-
mycin (positive control; Pfizer Inc., New York, NY, USA) or penicillin G (nega-
tive control; Sigma–Aldrich, Darmstadt, Germany), then washed and
disrupted with three freeze–thaw cycles in liquid nitrogen and at 37�C.
Samples were collected at time 0 to determine the extracellular drug con-
centration to test compound stability during the lysis procedure.

The intracellular-to-extracellular drug concentration (Ci/Ce) ratio was
calculated assuming that 1 mg of cellular protein is equivalent to a cellular
volume of 5 lL, as reported for peritoneal macrophages or cultured fibro-
blasts.18–20 Cellular protein concentration was determined with the
Bradford assay (Bio-Rad Laboratories, Inc., Hercules, CA, USA) using an
aqueous BSA solution for the standard calibration curve. The intracellular
volume was confirmed by the MoxiTM Z Mini Automated Cell Counter (Orflo
Technologies, Ketchum, ID, USA).

Cell lysate samples were analysed by LC–MS/MS in electrospray ion-
ization positive mode using a 1100 Series high pressure gradient HPLC
system (Agilent Technologies, Santa Clara, CA, USA), which was coupled
to a triple-quadrupole mass spectrometer (G6410A, Agilent
Technologies). Determination of drug concentration in cell lysate was
performed after protein precipitation with ice-cold acetonitrile contain-
ing an internal standard and subsequent centrifugation and dilution
with water. The chromatographic separation was performed on a
reversed-phase column (Zorbax SB-C18, 50%2.1 mm, 3.5 lm, Agilent
Technologies) protected by a guard column (Widepore C18, 4%2 mm,
Phenomenex, Torrence, CA, USA) at a column temperature of 40�C
(azithromycin: 50�C), a flow rate of 400 lL/min, and using different gra-
dients. The gas heater of the MS/MS system was kept at 350�C with a ni-
trogen gas flow of 6 L/min and a pressure of 35 psi. The voltage of the
heated capillary was set to 4500 V for lefamulin and azithromycin and
3500 V for penicillin G. The time segment from 2.5 to 6 min was diverted
to the MS/MS system for detection of lefamulin (3–5 min for detection of
azithromycin and 3–5.5 min for detection of penicillin G). The eluent was
diverted to waste at all other times.

Compound concentrations in cell lysate samples were quantified
against six-point calibration curves covering the range of 0.05–3 mg/L for
lefamulin and 0.025–2 mg/L for azithromycin. For penicillin G, a seven-point
calibration curve covering a range of 0.001–0.5 mg/L was used. Calibration
samples were prepared by spiking compound stock solutions in blank cell
lysate. For in-study validation, quality control (QC) samples at two different
concentrations within the calibration range were prepared by spiking com-
pound stock solutions in blank cell lysate. The accuracy for 75% of the back-
calculated calibration and 67% of the QC samples had to be 80%–120% [at
lower limit of quantification (LLOQ), 70%–130%], the precision had to be
�20% (�30% at LLOQ), and the coefficient of determination (R2) for a lin-
ear regression (1/concentration2 weighted) had to be�0.98.

After the assay, Ce was determined by single-point calibrations with cali-
bration sample concentrations at the nominal Ce (i.e. 1 and 5 mg/L). For
each determination, two independently prepared calibration samples (two
weighted portions) at the nominal Ce were injected twice. Because two in-
dependent calibration samples were used, no extra QC samples were

Table 1. Strains used in the studies

Strain Source
Resistance
summary

Lefamulin
MIC (mg/L)

S. pneumoniae

248092 IHMA MDR 0.06–0.12

411627 IHMA MDR 0.03–0.06

49619 ATCC PSSP 0.03–0.06

B1378 BAL, SENTRY 2010 PISP 0.12

B1382 BAL, SENTRY 2010 PSSP 0.25

B1383 BAL, SENTRY 2010 PRSP, MR 0.25

B1385 BAL, SENTRY 2010 PSSP 0.5

B1386 BAL, SENTRY 2010 PISP, MR 0.5

S. aureus

29213 ATCC MSSA, quality

control strain

0.12

B154 ATCC 25923 MSSA 0.12

B341 ATCC 33591 MRSA 0.06–0.12

B1118 SENTRY 2002 MRSA 0.12

B1325 SENTRY 2010 MRSA 0.5

B1331 SENTRY 2010 MRSA 0.5

IHMA, International Health Management Associates; MR, macrolide
resistant; PISP, penicillin-intermediate S. pneumoniae; PRSP, penicillin-
resistant S. pneumoniae; PSSP, penicillin-susceptible S. pneumoniae.
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prepared. The accuracy of the back-calculated calibration samples had to
be between 80% and 120%.

