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Computed tomography (CT) derived ventilation algorithms estimate the apparent voxel volume
changes within an inhale/exhale CT image pair. Transformation-based methods compute these esti-
mates solely from the spatial transformation acquired by applying a deformable image registration
(DIR) algorithm to the image pair. However, approaches based on finite difference approximations of
the transformation’s Jacobian have been shown to be numerically unstable. As a result, transforma-
tion-based CT ventilation is poorly reproducible with respect to both DIR algorithm and CT acquisi-
tion method.
Purpose: We introduce a novel Integrated Jacobian Formulation (IJF) method for estimating voxel
volume changes under a DIR-recovered spatial transformation. The method is based on computing
volume estimates of DIR mapped subregions using the hit-or-miss sampling algorithm for integral
approximation. The novel approach allows for regional volume change estimates that (a) respect the
resolution of the digital grid and (b) are based on approximations with quantitatively characterized
and controllable levels of uncertainty. As such, the IJF method is designed to be robust to variations
in DIR solutions and thus overall more reproducible.
Methods: Numerically, Jacobian estimates are recovered by solving a simple constrained linear least
squares problem that guarantees the recovered global volume change is equal to the global volume
change obtained from the inhale and exhale lung segmentation masks. Reproducibility of the IJF
method with respect to DIR solution was assessed using the expert-determined landmark point pairs
and inhale/exhale phases from 10 four-dimensional computed tomographies (4DCTs) available on
www.dir-lab.com. Reproducibility with respect to CT acquisition was assessed on the 4DCT and 4D
cone beam CT (4DCBCT) images acquired for five lung cancer patients prior to radiotherapy.
Results: The ten Dir-Lab 4DCT cases were registered twice with the same DIR algorithm, but with
different smoothing parameter. Finite difference Jacobian (FDJ) and IFJ images were computed for
both solutions. The average spatial errors (300 landmarks per case) for the two DIR solution methods
were 0.98 (1.10) and 1.02 (1.11). The average Pearson correlation between the FDJ images computed
from the two DIR solutions was 0.83 (0.03), while for the IJF images it was 1.00 (0.00). For inter-
modality assessment, the IJF and FDJ images were computed from the 4DCT and 4DCBCT of five
patients. The average Pearson correlation of the spatially aligned FDJ images was 0.27 (0.11), while
it was 0.77 (0.13) for the IFJ method.
Conclusion: The mathematical theory underpinning the IJF method allows for the generation of ven-
tilation images that are (a) computed with respect to DIR spatial accuracy on the digital voxel grid
and (b) based on DIR-measured subregional volume change estimates acquired with quantifiable and
controllable levels of uncertainty. Analyses of the experiments are consistent with the mathematical
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theory and indicate that IJF ventilation imaging has a higher reproducibility with respect to both DIR
algorithm and CT acquisition method, in comparison to the standard finite difference approach.
© 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American
Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13453]
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1. INTRODUCTION

Computed tomography (CT) derived ventilation imaging is
an image processing-based modality, where image segmenta-
tion and deformable image registration (DIR) methods are
applied to the temporally resolved phases of a four-dimen-
sional CT (4DCT) image set or breath-hold CT pair in order
to infer the lung voxel volume changes induced by respiratory
motion.1 Since its inception, CT ventilation has been the sub-
ject of numerous validation studies, which primarily focused
on comparison with established modalities such as 99mTc-
DTPA (diethylenetriamine pentaacetate) SPECT-ventilation,2
99mTc-MAA SPECT-perfusion,3 68Ga-MAA PET perfusion,
68Ga-nanoparticles PET ventilation,4 and3He-hyperpolarized
MRI.5 The relative success of these studies has led to the
development of applications, mainly in radiation oncology,
such as functional avoidance radiotherapy planning6 and
treatment response modeling.7

There are two approaches for computing CT ventilation:
intensity based and transformation based.2 Intensity-based
methods estimate volume changes directly from the Houns-
field units of spatially corresponding inhale and exhale voxels
according to the formulation proposed by Simon.8 However,
with transformation-based methods, estimates are derived
from the Jacobian factor of the DIR recovered spatial
transformation.9 Variations and combinations of the two
approaches have also been proposed.10

Regardless of approach, CT ventilation is computed with
image processing methods. As such, its physiological accuracy
and clinical utility highly depend on the performance of the
employed numerical algorithms. CT ventilation methods there-
fore face the same challenges arising in the field of scientific
computing, where the goal is to develop numerical methods
based on mathematical models of a physical phenomenon. Soft-
ware implementations require both verification and validation
of the numerical method and mathematical models before being
confidently employed in practice.11 Despite the large number of
validation studies, surprisingly little research has focused on the
verification of CT ventilation, which in this case, refers to the
characterization of the numerical approximation errors associ-
ated with the computation.

