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Objective: Over the years, non-alcoholic fatty liver (NAFLD) disease has

progressed to become the most frequent chronic liver disease in children and

adolescents. The full pathology is not yet known, but disease progression leads

to cirrhosis and hepatocellular carcinoma. Risk factors included hypercaloric

diet, obesity, insulin resistance and genetics. Hyperglucagonemia appears to be a

pathophysiological consequence of hepatic steatosis, thus, the hypothesis of the

study is that hepatic fat accumulation leads to increased insulin resistance and

impaired glucagon metabolism leading to hyperglucagonemia in pediatric

NAFLD.

Methods: 132 children and adolescents between 10 and 18 years, with varying

degrees of obesity, were included in the study. Using Magnetic Resonance

Imaging (MRI) average liver fat was determined, and patients were stratified as

NAFLD (>5% liver fat content) and non-NAFLD (<5%). All patients underwent a

standardized oral glucose tolerance test (OGTT). Additionally, anthropometric

parameters (height, weight, BMI, waist circumference, hip circumference) such

as lab data including lipid profile (triglycerides, HDL, LDL), liver function

parameters (ALT, AST), uric acid, glucose metabolism (fasting insulin and

glucagon, HbA1c, glucose 120 min) and indices evaluating insulin resistance

(HIRI, SPISE, HOMA-IR, WBISI) were measured.

Results: Children and adolescents with NAFLD had significantly higher fasting

glucagon values compared to the non-NAFLD cohort (p=0.0079). In the

NAFLD cohort univariate analysis of fasting glucagon was associated with

BMI-SDS (p<0.01), visceral adipose tissue volume (VAT) (p<0.001), average

liver fat content (p<0.001), fasting insulin concentration (p<0.001),

triglycerides (p<0.001) and HDL (p=0.034). This correlation equally applied to
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.1004128/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1004128/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1004128/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.1004128&domain=pdf&date_stamp=2022-09-05
mailto:d.weghuber@salk.at
https://doi.org/10.3389/fendo.2022.1004128
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.1004128
https://www.frontiersin.org/journals/endocrinology


Maruszczak et al. 10.3389/fendo.2022.1004128

Frontiers in Endocrinology
all insulin indices HOMA-IR, WBISI, HIRI (all p<0.001) and SPISE (p<0.002).

Multivariate analysis (R² adjusted 0.509) for the same subgroup identified HIRI

(p=0.003) and VAT volume (p=0.017) as the best predictors for

hyperglucagonemia. Average liver fat content is predictive in pediatric

overweight and obesity but not NAFLD.

Conclusions: Children and adolescents with NAFLD have significantly higher

fasting plasma glucagon values, which were best predicted by hepatic insulin

resistance and visceral adipose tissue, but not average liver fat content.
KEYWORDS
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Introduction

Non-alcoholic fatty liver (NAFLD) is associated with obesity,

insulin resistance and type 2 diabetes. NAFLD has progressed to

become the most frequent chronic liver disease in children and

adolescents (1). The estimated prevalence of NAFLD in children is

12.5% (95% CI: 9.2% to 16.7%) in youth with overweight, 36.1%

(95% CI: 24.6% to 49.9%) with obesity and 2.3% (95% CI: 1.5% to

3.6%) in children with normal weight, boys thereby exhibiting a

higher prevalence than girls (2). NAFLD in adolescents has recently

been shown to substantially increase the risk of T2DM in children

in general, with as many as one in three children with NAFLD

having abnormal glucose metabolism (3–5). Obesity and insulin

resistance are known to add up to this development, but beta cell

and alpha cell function, respectively, have been shown to

alter insulin secretion and cause a hyperglucagonemic state in

adults (6–9). The pancreatic hormone glucagon is a key player in

blood glucose regulation and the pathophysiology of diabetes (10).

Increased fasting levels of glucagon can be found in T2DM

patients and in subjects with obesity and normal glucose

tolerance (11, 12). Hypoglycemia is one of the major stimulants

for glucagon secretion triggering hepatic glucose production (13).