Pharmacokinetics of lefamulin
PK parameters were evaluated in uninfected non-neutropenic female
BALB/c mice (weight, 18–25 g, n"3–4 per timepoint across four studies;
Charles River Deutschland GmbH, Sulzfeld, Germany) that received a single
subcutaneous lefamulin dose of 35 or 70 mg/kg. Blood and bronchoalveolar
lavage (BAL) samples were collected predose and at seven timepoints
0.25–5.5 h after lefamulin administration. Plasma and BAL samples were
analysed by LC–MS/MS (G6410A, Agilent Technologies) after protein precipi-
tation, centrifugation and subsequent dilution with water. The method was
linear in the concentration range of 0.01–2.5mg/L. Lefamulin concentra-
tions in the epithelial lining fluid (ELF) were calculated from the concentra-
tions in BAL. The dilution factor for the ELF samples was determined from
the BAL-to-plasma urea concentration ratio in samples collected at the
same time (QuantiChromTM Urea Assay Kit, BioAssay Systems, Hayward,
CA, USA) considering equal urea levels in plasma and ELF.21 The PK profile of
lefamulin was analysed by the sparse sampling non-compartmental
method (Phoenix WinNonlin 6, Certera, Princeton, NJ, USA) based on the
nominal timepoints. AUC values were determined using the linear trapez-
oidal method.

Neutropenic murine lung infection model
BALB/c mice (n"6 females/group; 19–21 g) were rendered neutropenic by
two intraperitoneal cyclophosphamide injections (Baxter, Halle, Germany)
administered 4 days and 1 day (150 and 100 mg/kg, respectively) before
being challenged with�106 cfu of a single S. pneumoniae or S. aureus strain
placed on the tip of the nares. Lefamulin treatment was initiated 2 h after
inoculation, with 1.25–160 mg/kg doses given subcutaneously twice daily
at 2 and 5 h post-infection (total daily dose 2.5#320 mg/kg). These time-
points were chosen because they were closer to the clinical setting based
on the fasted clearance of lefamulin in mice compared with humans.
Untreated control mice and treated mice were euthanized at the end of the
24 h treatment period. Lung tissue was dissected, homogenized, serially
diluted and plated for cfu determination.

Treatment efficacy was evaluated by comparing the common logarith-
mic (log10) cfu reduction at the end of the treatment period in the infected
tissues of treated animals with the mean cfu in the animals before treat-
ment onset (early control; i.e. 2 h post-infection). A one-way analysis of
variance (Dunnett’s method; SigmaPlot v12.3, Systat Software, Inc., San
Jose, CA, USA) was used to calculate the response (Dcfu/tissue) after treat-
ment with various lefamulin doses compared with the Dcfu of the untreat-
ed control group (late control) and the bacterial burden before onset of
treatment (early control). The magnitude of the 24 h AUC/MIC ratio associ-
ated with a reduction in bacterial burden relative to baseline of 1 or 2 log10

cfu/tissue (1 or 2 log10 kill cfu/tissue) was determined using an inhibitory
sigmoid maximum effect observed after fitting a sigmoid curve (Emax)
model (Hill function, Origin Pro 8G, OriginLab, Wellesley Hills, MA, USA)
(Table 2).

Results

Antibacterial in vitro activity and effect of lung
surfactant

The lefamulin MIC values were 0.12–0.5 and 0.06–0.5 mg/L for the
S. pneumoniae and S. aureus strains used in the lung surfactant
studies, respectively (Table 1). The addition of bovine lung surfac-
tant (up to 250 mg/L) did not result in a significant increase in lefa-
mulin MIC values against S. pneumoniae strains. A similar result
was observed when S. aureus strains were grown in the presence

of up to 1000 mg/L lung surfactant. The lefamulin MIC increase
was no more than 2-fold (within one dilution) for all the strains
tested under various surfactant concentrations (Table 3). In con-
trast, daptomycin MIC values increased substantially with increas-
ing concentrations of bovine lung surfactant. A .2-fold increase in
daptomycin MIC was seen for all S. aureus and S. pneumoniae
strains with the lowest concentration of lung surfactant tested
(15 mg/L; 0.06%), and MIC values continued to increase up to
�160-fold with increasing amounts of lung surfactant (Table 3).