Recent work has shown that current methods for transforma-
tion-based ventilation, which depend on finite difference
approximations applied to the DIR-recovered displacement
field, are inherently nonstable numerically, meaning that small
perturbations to the DIR solution can cause large relative
changes in the resulting ventilation image.12 This property
partly explains the reported sensitivity of CT ventilation with

respect to DIR method13 and 4DCT acquisition artifacts14; in
addition to its overall poor reproducibility.15 The purpose of this
study is to introduce the Integrated Jacobian Formulation (IJF)
method for computing DIR-measured volume changes. The IJF
method is based on robust estimates of regional volume change,
which are computed by applying a sampling method to numeri-
cally integrate the regional Jacobian formulation. The resulting
volume change estimates (a) respect the restrictions posed by
the resolution of the digital grid and (b) have a quantifiable and
controllable level of uncertainty. A Jacobian image, which
depicts the volume change for each voxel within the reference
image, is computed from the regional estimates by solving a
constrained linear least squares problem.

This current work describes the motivation, mathematical
framework and numerical implementation for the novel IJF
method. Two sets of experiments are used to assess the per-
formance of the IJF method with respect to (a) variable DIR
solutions and (b) the correlation between ventilation images
generated from 4DCT and 4D cone beam CT (4DCBCT)
acquisitions.

2. MATERIALS AND METHODS

2.A. The Jacobian and finite difference
approximations

The goal of CT ventilation methods is to estimate the
volume changes, induced by the changes in air content within
the lungs (breathing), for each voxel within a defined lung
region of interest. As opposed to the HU-based approach,
transformation-based CT ventilation approximates volume
changes solely from a spatial transformation, /, that
describes the apparent lung motion within an inhale/exhale
CT image pair. The spatial transformation is often described
in terms of the voxel displacement field:

/ðxÞ ¼ xþ dðxÞ;
/ðxÞ : XðRÞ ! XðTÞ;

(1)

where XðRÞ;XðTÞ 2 R
3 represent the regions of interest within

the reference and target images, respectively. A standard
assumption when computing ventilation images is the ability
to generate both inhale and exhale lung masks (segmenta-
tions), which implies that Ω(R), Ω(T) are both known and con-
tain the same lung tissue.2 However, the true spatial
transformation is not known and is approximated numerically
by applying a DIR algorithm. The resulting DIR solution pro-
vides displacement vector estimates for the voxels in Ω(R).
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The Jacobian, J(x), is the first full derivative of /:

JðxÞ ¼
@/1ðxÞ
@x1

@/1ðxÞ
@x2

@/1ðxÞ
@x3

@/2ðxÞ
@x1

@/2ðxÞ
@x2

@/2ðxÞ
@x3

@/3ðxÞ
@x1

@/3ðxÞ
@x2

@/3ðxÞ
@x3

2
664

3
775; (2)

and it describes the volume scaling factor under:

vol /ðXÞð Þ ¼
Z
X
jdet JðxÞð Þjdx; (3)

where Ω ⊆ Ω(R) and /(Ω) ⊆ Ω(T) is the image of Ω under /.
For medical imaging applications, / is assumed to be diffeo-
morphic, which implies:

det JðxÞð Þ[ 0; 8x 2 XðRÞ: (4)

Computing a volumetric transformation-based CT ventila-
tion image requires numerical approximation of the integral
in Eq. (3) for a series of different subvolumes within Ω(R).
Current methods take Ωi to be the unit voxel volume centered
on xi.

2 This allows for a volumetric midpoint rule approxima-
tion of the Eq. (3) integral:

(5)

Since voxels are spaced uniformly on the digital grid, the
partial derivatives given by Eq. (2) can be approximated with
a finite difference scheme. We refer to this method as the
finite difference Jacobian (FDJ):

Vol /ðXiÞð Þ � det ĴðxiÞ
� �

; (6)

where the entries in ĴðxiÞ are obtained with forward differ-
ence approximations:

@/iðxkÞ
@xj

� /iðxk þ ejÞ � /iðxkÞ; (7)

and ej is the standard basis vector. While the FDJ method has
proven useful in qualitative applications, its poor repro-
ducibility, with respect to both DIR method and CT acquisi-
tion, is well documented13,15 and remains a limiting factor for
applications dependent on precise quantitative analysis.