NAFLD consequently leads to impaired hepatic glucagon

signaling resulting in hyperglucagonemia (13). The concept of the

liver-alpha cell axis provides a potential causal explanation for

this phenomenon (14, 15). Previously, we demonstrated that

hyperglucagonemia is associated with hyperinsulinemia, high

plasma free fatty acids (FFAs), high plasma triglycerides, visceral

adiposity, and impaired glucose tolerance as early as during

childhood (3). To date, there is a lack of studies assessing alpha

cell function in pediatric NAFLD. In this study we hypothesize, that

hepatic fat accumulation leads to increased insulin resistance and

impaired glucagon metabolism followed by hyperglucagonemia

in pediatric NAFLD.
02
Material and methods

Study population and design

The ethics approval for the study was obtained from the

ethical committee of Salzburg (Number: 1544/2012) and the

Uppsala regional ethical review committee (number 2012/318).

The study was carried out according to the Declaration of

Helsinki. Written informed consent was achieved from all

participants and at least one of their caregivers.

A cross-sectional retrospective study was conducted in two

study centers, Uppsala University Hospital, Sweden, and at

Paracelsus Medical University Hospital in Salzburg, Austria.

Data analysis was based on the material obtained by the BETA

JUDO study (BETA cell function in Juvenile Diabetes and

Obesity, FP7-HEALTH-2011-two-stage, project number:

279153). In total, 206 patients received MRI scans for body

fat composition assessment. The MRI scans (liver fat content,

body fat composition, abdominal visceral and subcutaneous

fat) as previously described (16) was determined by 1.5 T

clinical MRI systems from Philips Medical System

(Netherlands). Patients aged 10-18 years with overweight or

obesity according to the WHO criteria (BMI-SDS>1.26) and

control subjects without overweight or obesity were included.

Exclusion criteria were presence of chronic liver disease,

known pre- and diabetes, psychiatric disorders, allergies,

alcohol intake, consuming steatogenic drugs, endocrine

disorders and/or hereditary causes of liver disease. 184

patients (target group) fulfilled the overweight and obesity

selection criteria, and 22 patients completed the control

group. The target group was divided further into a NAFLD

and non-NAFLD (defined by liver fat content ≥5 and ≤ 5 %)

group. After matching for BMI-SDS a sub-sample of 132

patients was selected.
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Anthropometric and blood
pressure measurements

Height and weight were assessed by standardized and

calibrated scales (Seca, Hamburg, Germany) and stadiometers

(Uppsala: Ulmer (Busse Design + Engineering GmbH; Elchingen,

Germany); Salzburg: Seca). The BMI-SDS was calculated with

Microsoft Excel add-in LMS Growth using WHO growth report

(17). Waist circumference (cm) was measured midway between

the superior border of the iliac crest and lowest rib. Systemic blood

pressure was measured using a standardized clinical aneroid

sphygmomanometer (Uppsala: CAS 740; CAS Medical Systems,

Inc, Branford, Conn; Salzburg: Carescape V100; Dinamap

Technology/GE, Vienna, Austria), two measurements were

taken, and the means were used for analyses. According to

Tanner, patients were categorized into their puberty stages,

prepubertal (group 1 = Tanner I), pubertal (group 2 = Tanner

II–IV), and postpubertal (group 3 = Tanner V).
Blood sampling and biochemical
measurements

All blood sample parameters were drawn after an overnight

fast. Following this, all subjects underwent a standard OGTT, as

previously described (17). In short, the OGTT was done

according to standard procedures. Patients received a glucose

solution concentrated 1.75 g glucose/kg body weight (maximum

75g glucose) and blood sampling was performed at time points

-5, 5, 10, 15, 30, 60, 90, 180 min. Blood was sampled through a

venous catheter.

