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Abstract

Recent molecular studies have revealed that, even when derived from a seemingly homogenous 

population, individual cells can exhibit substantial differences in gene expression, protein levels, 

and phenotypic output1–5, with important functional consequences4,5. Existing studies of cellular 

heterogeneity, however, have typically measured only a few pre-selected RNAs1,2 or proteins5,6 

simultaneously because genomic profiling methods3 could not be applied to single cells until very 

recently7–10. Here, we use single-cell RNA-Seq to investigate heterogeneity in the response of 

bone marrow derived dendritic cells (BMDCs) to lipopolysaccharide (LPS). We find extensive, 

and previously unobserved, bimodal variation in mRNA abundance and splicing patterns, which 

we validate by RNA-fluorescence in situ hybridization (RNA-FISH) for select transcripts. In 

particular, hundreds of key immune genes are bimodally expressed across cells, surprisingly even 

for genes that are very highly expressed at the population average. Moreover, splicing patterns 

demonstrate previously unobserved levels of heterogeneity between cells. Some of the observed 

bimodality can be attributed to closely related, yet distinct, known maturity states of BMDCs; 

other portions reflect differences in the usage of key regulatory circuits. For example, we identify 
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a module of 137 highly variable, yet co-regulated, antiviral response genes. Using cells from 

knockout mice, we show that variability in this module may be propagated through an interferon 

feedback circuit involving the transcriptional regulators Stat2 and Irf7. Our study demonstrates the 

power and promise of single-cell genomics in uncovering functional diversity between cells and in 

deciphering cell states and circuits.

To characterize the extent of expression variability on a genomic scale and decipher its 

functional implications, we used single-cell RNA-Seq to profile a temporal snapshot of the 

BMDC response to LPS. This is an attractive model system for single-cell analyses for 

several reasons. First, LPS, a component of gram-negative bacteria and a ligand of Toll-like 

receptor 4, strongly synchronizes cellular responses and mitigates temporal phasing11. 

Second, LPS activation evokes a robust transcriptional program that has been extensively 

investigated at the population level12. Third, LPS stimulation should increase the correlation 

between mRNA and protein levels for induced genes, thus reducing a potentially 

confounding factor13. Lastly, differentiated BMDCs are post-mitotic, largely removing cell 

cycle-dependent transcriptional variation3.

We stimulated BMDCs with LPS and harvested single cells after four hours12 

(Supplementary Information (SI)). Using SMART-Seq9, we constructed cDNA libraries 

from 18 single BMDCs (S1–S18), three replicate populations of 10,000 cells, and two 

negative controls (empty wells), and sequenced each to an average depth of 27-million read-

pairs. Negative control libraries failed to align (<0.25%) to the mouse genome, and were 

discarded from all further analyses. Library quality metrics, such as genomic alignment 

rates, rRNA contamination, and 3′ or 5′ coverage bias, were similar across all libraries 

(Supplementary Table 1). We estimated expression levels for all UCSC-annotated genes 

using RSEM14 (Supplementary Table 2, SI) and discarded genes that were not appreciably 

expressed (transcripts per million (TPM) > 1) in at least three individual cells, retaining 

6,313 genes for further analysis.

While the gene expression levels of population replicates were tightly correlated with one 

another (Pearson r > 0.98, log-scale, Fig. 1a), there were substantial differences in 

expression between individual cells (0.29 < r < 0.62, mean: 0.48, Fig. 1b, Supplementary 

Fig. 1). Despite this extensive cell-to-cell variation, expression levels for an “average” single 

cell correlated well with the population samples (0.79 < r < 0.81, Fig. 1c, Supplementary 

Fig. 1).