As demonstrated in Ref. [12], small perturbations to the
DIR displacement field can cause large relative changes in
the FDJ volume change estimate. The result follows from the
fact that the general finite difference approximation error is
O(h), where h is equal to the grid spacing. In the case of the
digital voxel grid, h = 1, which implies that the uncertainty
in the finite difference approximation in Eq. (7) is �1. Intu-
itively, this uncertainty stems from the fact that DIR spatial
accuracy resolution is limited to the digital grid. In other
words, using expert-determined landmarks, it is possible to
determine if a reference voxel is mapped into the correct tar-
get voxel volume. However, it is not possible to determine
where within the target voxel the correctly mapped position

lies. Consequently, finite difference approximations can vary
by as much as 1.0 for displacement estimates with the exact
same spatial accuracy, as illustrated by Fig. 1.

This result is problematic since inhale-to-exhale lung
motion is primarily a contraction, meaning that the relative
voxel volume change values are in general less than or equal
to 1.0, and therefore, well within the error margin of the FDJ
approximation.

With these issues in mind, our goal is to devise a numerical
method for computing voxel volume changes, derived from a
DIR spatial transformation, that is (a) computed with respect to
the resolution of the digital grid and is (b) based on approxima-
tions with quantitatively characterized levels of uncertainty.

2.B. Robust regional volume change estimation

For a general subdomain Ω 2 Ω(R), Eqs. (3)–(5) imply:

vol / Xð Þð Þ ¼
Z
X
det JðxÞð Þ dx ¼

X
xi2X

vi; (8)

where the discretized variables

vi ¼ det JðxiÞð Þ; vi [ 0; (9)

reflect that volume change is strictly positive.
The FDJ method directly estimates each vi with finite

differences and O(1) uncertainty. Rather than depending on
finite differences to estimate volume changes for individual
voxels, we propose robust regional volume change measure-
ments by approximating vol(/(Ω)) using the well-known
“hit-or-miss” algorithm.16

2.B.1 Sampling-based numerical integration

The hit-or-miss algorithm is a sampling method that can
be viewed theoretically as a simpler variant of the Monte
Carlo integration method.16 Moreover, the method does not
require an explicit representation of /(Ω) to estimate vol(/(Ω)).

FIG. 1. Two transformations map the reference positions x and x + e1 (left)
into the voxel volumes centered on (i,j) and (i,j + 1), respectively (right).
While the transformations have the same spatial accuracy (i.e., map the refer-
ence positions into the same target voxel volumes), the forward difference
approximations for @ // @ x1 and @~/=@x1 are 1.0 and 2.0, respectively. This
reflects the O(1) error associated with finite differences on the voxel grid.
[Color figure can be viewed at wileyonlinelibrary.com]
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Since / is assumed to be diffeomorphic, /�1 exists and can
be used to define a voxel membership oracle.17 In this case,
the oracle answers the question: “Given x 2 Ω(T), is x 2 /
(Ω)?” Mathematically, the membership oracle, ∀x 2 Ω(T), is
defined as:

f x; X;/ð Þ ¼ 1; if /�1ðxÞ 2 X;
0; otherwise:

�
(10)

Since Ω represents a region of voxel volumes within Ω(R),
the oracle essentially operates on the components of /�1

rounded to the nearest integer values. Or more specifically,

/�1ðxÞ 2 X , /�1ðxÞ� � 2 X; (11)

where [i] represents the component-wise rounding operation.
As such, the oracle evaluations are equivalent for two DIR
solutions with the same spatial accuracy.