Glucose, triacylglycerides (TG) and high-density lipoproteins

(HDL) were analyzed according to local protocols. In Uppsala,

glucose was analyzed using an Architect c8000 instrument (Abbott

Diagnostics, Solna, Sweden) and by a Gluco-quant Glucose-Kit

(Roche Diagnostics, Mannheim, Germany) in Salzburg. Uppsala

quantified TG and HDL using an Architect c800 instrument

(Abbott Diagnostics) and in Salzburg an enzymatic photometric

test (Modular Analytics System). Additional evaluation of LDL

cholesterol was required, which was done with an enzymatic

photometric test using Integra Manual by Roche Diagnostics. An

enzyme-linked immunosorbent assay (ELISA) (Modular Analytics

System, E-Modul by Roche Diagnostics) was used to analyze leptin

and adiponectin. HbA1c was measured by reversed-phase

chromatography (RP-HPLC). P-Modul, 917; Roche Diagnostics)

was used. Validation of analyses was performed between the

laboratories in Uppsala and Salzburg using reference blood samples.

Selected samples underwent immediate centrifugation at

2500g for 10 minutes at 4°C, subsequently aliquoted, and

frozen at −80°C. Plasma was later used for central analyses of
Frontiers in Endocrinology 03
insulin and glucagon in Uppsala for both study centers. Single-

plex enzyme-linked immunosorbent assay kits for each analyte

were used (Mercodia AB, Uppsala, Sweden). Standardized

control samples (Mercodia AB) were used to control for

interplate variability.
Assessment of insulin resistance

The following indices were used for the determination of

insulin resistance (IR) and insulin sensitivity.

To measure hepatic insulin resistance the homeostatic model

assessment (HOMA) (Wallace 2004) and the Hepatic Insulin

Resistance Index (HIRI) were used. The HOMA- insulin

resistance (IR) was calculated as the product of fasting glucose

(mmol/L) and fasting insulin (μU/ml) divided by constant 22.5

(17, 18) and the HIRI measured as the product of the area under

the curves (AUCs) of glucose and insulin for the first 30 min of

the OGTT (19). Insulin sensitivity was calculated by the Single

Point Insulin Sensitivity Estimator (SPISE), the newest

biomarker for insulin sensitivity developed by Paulmichl et al

(20) and the Matsuda Whole Body Insulin Sensitivity Index

(WBISI). The SPISE is calculated by the product of the constant

600 and HDL-cholesterol0,185 divided by the product of

triglycerides0,2 and BMI1,33835 and the WBISI (21, 22):

10,000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fasting glucose � fasting insulinð Þ
mean glucose � mean insulin

q

Statistical analysis

The data was analyzed descriptively showing results with

mean and standard deviation for metric variables and number

and percentages for categorical variables for a matched cohort.

NAFLD groups were matched 1:1 according to nearest

neighbor algorithm for BMI-SDS. Matching performance was

assessed applying Wilcoxon rank sum tests for unpaired samples

pre- and post-matching resulting in significant differences before

(p < 0.001) and non-significant results after matching (p =

0.383). Cohort size was reduced from n = 184 (79 vs. 105) to n =

132 (66 vs. 66) due to matching process.

Due to non-normality of the data, groupwise differences in

glucagon were examined applying non-parametric Wilcoxon

rank sum tests for unpaired samples. Further investigations of

dependencies were assessed using univariate regression models.

Our standardized multivariate model resulted, including

significantly correlating parameters to fasting glucagon, from

univariate models. In a second step the multivariate model size

was reduced by exclusion of parameters which were not
frontiersin.org
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significantly different in the group differences. In a final step,

variables were excluded for multicollinearity based on the

variance inflation factor (VIF). The threshold for this

exclusion was set to 10 as suggested in the literature (23).

All results are presented along with 95%-Confidence

Intervals. Tests are performed at a significance level of 5%. P-

values in multivariable models are corrected with Bonferroni-

Holm method for multiple testing. No p-value correction for the

remaining results. Statistical analysis was done with R (version

4.0.2). Important R-packages: leaps (selection algorithm),

MatchIt (matching).
Results

Baseline characteristics

Clinical and anthropometric features of the study population

are shown in Table 1. After matching for BMI-SDS the study

population included 132 adolescents with overweight and

obesity, mean BMI being 31.53 ± 6.86 kg/m2 and mean age

14.09 ± 2.34. Mean BMI between the NAFLD and non-NAFLD

groups was similar, however the waist-to-hip ratio showed a

significant difference between the groups (NAFLD 0.98 ± 0.08 vs.