We used RNA-FISH, an amplification-free imaging technique2, to verify that heterogeneity 

in our single-cell expression data reflected true biological differences, rather than technical 

noise associated with the amplification of small amounts of cellular RNA. For 25 genes, 

selected to cover a wide range of expression levels, the variation in gene expression detected 

by RNA-FISH closely mirrored the heterogeneity observed in our sequencing data (Fig. 1d–

g, Supplementary Fig. 2). For example, expression of housekeeping genes (e.g., Beta-Actin 

(Actb), Beta-2-microglobulin (B2m)) matched a log-normal distribution in both single-cell 

RNA-Seq and RNA-FISH measurements, consistent with previous studies1. In contrast, 

many genes involved in the LPS response, although highly expressed on average, showed 
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significantly greater levels of heterogeneity, with expression levels deviating ~1,000 fold 

between individual cells in extreme cases (Fig. 1e–g).

More generally, we observed that single cell variability existed across a wide range of 

population expression levels (Fig. 2a). Of the 522 most highly expressed genes (single-cell 

average TPM > 250, Fig. 2a: unshaded region, Supplementary Table 3), 281 had low cell-to-

cell variability (coefficient of variation (CV) < 0.25, SI) and were well described by log-

normal distributions (RNA-Seq: Fig. 2b,c top, RNA-FISH (Actb, B2m): Supplementary Fig. 

2). These 281 genes were enriched for housekeeping genes, encoding ribosomal and other 

structural proteins (Supplementary Table 2 & 3, Bonferroni-corrected p=1.5×10−6), 

consistent with previous findings in yeast15 and mammalian cells1.

Surprisingly, however, 185 of the remaining 241 (coefficient of variation (CV) > 0.25, SI) 

highly expressed genes had bimodal expression patterns (Fig. 2b,c bottom): mRNA levels 

for these genes were high in many of the cells, but were at least an order of magnitude lower 

(often very low or undetectable) than the single-cell average in three or more cells. We 

independently verified this disparity by RNA-FISH (e.g., Cxcl1, Cxcl10, Ifit1, and others: 

Fig. 1f,g & Supplementary Fig. 2), confirming that it was not a result of technical noise. 

This variable set included both antiviral and inflammatory response genes, and was highly 

enriched for genes whose expression was increased by at least two-fold upon LPS 

stimulation at the population level16 (p = 2.7×10−7; hypergeometric test; Supplementary 

Table 2). Still, bimodal expression was not a universal feature of immune response 

transcripts; some key chemokines and chemokine receptors (Ccl3, Ccl4, Ccrl2), cytokines 

(Cxcl2), and signaling molecules (Tank) were highly expressed in every cell 

(Supplementary Fig. 3), indicating that all cells were indeed activated by LPS.

This degree of variation in expression for highly expressed (on average) transcripts has not 

been observed in previous reports7–10. For example, examination of published single-cell 

RNA-Seq datasets of human embryonic stem cells9 (Fig. 2a), mouse embryonic stem cells, 

and terminally differentiated fibroblasts10 (Supplementary Fig. 4) revealed far less 

heterogeneity in expression for highly abundant (population average) genes. Similarly, 

studies of protein expression in mid-log yeast cells and dividing human cell lines15,17 did 

not find such bimodality in (on average) highly expressed genes. We thus hypothesized that 

widespread variability in single-cell gene expression may reflect functionally important 

differences in the stimulated BMDC population.

Furthermore, we found that splicing patterns also showed previously unobserved levels of 

heterogeneity across single cells. Specifically, for genes that have multiple splice isoforms at 

the population level, individual cells predominantly expressed one particular isoform. We 

calculated the frequency (percent spliced in, PSI) of previously annotated splicing events in 

each of our samples using MISO18, a Bayesian framework for calculating isoform ratios 

(Supplementary Table 4). Although the population-derived estimates were highly 

reproducible, single cells exhibited significant variability in their exon-inclusion frequencies 

(Fig. 3a,b).
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We considered the possibility that PCR amplification (intrinsic to the library preparation 

process) could potentially produce an overestimation of isoform regulation variability, 

particularly for weakly expressed transcripts19. However, even when we limited our analysis 

to 89 alternatively spliced exons (0.2 < population PSI < 0.8) that were very highly 

expressed within a single cell (single cell TPM > 250, SI), we still observed the same 

variability in splicing patterns amongst individual cells, with highly skewed expression 

towards a single splice variant (Fig. 3b). We obtained similar results when we generated 

three additional single-cell cDNA libraries using a slightly modified SMART-Seq protocol 

(SI) in which a four nucleotide barcode was introduced onto each RNA molecule during 

reverse transcription19, enabling us to estimate the number of unique RNA transcripts that 

existed prior to PCR (Supplementary Fig. 5 & 6 and SI).