The hit-or-miss method first computes the sampled
average of the oracle function over an enclosing region
with known volume. Since Ω(T) is known and /(Ω) ⊆
Ω(T), the estimated function average, fh i, is given as:

fh i ¼ H
N

; H ¼
X

xi2XðTÞ
f ðxi;/;XÞ; (12)

where N = |Ω(T)| and H is the number of voxels that “hit”
/(Ω). The corresponding volume estimation is then com-
puted as the ratio of hits to samples multiplied by the volume
of the enclosing region:

vol / Xð Þð Þ � fh iN ¼ H: (13)

Combining Eqs. (8) and (13) results in a simple linear
equation that relates individual voxel volume changes within
Ω to the hit-or-miss volume approximation:X

xi2X
vi ¼ H: (14)

2.B.2. Uncertainty in regional volume change
estimation

Since N is assumed to be large, similar to Monte Carlo
error analysis,18 adopting Gaussian statistics allows for the
uncertainty in the Eq. (12) average function value, and conse-
quently the Eq. (13) volume estimation, to be characterized
by the standard error of the mean:

s fh i ¼ sffiffiffiffi
N

p ; (15)

where s is the sample standard deviation. Applying Eq. (15)
to the estimated mean in Eq. (12) yields:

s fh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2h i � fh i2
N � 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

�
N:� H

�
N

	 
2

N � 1

vuuut
: (16)

Thus, the uncertainty in the Eq. (13) hit-or-miss volume
estimate can be expressed as:

vol / Xð Þð Þ �
X

xi2XðTÞ
f ðxi;/;XÞ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

� bNs fh i: (17)

Equation (17) provides a probabilistic assessment of the
volume approximation in terms of a confidence interval
defined by the parameter b. For instance, setting b = 1.96
implies that with 95% probability:

jvol / Xð Þð Þ � Hj � bNs fh i: (18)

General Monte Carlo methods reduce the uncertainty by
raising the number of point samples, which implies the ora-
cle function is precise for any sampling resolution. In this
case, the problem is inherently discretized by the digital
grid. Consequently, both DIR spatial accuracy and the
Eq. (10) oracle are limited to the grid resolution. Therefore,
the number of samples N = |Ω(T)| is fixed and the Eq. (18)
uncertainty is determined solely by the number of hits H.
Figure 2 shows that the relative uncertainty function for
fixed N:

E H; bð Þ ¼ bNs fh i
H

: (19)

is monotonically decreasing with respect to H. For H = 1, the
uncertainty is approximately 100%, which mimics the O(1)
error of forward finite differences. Conversely, the most
trusted volume measurement is that of the complete target
segmentation mask: N = |Ω(T)|.

Given a b∗ corresponding to a specified confidence level
and a desired relative error s, there exists a unique H* ≤ N
such that:

E H; b�ð Þ� s; 8H�H�: (20)

This result follows from the fact that E is monotonically
decreasing and E(N, b∗) = 1.

2.C. Integrated Jacobian formulation

A full CT ventilation image, V(x), requires computing the
discretized variables

FIG. 2. Relative uncertainty in hit-or-miss volume change estimate as a
function of the number of hits (x-axis) for fixed N = 500 and b = 1.96.
[Color figure can be viewed at wileyonlinelibrary.com]
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VðxiÞ ¼ vi ¼ det JðxiÞð Þ; 8xi 2 XðRÞ: (21)

Equation (14) represents a regional DIR-based volume
change measurement, the uncertainty of which is governed
by Eq. (18), and provides one equation for M = |Ω(R)| total
unknowns. Intuitively, a recovery algorithm can be built on
the idea of computing enough regional estimates to define a
full rank or overdetermined linear system of equations for the
M unknowns. Applying Eq. (14) to a series of subregions
Xk 2 XðRÞ; k ¼ 1; 2; . . .;K results in the following linear
system:

Cv ¼ b;

C 2 R
K�M ; b 2 R

K�1; m 2 R
M�1;

(22)

where

Cki ¼ 1 if xi 2 Xk

0 otherwise
;

�
(23)

and the elements of b are computed according to Eq. (13):

bk ¼
X

xi2XðTÞ
f ðxi;/;XkÞ: (24)

If the subregions are allowed to overlap, Eq. (22) is simi-
lar in structure to the standard image deblurring problem.19

Although in this case, the volume change image recovery
problem is defined on an irregular domain, that is, the lung
region of interest, while deblurring problems are typically
defined on the full image domain.