0.94 ± 0.08, p = 0.02).

Body fat composition variables presented a significant

difference between the mean liver fat content (NAFLD 15.58

± 10.95% vs. non-NAFLD 3.17 ± 0.97%, p=0.00) and the

visceral adipose tissue (VAT) (NAFLD 1753.07 ± 662.31 vs.

non-NALFD 1302.27 ± 433.52, p=0.00) in the matched study

population (N=132). Of the biochemical parameters of

glucose metabolism fasting insulin (NAFLD 129.46 ± 66.40

vs. non NAFLD 104.00 ± 46.58, p=0.08), fasting glucagon

(NAFLD 14.20 ± 8.54 vs. non-NAFLD 10.36 ± 3.99, p=0.01)

and HOMA-IR (NAFLD 4.41 ± 2.62 vs. non-NAFLD 3.32 ±

1.54, p=0.06) presented significant differences between the

groups. Additionally, among the lipid profile markers

significant differences between the groups could be observed

between the LDL cholesterol (NAFLD 2.58 ± 0.79 vs. 2.40 ±

0.61, p=0.08) and the triglycerides (NAFLD 1.37 ± 0.73 vs.

1.06 ± 0.51, p=0.01). Finally, all enzymatic liver function

parameters (ALT, AST, GGT) presented significant

differences between the NAFLD and non NAFLD patients

(AST: NAFLD 0.64 ± 0.44 vs. non NAFLD 0.45 ± 0.25,

p=0.00, ALT: NAFLD 0.80 ± 0.79 vs. non-NAFLD 0.37 ±

0.20, p=0.00, GGT: NAFLD 0.48 ± 0.42 vs. non NAFLD 0.29 ±

0.11, p=0.00). HOMA-IR was the only metabolic index that

showed significant differences between the two groups

(NAFLD 4.41 ± 2.62 vs. non NAFLD 3.32 ± 1.54, p=0.06).
Frontiers in Endocrinology 04
Fasting glucagon concentrations
correlate with metabolic parameters in
adolescents with NAFLD and non NAFLD

Figure 1 demonstrates that fasting plasma glucagon levels

are significantly different between the NAFLD and non-NAFLD

group (p<0.01), N=132.

A univariate analysis for fasting plasma glucagon levels

matched for BMI-SDS was constructed according to metabolic

variables (glucose metabolism, liver function and lipid profile)

such as body fat composition and clinical features. Variables of

glucose metabolism (OGTT 120 min p=0.044, fasting insulin

p<0.001, SPISE p=0.002, WBISI p=0.001, HIRI p<0.001,

HOMA-IR p<0.001), of lipid profile (HDL cholesterol

p=0.034, triglycerides p<0.001) and liver function (AST

p=0.010, p=0.010, p=0.009), indicated a significant relationship

with glucagon (Table 2).

Figure 2 presents a scatterplot of all NAFLD patients stratified

by liver fat content quartiles, resulting in the following cut-offs:

25% = 2.91% liver fat content, 50% = 5.11% liver fat content,

75% = 11.73% liver fat content. Looking at the relationship

between glucagon and average liver fat within each quartile, a

clear positive trend can be observed in quartile 4 (Figure 2).
Predictors of fasting glucagon
concentrations in patients with
overweight and obesity

A standardized multivariate regression model was

constructed based on the glucagon predictors BMI-SDS,

average liver fat, fasting insulin, glucose at 120 min, SPISE and

ALT in overweight and patients with overweight/obesity

(Table 3). Significant drivers of this model (R2 = 0.336) were

liver fat content (p=0.044), VAT (p=0.031), fasting insulin levels

(p=0.016) and alanine aminotransferase (p=0.030). By contrast

BMI-SDS (p=1.00), OGTT glucose 120 min (p=1.00) and SPISE

(p=1.00) did not change the significant driving variables.
Predictors of fasting glucagon
concentrations in patients with NAFLD

A multivariate regression model to evaluate predictors of

glucagon in NAFLD adolescents was applied, with average liver

fat being a conditional variable in the models. The model

(Table 4, R² = 0.509) included VAT and HIRI index. VAT

(p=0.017) and the HIRI index (p=0.003) resulted with a

predictive effect for hyperglucagonemia in pediatric NAFLD.
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TABLE 1 Descriptive data of all patient (study population, N = 132) and comparison of baseline characteristic difference between NAFLD (n = 66)
and non- NAFLD (n = 66) patients.