Lefamulin uptake in macrophages

Figure 1 shows the intracellular accumulation of test compounds
within the murine J774 macrophages over a 5 h period. A fast lefa-
mulin uptake was observed within the first hour, leading to intra-
cellular concentrations+ SD of 35.6+0.7 mg/L (Ci/Ce ratio,
31.2+0.6) and 218+8 mg/L (Ci/Ce ratio, 41.2+1.5) when lefamulin
was provided at extracellular concentrations of 1 and 5 mg/L, re-
spectively. Lefamulin further accumulated in the macrophages,
reaching a plateau after �3 h. A mean Ci of 54.4+4.5 mg/L (lefa-
mulin Ce, 1 mg/L) and 270+7 mg/L (lefamulin Ce, 5 mg/L) was
reached after 5 h, leading to Ci/Ce ratios of 47.7+4.0 and 50.9+1.4
when external concentrations of 1 and 5 mg/L were used,
respectively.

Azithromycin accumulated in the J774 macrophages at a
slower rate, with mean Ci of 18.7+0.6 mg/L (azithromycin Ce,
1 mg/L) and 108+8 mg/L (azithromycin Ce, 5 mg/L) at 1 h. Longer
incubation periods did not promote a substantial increase from the
mean Ci/Ce ratios (14.5+0.5 for azithromycin Ce, 1 mg/L; 17.7+1.3
for azithromycin Ce, 5 mg/L) recorded at 1 h. Penicillin G intracellu-
lar concentrations were below the nominal extracellular concen-
tration provided in the culture medium over the entire incubation
period of 1–5 h and even decreased slightly at the later timepoints
(at t"1 h: 0.61+0.10 mg/L for Ce 1 mg/L and 3.18+0.05 mg/L for
Ce 5 mg/L); the highest Ci/Ce ratios of 0.54+0.09 and 0.53+0.01
were recorded at t"1 h for extracellular concentrations of 1 and
5 mg/L, respectively.

Pharmacokinetics

The distribution of lefamulin from plasma to ELF in mice was rapid
after a single subcutaneous dose of 35 or 70 mg/kg. Table 4
presents the relevant PK parameters calculated for the distribution
of lefamulin in the plasma and ELF. Mean values of the dose-
normalized AUC0–24 for plasma (0.136 mg�h/L per mg/kg) and

Table 2. Parameters for mean Hill-curve fit for S. pneumoniae and
S. aureus

Model parameter S. pneumoniae S. aureus

E0 (mg/L) 1.222 2.0222

Emax (mg/L) 5.046 4.902

EC50 (mg/L)a 18.92 10.12

Hill coefficient 1.302 1.040

R2 0.65 0.69

aEC50 values shown are those for Hill models based on total-drug epithe-
lial lining fluid (ELF) AUC/MIC ratios.

Lefamulin non-clinical PK/PD JAC
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ELF (0.278 mg�h/L per mg/kg) were used for the translation of dose
to exposure. For both doses tested during the 5.5 h exposure
period, the ratios of ELF AUC to plasma AUC total and unbound
were�2-fold and 10-fold, respectively. Total plasma and ELF drug
concentrations are shown in the concentration–time profiles
depicted in Figure 2.

Lung infection model and PK/PD studies

The strains used for the lung infection model included those col-
lected as part of the SENTRY Antimicrobial Surveillance Program,
which displayed broad lefamulin MIC values (range 0.06–0.5 mg/
L). The initial bacterial load was between 5.6%106 and
6.1%106 cfu/lung in mice infected with S. pneumoniae and be-
tween 6.1%106 and 6.5%106 cfu/lung in mice infected with S. aur-
eus. A statistically significant increase in bacterial load (P , 0.05)
was observed within 24 h in untreated control animals, reaching
up to 8.0%108 cfu/lung in mice infected with S. pneumoniae and up
to 8.5%108 cfu/lung in mice infected with S. aureus.

Hill models described relationships between the changes in
log10 cfu from baseline and unbound plasma or total-drug ELF
AUC/MIC ratios for S. pneumoniae and S. aureus. Figure 3 and
Table 2 show results based on the data pooled for each pathogen
and ELF exposures (S. pneumoniae R2"0.65, S. aureus R2"0.69),
and Table 5 presents the unbound plasma and ELF AUC/MIC ratio
associated with 1 and 2 log10 cfu reductions from baseline for
S. pneumoniae and S. aureus based on individual Hill-type models
for each strain. Median plasma and ELF AUC/MIC ratios of 1.37 and
14.0 were observed for 1 log10 cfu reductions from baseline, re-
spectively, and 2.15 and 22.0 for 2 log10 cfu reductions from base-
line for S. pneumoniae strains. The median plasma and ELF AUC/

MIC ratios for S. aureus were higher, with ratios of 2.13 and 21.7
recorded for 1 log10 cfu reductions from baseline, respectively,
while those associated with a 2 log10 cfu reduction from baseline
were 6.24 and 63.9.