To the best of our knowledge, single-cell variation in splicing patterns has rarely been 

studied for individual genes, and never been analyzed on a genomic scale. One recent 

report20 used RNA-FISH to study variation in alternative isoforms in two genes, and 

observed lower levels of isoform variability across single cells (the levels of heterogeneity 

differed in different cell types). Another study that used fluorescent reporters to quantify 

single-cell exon inclusion levels for one gene discovered highly variable and bimodal 

splicing patterns21.

To independently verify the existence of extensive differences in isoform ratios between 

cells, we designed RNA-FISH probes targeting constitutive and isoform-specific exons in 

two genes (Irf7 and Acpp, Fig. 3c and Supplementary Fig. 7 & 8)20. We found substantial 

expression variability in overall Irf7 levels between individual cells (as reflected by the 

‘constitutive’ probes, Fig. 3c, bottom and top panels), mirroring our single-cell sequencing 

results (and further explored below). Additionally, within each Irf7-expressing cell, we 

observed a bias towards either the inclusion or exclusion of the cassette exon (Fig. 3c, 

Supplementary Fig. 7, middle panel, e.g., compare ‘high’ and ‘low’ marked cells). We 

obtained comparable results for Acpp using two probes designed to detect mutually 

exclusive alternative final exons (Supplementary Fig. 8).

We next explored the sources and functional implications of expression variability. 

Bimodality amongst highly expressed immune response genes may reflect either the 

presence of distinct cellular subtypes or stochastic differences in the activation of signaling 

circuits11. We performed a principal components analysis (PCA, Fig. 4a) on our single-cell 

expression profiles, focusing on the 632 genes that were induced at least twofold in the 

population-wide response to LPS16 (Supplementary Table 5). We found two distinct 

subpopulations, clearly distinguishable by the first principal component (PC1, 15% of the 

total variation, Fig. 4a). One group of fifteen cells expressed a core set of antiviral and 

inflammatory defense cytokines (including: Tnf, Il1a, Il1b, and Cxcl10) at extremely high 

levels (TPM > 1,000), while the remaining three cells expressed them at far weaker levels 

(TPM < 50). Some cell surface proteins (Ccr7, Cd83) and chemokines (Ccl22), which are 

known markers of BMDC maturation, showed the opposite expression pattern (Fig. 4b, 

Supplementary Fig. 9).

Shalek et al. Page 4

Nature. Author manuscript; available in PMC 2013 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



During maturation, BMDCs switch from antigen-capturing to antigen-presenting cells that 

prime the adaptive immune system22. Maturation can occur either in response to pathogen-

derived ligands (pathogen-dependent maturation), such as LPS, or when clusters of BMDCs 

are disrupted in culture22 (pathogen-independent maturation). Both processes lead to 

induction of maturation markers, but only pathogen-dependent maturation results in co-

expression of defense cytokines.

Examining the expression of maturation markers and defense cytokines (Supplementary Fig. 

9) suggested that our 18 cells represent two distinct maturity states: (1) fifteen cells that 

were in the early stages of pathogen-dependent maturation (Fig. 4a, ‘maturing’, triangles; 

grey triangles, the two cells furthest along in this process); and, (2) three cells that likely 

matured during the culturing process (Fig. 4a, ‘mature’, squares; pathogen-independent). We 

further verified the existence of these sub-populations via RNA-FISH (Supplementary Fig. 

10), single-cell quantitative reverse transcription polymerase chain reaction (qRT-PCR; 

Supplementary Fig. 11, SI, Supplementary Table 6), and cell sorting based on surface 

markers identified from the RNA-Seq data (Supplementary Fig. 12, SI). These results 

highlight that single-cell RNA-Seq can sensitively distinguish between closely related, yet 

distinct, developmental states, even within the same cell type.