Study population (N = 132) NAFLD (n = 66) non-NAFLD (n = 66) p-value

CLINICAL FEATURES

Age (Years) 14.09 ± 2.34 14.38 ± 2.33 14.03 ± 2.40 0.49

Tanner stage* I: 10 (7.6%)
II-IV: 83 (62.9%)
V: 30 (22.7%)
n.a.: 9 (6.8%)

I: 7 (10.1%)
II-IV: 42 (63.6%)
V: 13 (19.6%)
n.a.: 4 (6.1%)

I: 3 (4.5%)
II-IV: 41 (62.1%)
V: 173(25.6%)
n.a.: 5 (7.8%)

0.34

BMI (mg/m2)# 31.53 ± 6.86 32.28 ± 4.81 32.05 ± 4.96 0.74

BMI-SDS# 2.57 ± 1.12 2.84 ± 0.51 2.77 ± 0.49 0.38

SBMI (kg/m2) 33.98 ± 5.83 34.93 ± 3.52 34.63 ± 3.51 0.57

Waist circumference (cm)#1 101.95 ± 17.45 105.35 ± 13.25 103.85 ± 12.65 0.77

Hip circumference (cm) 107.81 ± 14.89 107.88 ± 11.57 110.45 ± 12.76 0.16

Waist-to-hip-ratio 0.94 ± 0.09 0.98 ± 0.08 0.94 ± 0.08 0.02

RR systolic (mmHg)#3 120.53 ± 11.57 121.51 ± 12.18 121.28 ± 10.55 0.99

BODY FAT COMPOSITION

Total body fat (%) 42.50 ± 5.87 41.70 ± 6.42 41.54 ± 4.89 0.87

MRI VAT volume (cm3)#2 1463.46 ± 703.24 1753.07 ± 662.31 1302.27 ± 433.52 0.00

MRI SAT volume (cm3)#2 6332.09 ± 2789.08 6687.25 ± 2060.33 6625.70 ± 2127.87 0.99