The mean sigmoid curve fitted over five S. pneumoniae strains
resulted in a mean 24 h unbound drug in plasma AUC/MIC ratio of
1.51 (95% CI 0.95–2.35) for a 1 log10 kill. The corresponding mean
Hill-fit ratios over all S. aureus strains were 1.50 (95% CI 1.25–1.75)
for the 1 log10 kill endpoint and 4.00 (95% CI 3.12–5.27) for a
2 log10 kill target, corresponding to the magnitude of ELF AUC/MIC
ratios at the site of infection of 16.0 (95% CI 13.3–18.8) and 43.6
(95% CI 33.8–58.1) for 1 log10 and 2 log10 kill, respectively.

Discussion

Establishing the correlation between in vitro susceptibility and clin-
ical efficacy is a significant challenge in the antibiotic development
process.22 Validated in vitro PK/PD and animal infection models are
therefore important tools for identifying the PK/PD indices that are
most predictive of efficacy.22 These studies evaluated the pharma-
cological in vitro and in vivo characteristics of lefamulin to inform
dosing for clinical trials in patients with pneumonia.

In the present study, lefamulin concentrations in the ELF were
�10-fold greater than those of the unbound fraction in plasma after
a single subcutaneous dose. When healthy human volunteers
received a single 150 mg lefamulin dose intravenously, exposure to
lefamulin in ELF was �5.7-fold higher than the unbound fraction in
plasma, thus supporting the basis for the antibacterial effect of lefa-
mulin observed in murine bronchopneumonia infection models.23

Additionally, by considering effect site exposures when determining

Table 3. Lefamulin and daptomycin MIC values in the presence of increasing lung surfactant concentrations

Test organism MIC (mg/L)

Surfactant concentration S. pneumoniae S. aureus

mg/L % (v/v) 248092 (n"4) 411627 (n"4) ATCC 49619 (n"2) ATCC 33591 (n"2) ATCC 29213 (n"3)

Lefamulin

0 0 0.06–0.12 0.03–0.06 0.03–0.06 0.06–0.12 0.12

15 0.06 0.06–0.12 0.03–0.06 0.03–0.06 0.06–0.12 0.06–0.12

31 0.12 0.06–0.12 0.03–0.06 0.03–0.06 0.06–0.12 0.12

62.5 0.25 0.06–0.12 0.03–0.06 0.03–0.06 0.06–0.12 0.06–0.12

125 0.5 0.06–0.25 0.03–0.06 0.06 0.06–0.12 0.12

250 1 0.06–0.12 0.03–0.06 0.06 0.12 0.12

500 2 ND ND ND 0.12–0.25 0.12–0.25

1000 4 ND ND ND 0.12–0.25 0.12–0.25

Daptomycin

0 0 0.12–0.25 0.06–0.25 0.06 0.25–1 0.5–1

15 0.06 0.25–0.5 0.25–0.5 0.25–0.5 2 1–2

31 0.12 0.5–1 0.25–2 0.25–1 4 2–4

62.5 0.25 1–2 0.5–2 0.5–1 8 8

125 0.5 2–8 1–4 1–4 8–16 16

250 1 4–16 1–8 2–16 .16 .16

500 2 8–.16 2–.16 4–.16 .16 .16

1000 4 .16 2–.16 2–.16 .16 .16

ND, not determined.
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Figure 2. Pharmacokinetic profile in total plasma and ELF of mice following a single subcutaneous dose of lefamulin at 35 mg/kg (a) and 70 mg/kg
(b). The error bars represent standard deviations.
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Table 4. Plasma and ELF exposure measures following a single subcutaneous lefamulin dosea

Dose (mg/kg) Matrix Cmax (mg/L) AUC0–24 (mg�h/L) AUC0–24 (mg�h/L)/dose (mg/kg)

35 plasma 1.74 5.13 0.147

ELF 2.47 10.7 0.305

70 plasma 2.46 8.66 0.124

ELF 2.96 17.6 0.251

aMean values of the dose-normalized AUC0–24 for plasma (0.136 mg�h/L per mg/kg) and ELF (0.278 mg�h/L per mg/kg) were used for the translation
of dose to exposure.
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PK/PD targets associated with efficacy, dose selection decisions and
future translations to clinical data can be optimized.24

Promising antibacterial agents with potent in vitro profiles were
rendered ineffective for treating pneumonia during clinical trials
when lung surfactant binding made them unavailable to act
against the infecting pathogen.25,26 On the other hand, the inhibi-
tory pulmonary surfactant effect is not universal because some
antibiotics retain their antibacterial properties when tested
in vitro with physiologically relevant surfactant concentrations.27