Since differences in cell state explain only a small portion of the observed heterogeneity, we 

next examined the variation that might arise from the differential activity of regulatory 

circuits. We reasoned that co-variation across single cells between the mRNA levels of a 

transcription factor and its targets would represent a potential regulatory interaction, and, 

furthermore, would suggest that heterogeneity in the regulator’s expression may underlie the 

variability of its targets. Such a correlative approach has successfully identified regulatory 

connections from population-level transcription profiles measured in different 

conditions12,23. Here, we attempted to apply it to multiple single cells in the same condition.

To this end, we calculated the correlation in expression profiles between every pair of 

induced genes across all single cells, and identified a cluster of 137 genes that varied in a 

correlated way and were strongly discriminated by the second principal component (PC2, 

8% of the variation, Fig. 4a,b). The cluster’s genes included the known antiviral master 

regulators Irf7 and Stat2, and were highly enriched for members of the antiviral response12 

(60 of 137 genes, p = 2.5×10−3, hypergeometric test, Supplementary Table 5), as well as 

STAT2 targets16 (73/137 genes, p = 4.5×10−5, hypergeometric test). Most (100/137) of the 

cluster’s genes were bimodally expressed across single cells (Fig. 2c, bottom) despite being 

strongly expressed at the population level (13 genes TPM > 250; 53 genes TPM > 50). We 

independently validated a subset of these correlations using single-cell qRT-PCR and RNA-

FISH (Fig. 4c,d). Moreover, single-cell qRT-PCR analysis of additional time points 

demonstrated that these correlations persisted at 6h as well (Supplementary Discussion in SI, 

Supplementary Fig. 13).

We hypothesized that bimodal variation in the expression of the cluster’s genes may be 

related to differences in the levels and activities of Stat2 and Irf7. To test this hypothesis, we 

measured expression of a set of antiviral genes by single-cell qRT-PCR in LPS-stimulated 

BMDCs from Irf7 knockout (Irf7 −/−) mice (SI). As expected, this perturbation ablated 
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expression of most of the variable antiviral transcripts in our signature, while leaving non-

variable antiviral transcripts relatively unaffected (Fig. 4e). However, Stat2 expression and 

variability levels were unaffected by the Irf7 knockout, implying that Stat2 may act either 

upstream or in parallel to Irf7 during the response24 (Supplementary Fig. 14). As both Stat2 

and Irf7 are targets of the interferon-signaling pathway, we stimulated and profiled BMDCs 

from interferon receptor knockout (Ifnr −/−) mice. In these cells, we found drastically 

reduced expression for both Stat2 and Irf7, as well as all other measured cluster genes (Fig. 

4f).

Our analysis provides a proof-of-concept demonstrating how co-variation between 

transcripts across seemingly homogeneous single cells can help to identify and assemble 

regulatory circuits. Specifically, in our variable circuit (Supplementary Fig. 14) interferon 

signaling is required for induction of Stat2 and Irf7, which, in turn, act to induce our variable 

antiviral cluster genes. Our experiments do not definitively determine, however, which 

component of the circuit causes the observed heterogeneity per se. One compelling 

possibility is that upstream noise is propagated from the interferon-signaling pathway first to 

Stat2 and Irf7 and then to the target genes25,26. This hypothesis is supported by the variation 

we observed in STAT protein levels and nuclear localization (Supplementary Discussion in 

SI, Supplementary Fig. 15 & 16). However, since temporal snapshots of RNA and protein 

are not always directly comparable (Supplementary Discussion in SI, Supplementary Fig. 15 

& 16), new strategies for tracing the spatiotemporal dynamics of both proteins and RNA in 

single living cells are needed to fully test this hypothesis11.