MRI liver fat content (%)# 9.38 ± 10.26 15.58 ± 10.95 3.17 ± 0.97 0.00

GLUCOSE METABOLISM

Fasting glucose (mmol/L) 5.15 ± 1.27 5.25 ± 2.01 5.01 ± 0.60 0.54

OGTT 120 min. glucose (mmol/L)# 6.72 ± 2.10 7.16 ± 2.99 6.41 ± 1.39 0.22

Fasting insulin (pmol/L)#5 111.85 ± 66.79 129.46 ± 66.40 104.00 ± 46.58 0.08

HbA1c (mmol/mol) 35.81 ± 7.08 37.47 ± 11.85 34.77 ± 2.33 0.15

Fasting glucagon (pmol/L) 11.94 ± 6.69 14.20 ± 8.54 10.36 ± 3.99 0.01

METABOLIC INDICES

SPISE#1 5.47 ± 2.43 4.80 ± 1.24 5.12 ± 1.34 0.22

WBISI#7 5.47 ± 4.33 4.14 ± 2.60 4.89 ± 2.25 0.10

HIRI#8 47861.88 ± 30367.22 52950.30 ± 26984.56 45451.40 ± 21248.58 0.46

HOMA-IR#6 3.75 ± 2.51 4.41 ± 2.62 3.32 ± 1.54 0.06

LIPID PROFILE

Total cholesterol (mmol/L) 4.12 ± 0.76 4.30 ± 0.87 4.13 ± 0.66 0.24

LDL cholesterol (mmol/L) 2.40 ± 0.69 2.58 ± 0.79 2.40 ± 0.61 0.08

HDL cholesterol (mmol/L)#1 1.25 ± 0.32 1.19 ± 0.24 1.28 ± 0.37 0.32

Triglyceride (mmol/L)# 1.17 ± 0.69 1.37 ± 0.73 1.06 ± 0.51 0.01

LIVER FUNCTION

AST (mkat/L)#4 0.53 ± 0.31 0.64 ± 0.44 0.45 ± 0.25 0.00

ALT (mkat/L)# 0.55 ± 0.54 0.80 ± 0.79 0.37 ± 0.20 0.00

GGT (mkat/L)# 0.37 ± 0.28 0.48 ± 0.42 0.29 ± 0.11 0.00
Frontiers in Endocrinology
 05
 fronti
Data are expressed a mean ± standard deviation (SD).
p < 0.05.
n = 104 for BMI, BMI-SDS, liver fat content, OGTT 120 min. glucose, triglycerides, ALT, GGT; #1n = 103 for waist circumference, HDL-cholesterol, SPISE; #2n= 102 for VAT and SAT
volume; #3n = 101 for systolic blood pressure; #4n = 98 for AST; #5n = 75 for fasting insulin; #6n = 73 for HOMA-IR; #7n = 63 for WBISI; #8n = 60 for HIRI.
NAFLD, non-alcoholic fatty liver disease; n.a., not available; BMI, body mass index; BMI-SDS, body mass index standard deviation score; SBMI, smart BMI; RR, blood pressure; HbA1c,
hemoglobin A1c; LDL, low density lipoprotein; HDL, high density lipoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma glutamyl transferase; OGTT,
oral glucose tolerance test; MRI, magnetic resonance imaging; VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; DSAT, deep subcutaneous adipose tissue; SSAT, superficial
subcutaneous adipose tissue; SPISE, single point insulin sensitivity estimator; WBISI, whole-body insulin sensitivity index; HOMA-IR, homeostatic model assessment for insulin resistance;
HIRI, hepatic insulin resistance index.
*Tanner staging I–V: I, prepubertal; II–IV, pubertal; V = post-pubertal.
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FIGURE 1

Fasting glucagon concentration pmol/L of participant without NAFLD (0, n = 66) and with NAFLD (1, n = 66) are shown a box plot in quartile
and outliers. Wilcoxon test yielded a highly significant result p=0.0079 a **p < 0.01.
TABLE 2 Univariate analysi for fasting glucagon (pmol/L) in patient with overweight/obesity (n = 104#) matched for BMI-SDS.