Additionally, pulmonary macrophages play a pivotal role in the na-
tive defence against lower respiratory tract infections.28 Because
alveolar macrophages can be the sites of intracellular pulmonary
infections, studying the antibacterial agent’s capacity to penetrate
pulmonary macrophages is an essential step in the development
of new agents that will successfully treat lower respiratory
infections.29

In this study, the in vitro antibacterial activity of lefamulin
against CABP-inducing bacteria remained unaltered in the
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Figure 3. Relationship between change in bacterial burden from baseline in the ELF and lefamulin AUC/MIC based on data from a neutropenic murine
lung infection model with S. pneumoniae (a) and S. aureus (b). The error bars represent standard deviations. MR, macrolide resistant; PISP, penicillin-
intermediate S. pneumoniae; PRSP, penicillin-resistant S. pneumoniae; PSSP, penicillin-susceptible S. pneumoniae.

Table 5. Unbound plasma and total-drug ELF AUC/MIC ratio targets for efficacy of lefamulin against S. pneumoniae and S. aureus strains in a neutro-
penic murine lung infection model

AUC/MIC ratio

1 log10 reduction in cfu 2 log10 reduction in cfu

Strain MIC (mg/L) unbound plasma ELF unbound plasma ELF

S. pneumoniae

B1378 0.12 6.05 61.8 10.7 109

B1382 0.25 2.73 27.9 3.96 40.5

B1383 0.25 0.67 6.84 1.06 10.8

B1385 0.5 1.34 13.7 2.15 22.0

B1386 0.5 1.37 14.0 1.66 17.0

mean NA 2.43 24.9 3.91 39.9

median (range) NA 1.37 (0.67–6.05) 14.0 (6.84–61.8) 2.15 (1.06–10.7) 22.0 (10.8–109)

S. aureus

B154 0.12 1.69 17.2 3.42 34.9

B341 0.06 5.94 60.7 8.39 85.7

B1118 0.12 0.76 7.72 1.42 14.5

B1325 0.5 2.13 21.7 6.25 64.0

B1331 0.5 4.35 44.5 15.3 157

mean NA 2.97 30.4 6.96 71.2

median (range) NA 2.13 (0.76–5.94) 21.7 (7.72–60.7) 6.24 (1.42–15.3) 63.9 (14.5–157)

NA, not applicable.
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presence of pulmonary surfactants at concentrations
that antagonized the antimicrobial activity of daptomycin.
Lefamulin also displayed a fast uptake and accumulation in
macrophages at clinically relevant extracellular concentrations.
Our results are consistent with other studies that supported the
further development of antibacterial agents currently approved
or under investigation for the treatment of pneumonia based on
the antibacterial agent’s activity against pulmonary pathogens
in the presence of bovine pulmonary surfactants.30,31 Similar
uptake and accumulation results have been used as baseline
values to determine drug exposure indexed to MIC to assist in
drug regimen evaluations for the treatment of lower respiratory
infections.29

Furthermore, this study determined the magnitude of in vivo
exposures indexed to MIC associated with efficacy in serious lung
infections caused by 10 S. aureus and S. pneumoniae strains
representing the clinically relevant span of lefamulin MIC values
(0.06–0.5 mg/L). All strains tested in the neutropenic murine
infection model established bronchopneumonia infections, with
untreated animals challenged with S. aureus strains reaching
a mean bacterial burden of !1.9 log10 cfu/lung above baseline
compared with #2.9 log10 cfu/lung for the animals treated with
lefamulin. The shape of individual AUC/MIC-to-response profiles of
lefamulin was similar for each strain and consistent between S.
pneumoniae and S. aureus. When the pooled data for each set
of isolates were evaluated, the data were well described by Hill
models for each pathogen.

Overall, lefamulin displays desirable characteristics that are
predictive of clinical effectiveness for antibacterial agents used to
treat CABP. Lefamulin is unaffected by pulmonary surfactants and
has the capacity to penetrate and accumulate in macrophages,
which are thought to promote the distribution of drugs to the tar-
get tissue. Lefamulin further demonstrated distribution to the tar-
get tissue/organ, the ELF. Results of these experiments were used
to support the dose selection for the recently completed
Phase 3 clinical trials for the treatment of patients with CABP and
preliminary evaluations of susceptibility breakpoints for CABP-
producing pathogens (see article in this Supplement entitled
‘Pharmacokinetic/pharmacodynamic target attainment analyses
to support intravenous and oral lefamulin dose selection for the
treatment of patients with community-acquired bacterial
pneumonia’32).
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