A similar approach could potentially be used to explore the consequences of bimodality in 

splicing. Even looking at just 18 cells, we witnessed interesting examples of bimodal 

splicing patterns for genes whose isoforms have distinct functional consequences. For 

example, the splicing regulators Srsf3 and Srsf7 are each known to contain a “poison 

cassette exon” that, when included, targets the RNA for degradation via nonsense-mediated 

decay27 (Supplementary Fig. 17). Meanwhile, splicing differences in other regulatory genes 

may further enhance expression diversity: for example, proteins encoded by different 

isoforms of Irf7 (Fig. 3c) differentially activate interferon-responsive genes in vitro24. These 

examples suggest that heterogeneity in splicing may represent another layer of response 

encoding.

In conclusion, our study reveals extensive bimodality in the transcriptional response of 

BMDCs to LPS, reflected in gene expression, alternative splicing, and regulatory circuit 

activity. While some variation in expression reflects differences in developmental state, 

other bimodal patterns reflect the differential activity of an antiviral regulatory circuit in this 

temporal snapshot. These phenomena allowed us to treat each cell as a “perturbation 

system” for reconstructing cell circuits28, even with relatively few cells.

Moreover, our results demonstrate how co-variation across single cells can help dissect and 

refine gene modules that may be indistinguishable in population-scale measurements. For 

instance, in a recent population-scale study16, we identified a large cluster of 808 “late-

induced” LPS genes that was enriched for both maturation genes and STAT-regulated 

antiviral genes. These two subsets could not be separated by population-level expression 
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profiles alone16, but our single-cell data from a single timepoint clearly distinguishes them. 

Similarly, the unexpected and prevalent skewing we discovered in alternative splicing 

between single cells revises our molecular view of this process.

Finally, although many of our analyses focused on highly expressed genes to reduce the 

potential influence of amplification noise, our data also revealed substantial bimodality 

amongst more moderately expressed transcripts, such as large non-coding RNAs (lincRNAs, 

Supplementary Fig. 18). This suggests that the low population-level expression of these 

transcripts29 may sometimes reflect high expression in a small subset of cells as opposed to 

uniform levels of low expression. While further technical improvements will be necessary to 

disentangle these two hypotheses (Supplementary Fig. 5), single-cell measurements should 

help facilitate the discovery and annotation of lincRNAs.

Comparing our results to other single-cell RNA-Seq data sets (e.g., Fig. 2a, Supplementary 

Fig. 4) indicates that the source of the analyzed tissue (in vitro vs. ex vivo), the biological 

condition of the individual cells (steady state vs. dynamically responding), and the cellular 

microenvironment all likely influence the extent of single-cell heterogeneity within a 

system. When applied to complex tissues – such as unsorted bone marrow, developing 

embryos, tumors, and other rare clinical samples – the variability seen through single-cell 

genomics may help determine new cell classification schemes, identify transitional states, 

discover previously unrecognized biological distinctions, and map markers that differentiate 

them. Fulfilling this potential would require novel strategies to address the high levels of 

noise inherent in single-cell genomics – both technical, due to minute amounts of input 

material, and biological, e.g., due to short bursts of RNA transcription30. Future studies that 

couple technological advances in experimental preparation with novel computational 

approaches would enable analyses, based on hundreds or thousands of single cells, to 

reconstruct intracellular circuits, enumerate and redefine cell states and types, and transform 

our understanding of cellular decision-making on a genomic scale.

Methods Summary

BMDCs, prepared as previously described12, were stimulated with LPS for 4h and then 

sorted as single cells or populations (10,000 cells) directly into TCL lysis buffer (Qiagen) 

supplemented with 1% v/v 2-mercaptoethanol. After performing an 2.2x clean up with 

Agencourt RNAClean XP Beads (Beckman Coulter), whole transcriptome-amplified cDNA 

products were generated using the SMARTer Ultra-low RNA Kit (Clontech), and 

conventional Illumina libraries were made and sequenced to an average depth of 27 million 

read pairs (HiSeq 2000, Illumina). Expression levels and splicing ratios were quantified 

using RSEM14 and MISO18, respectively. Additional experiments were performed using 