coefficient p-value R2

CLINICAL FEATURES

BMI (mg/m2) 0.25 0.073 0.022

BMI-SDS 3.50 0.010** 0.054

Waist circumference (cm) 0.09 0.083 0.020

RR systolic (mmHg) 0.05 0.359 -0.002

BODY FAT COMPOSITION

MRI VAT volume (cm3) 0.01 <0.001*** 0.194

MRI SAT volume (cm3) 0.00 0.341 -0.001

MRI liver fat content (%) 0.28 <0.001*** 0.144

GLUCOSE METABOLISM

OGTT 120 min. glucose (mmol/L) 0.54 0.044* 0.030

Fasting insulin (mIU/mL) 0.07 <0.001*** 0.248

SPISE -1.61 0.002** 0.079

WBISI -1.28 0.001*** 0.152

HIRI 0.00 <0.001*** 0.234

HOMA-IR 1.72 <0.001*** 0.211

LIPID PROFILE

HDL cholesterol (mmol/L) -4.51 0.034* 0.034

Triglyceride (mmol/L) 4.34 <0.001*** 0.160

LIVER FUNCTION

AST (mkat/L) 4.55 0.010** 0.057

ALT (mkat/L) 2.61 0.010** 0.055

GGT (mkat/L) 5.45 0.009** 0.056
Frontiers in Endocrinology
 06
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*p < 0.05, **p < 0.01, ***p < 0.001.
n = 104 for BMI, BMI-SDS, liver fat content, OGTT 120 min. glucose, triglycerides, ALT, GGT; n = 103 for waist circumference, HDL-cholesterol, SPISE; n = 102 for VAT and SAT volume,
hsCRP; n = 101 for systolic blood pressure; n = 98 for AST; n = 78 for Il-6, TNF alpha; n = 75 for fasting insulin; n = 73 for HOMA-IR; n = 63 for WBISI; n = 60 for HIRI.
BMI, body mas index; BMI-SDS, body mas index standard deviation score; SBMI, smart BMI; RR, blood pressure; HbA1c, hemoglobin A1c; LDL, low density lipoprotein; HDL, high density
lipoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma glutamyl transferase; OGTT, oral glucose tolerance test; MRI, magnetic resonance imaging;
VAT, visceral adipose tissue; SAT, subcutaneou adipose tissue; DSAT, deep subcutaneou adipose tissue; SSAT, superficial subcutaneou adipose tissue; SPISE, single point insulin sensitivity
estimator; WBISI, whole-body insulin sensitivity index; HOMA-IR, homeostatic model assessment for insulin resistance; HIRI, hepatic insulin resistance index.
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Discussion

This is the first study to examine predictors of

hyperglucagonemia in a pediatric NAFLD population. Our

data identify visceral adipose tissue and the HIRI index as

surrogate for hepatic insulin resistance as determinants of

hyperglucagonemia in pediatric NAFLD.
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Obesity significantly increases the risk of NAFLD, effecting

the pediatric population with obesity in large numbers (24).

VAT and WHR, but not BMI, predicted increased levels of

glucagon in our cohort. This implies that the accumulation of

visceral fat rather than adiposity associates with deranged

glucagon metabolism. This is in accordance with the findings

of Manell et al., who concluded that high levels of glucagon are
FIGURE 2

Scatter plot showing relationship between average liver fat (%) and fasting glucagon (pmol/L) grouped by MRI quartile (1-4).
TABLE 3 Multivariate regression analysi with standardized coefficients: predictor of glucagon in a pediatric cohort with overweight/obesity
(n = 73) matched for BMI-SDS (R2 = 0.336), correct by Bonferroni-Holm algorithm.

Coefficient p-value

Anthropometric data

BMI-SDS -0.10 1.000

MRI VAT volume (cm3) 0.45 0.031*

MRI liver fat content (%) 0.47 0.044*

Metabolic data

OGTT 120 min. glucose (mmol/L) -0.04 1.000

Fasting insulin (mIU/mL) 0.40 0.016*

SPISE 0.04 1.000

ALT (mkat/L) -0.46 0.030*
fronti
*p < 0.05, tested for multicollinearity.
BMI-SDS, body mas index standard deviation score; MRI, magnetic resonance imaging; VAT, visceral adipose tissue; ALT, alanine aminotransferase; OGTT, oral glucose tolerance test;
SPISE, single point insulin sensitivity estimator.
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related to VAT, rather than liver fat content, pancreas fat

content and subcutaneous adipose tissue (SAT) (3). A positive

relation between fasting hyperglucagonemia and increased

WHR could also be observed in an adult cohort where WHR

turned out to be the best anthropometric predictor of NAFLD

(25, 26). This indicates that VAT and central adiposity are

closely related to NAFLD occurrence (27). Analyzing data

from a different pediatric cohort, our group previously showed

that increased WHR is related to increased VAT and fasting

insulin levels in children with obesity and increased hepatic liver

fat content (28). This is in keeping with a plethora of studies

reporting that WHR and VAT can be identified as indirect

parameters of insulin resistance (29, 30).