RNA-FISH (Panomics), Immunofluorescence, FACS, and single-cell qRT-PCR (Single 

Cell-to-CT (Invitrogen) and BioMark (Fludigm)). Full Methods and any associated 

references are provided in SI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single-cell RNA-Seq of LPS-stimulated BMDCs reveals extensive transcriptome 
heterogeneity
a–c, Correlations of transcript expression levels (x & y-axes: log-scale TPM+1) between 

two 10,000-cell population replicates (a), two single cells (b), and the ‘average’ single cell 

and a population (c). d,e, RNA-Seq read densities in single cells (blue) and population 

replicates (grey) for three non-variable genes (d) and four variable ones (e). f–g, RNA-FISH 

of representative transcripts. Optical micrographs (cell boundaries; grey outlines) and 

maximum-normalized distributions of expression levels from a RNA-FISH co-staining (n = 

3,193 cells) for Il6 (yellow) and Cxcl1 (magenta).
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Figure 2. Bimodal variation in expression levels across single cells
a, Relationship between average expression level in single cells (μ, X axis) and standard 

deviation (σ, Y axis) for 6,313 genes (Supplementary Table 2). Blue dashed line: maximum 

theoretical σ for an average expression level (SI); Grey dashed line: constant Fano factor 

(σ/μ = 0.25). Magenta: immune response genes; Green: housekeeping genes; light blue 

shaded region: single-cell average TPM < 250. b, Cellular heterogeneity for the 522 most 

highly expressed genes (single cell average; Supplementary Table 3). Each row represents a 

discretized histogram for a single gene (sorted by the Fano factor from low to high (top to 

bottom)). Color represents the number of cells (yellow: 18 cells; black: 0) that express the 

gene at the noted level. Grey dashed line denotes the constant Fano factor (0.25) highlighted 

in (a). c, Averaged expression density distributions for the 281 low-variability genes (top) 

and the 241 highly variable genes (bottom).
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Figure 3. Variation in isoform usage between single cells
a, RNA-Seq read densities in single cells (blue) and population replicates (grey) for two 

illustrative loci, each with two different isoforms (bottom). b, Distributions of exon 

inclusion (PSI scores, X axis) for alternatively spliced exons of highly expressed genes 

(single-cell TPM > 250) in individual cells (blue histogram, top) and populations (grey 

histogram, bottom). c, Left: RNA-Seq read densities for Irf7 (only cells where the transcript 

is expressed are shown). Colored boxes mark exons analyzed by RNA-FISH. Right: RNA-

FISH images from simultaneous hybridization with probes for two constitutive (‘Con’) 

regions of the transcript (A: cyan (C); B: magenta (M)) and one alternatively spliced exon 

(‘Specific’: orange (O)). White arrows (middle panel) highlight two cells with high levels of 

Irf7, but opposite preferences for the alternatively spliced exon. Histograms showing global 

abundance ratios for isoform-specific and constitutive probes (cells with less than 5 

constitutive counts have been excluded; n = 490 cells; bottom histogram deviates from 0.5 

due to probe design, see SI).
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Figure 4. Analysis of co-variation in single-cell mRNA expression levels reveals distinct maturity 
states and an antiviral cell circuit
a, PCA of 632 LPS-induced genes. Contributions of each cell (points) to the first two 

principal components. b, Clustered correlation matrix of induced genes. Left: the Pearson 

correlation coefficients (r) between single-cell expression profiles of every pair of 632 LPS-

induced genes (rows, columns). Right: the projection score (green: high; blue: low) for each 

gene (row) onto PC1 (left) and PC2 (right). c, Confirmation of correlations for Irf7-Stat2 (n 

= 655 cells) and Irf7-Ifit1 (n = 934 cells) by RNA-FISH. d–f, Expression levels for 16 genes 

in single BMDCs (columns), measured using single-cell qRT-PCR, in wild type (WT) (n = 

36) (d), Irf7 −/− (n = 47) (e), and Ifnr −/− (n = 18) (f) at 4h after LPS stimulation (SI).
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