In our study, univariate analysis not only indicated a

significant relationship of fasting insulin, VAT, MRI liver fat

content with glucagon in our cohort of children and adolescents

with overweight and obesity, but also with the liver enzyme

alanine transaminase (ALT). Alanine transaminase levels are

accepted as surrogates of NAFLD in clinical practice (30, 31),

although liver enzymes are known to be limited in sensitivity and

specificity in the diagnosis of pediatric NAFLD (31, 32). It is

worth mentioning in this context, that children with overweight/

obesity and elevated ALT values had a more than 2-fold

increased risk for future dysglycemia independent of age, sex

and BMI-SDS in a survival analysis of up to 11 years of follow-up

of 510 children with overweight and obesity from the Leipzig

Childhood Cohort. Hence, elevated transaminases were

suggested as an early predictor for glycemic deterioration (31).

The multiple regression model identified VAT and the HIRI

index as the best predictive variables for hyperglucagonemia in our

pediatric NAFLD cohort. The HIRI index is a dynamic surrogate

index derived from the OGTT. Recent studies have evaluated the

predictive accuracy of surrogate indices for hepatic insulin

resistance derived from dynamic tests, such as the HIRI,

suggesting that these are suitable alternatives to describe ß-cell

function (20, 22, 33). Similar to our pediatric cohort, D’Adamo and

Deivanayagam concluded that an increase in intrahepatic fat is

associated with an increase in the HIRI index (34, 35). Additionally,

when considering surrogates of insulin sensitivity (HOMA IR,

HIRI), adult studies showed that increased circulating levels of

fasting glucagon, together with increased insulin levels, are tightly
Frontiers in Endocrinology 08
coupled to a reduction of insulin sensitivity in individuals with

normal and disturbed glucose metabolism (36–38). In our study

cohort a similar relationship could be observed in children with

NAFLD. This is an interesting aspect as direct glucagon suppression

is caused by insulin stimulation as seen in non-diabetic subjects

(39). Recently, evidence of a liver-alpha cell axis in humans was

introduced (40, 41). The concept claims that fat accumulation in the

liver attenuates the sensitivity of hepatocytes towards glucagon

causing impaired hepatic glucagon signaling and consequently

results in hyperglucagonemia (41, 42). Our data are in line with

previous adult studies (41–43) supporting the existence of such a

liver-alpha cell feedback loop as early as during childhood. Faerch

et al. showed that glucose regulation during development of insulin

resistance was linked not merely with hypersecretion of insulin, but

also with a reduced capability to acutely suppress glucagon after

glucose intake in adults (37). Hypersecretion of glucagon from

pancreatic alpha cells has hence been suggested to be due to an

impairment of hepatic glucagon signaling, which then, due to

decreased glucagon-induced amino acid turnover, would result in

hyperaminoacedemia (14). Lischka et al. recently reported higher

levels of plasma branched-chain amino acids in children with

NAFLD, suggesting that BCAAs could be an important link

between obesity and other metabolic pathways (43). However, the

association between amino acid and glucagon metabolism in

pediatric NAFLD has yet to be studied.

There are some strengths and limitations that need to be

acknowledged. The primary strength of the study was a relatively

large study cohort of children with MRI diagnosed NAFLD.

Although the gold standard of diagnosis of different stages of

NAFLD – steatosis to fibrosis/cirrhosis - would be liver biopsy,

MRI scans are well suited to quantify liver fat content which was

the aim of this study (16). A limitation of the current study is

that the conclusions cannot be translated to other ethnic groups

other than Caucasian. Further, a more detailed characterization

according to pubertal stages matched by age and BMI-SDS was

not feasible due to statistical limitations related to sample size.

In summary, our results identify that average liver fat

content is predictive in pediatric overweight and obesity.

Visceral adipose tissue (VAT) and the HIRI index were

identified as determinants of hyperglucagonemia in pediatric

NAFLD, but not average liver fat content.
TABLE 4 Multivariate regression analysi with standardized coefficients: determinant of hyperglucagonemia in NAFLD (n = 66) matched for
BMI-SDS (Model R² = 0.509).

Model Coefficient p-value

Average liver fat, % 0.097620 0.477

VAT, cm³ 0.006884 0.017*

HIRI 0.000187 0.003*
fronti
*p < 0.05, tested for multicollinearity.
VAT, visceral adipose tissue; HIRI, Hepatic Insulin Resistance Index.
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