The Eq. (22) subregions can be constructed to satisfy the
uncertainty bound given by Eq. (20), but the resulting bk
data values are still approximations. As such, Eq. (22)
should not be treated as a hard constraint. However, global
volume change, as measured by the volumes of the inhale/
exhale masks, is often used as a validation metric for pro-
posed ventilation methods.1–3,20,21 Thus, the global mass
change:

XM
i¼1

vi ¼ jXðTÞj ¼ N; (25)

can be enforced as a hard constraint. Moreover, Eqs. (22) and
(25) are not guaranteed to provide enough information to
uniquely determine v. Therefore, a two-norm penalization on
the spatial gradient of V(x) is employed to both induce
smoothness in the reconstructed image and guarantee the
existence of a unique solution (i.e., regularize the problem).
Combining these assumptions results in the following con-
strained linear least squares problem, the solution of which is
the recovered volume change image:

min
v

1
2

Cv� bk k2 þ a
2

XM
i¼1

rVðxiÞk k2

s.t:
XM
i¼1

vi ¼ N;

vi � �; i ¼; 1; 2; . . .;M:

(26)

The penalty parameter a dictates the amount of smooth-
ness in the solution v* and the lower bound � > 0 represents
the minimum possible voxel volume. We refer to Eq. (26) as
the IJF method for computing DIR-induced volume changes
and transformation-based CT ventilation.

2.D. Numerical implementation

The IJF method requires constructing the subregion vol-
ume change estimates described in Eq. (22). To do this, we
applied a dart-throwing algorithm to xi 2 Ω(R) in order to
generate a point cloud of voxel locations uniformly spaced
approximately 30 mm apart.22,23 The Voronoi diagram gener-
ated from the point cloud and Ω(R) is used to define the initial
subregions (Fig. 3). For each initial subregion, the Eq. (13)
hit-or-miss estimate and the Eq. (19) uncertainty are com-
puted. The initial subregion mask is morphologically dilated
with a 5 9 5 9 5 structuring element until

bNsk
Hk

� 0:025; b ¼ 1:96: (27)

Equation (27) implies that the relative hit-or-miss uncer-
tainty is <2.5% with 95% confidence. For all experiments,
the Eq. (26) regularization parameter a = 0.5. Numerical
experimentation and visual inspection indicated that solutions
did not vary greatly for a between 0.1 and 0.5. For smaller
values, the problem could potentially become ill-conditioned,
thereby resulting in possible numerical errors in the least
squares solutions to Eq. (26). For larger values, the resulting
solutions have the potential to become dominated by the reg-
ularization term, thereby resulting in oversmoothed images.

For the peak inhale and exhale 4DCT phases, lung masks,
Ω(R), Ω(T) were generated using a semi-automated histogram
segmentation (as done in Ref. [24]). The 4DCBCT inhale/ex-
hale phases were segmented manually by an imaging expert.
The spatial transformation /�1 is computed by applying the
MILO DIR algorithm (see Ref. [24] for details) to the target
and reference image. Eq. (26) is solved using the Augmented
Lagrangian Method (see for 25 for details), implemented in
MATLAB (release R2017b, The Mathworks Inc, Natick,
MA, USA).

2.E. Image data

Two sets of experiments were conducted to assess the per-
formance of the proposed IJF method. For the first experi-
ment, ten publicly available 4DCTs from the www.dir-lab.c
om website (see Ref. [26–28] for acquisition details) were
used to assess the reproducibility of the IJF method with
respect to DIR solution.

For the second experiment, the simulation (treatment plan-
ning) 4DCT and setup verification 4DCBCT images for five
NSCLC patients receiving radiotherapy at our institution
were used to assess the robustness of the IJF method. Data
were retrospectively evaluated according to an IRB-approved
study (IRB 2016-037). 4DCBCTs were acquired 6 to 8 days
after simulation and immediately prior to the delivery of the
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first radiotherapy fraction, ensuring no lung function changes
occurred due to treatment between the simulation 4DCT and
4DCBCT acquisitions. The rationale for choosing 4DCT and
4DCBCT to demonstrate the robustness of the proposed
method is that, due to the scatter artifact in CBCTs, CBCT
images provide the most challenging scenario for comparing
the generated CT ventilation images. Kipritidis et al. reported
Spearman correlations between normalized intrafraction
ventilation images generated from 4DCBCTs on the order of
0.6.29

A Philips Brilliance Big Bore CT (version 3.6.7) with a
bellows system was used for respiratory correlated imaging.
The 4DCT images were acquired with X-ray tube settings of
120 kVp and 599 mAs, and reconstructed using phase bin-
ning to produce an average CT image and 10 phase indexed
CT images. The phase images were indexed from 0% to 90%
in steps of 10%, where 0% indicates full inhalation and 50%
indicates full exhalation on the breathing curve. Final images
were then exported into the DICOM (Digital Imaging and
Communications in Medicine) standard (512 9 512 pixels
per two-dimensional slice image, voxel dimensions of
1.27 mm 9 1.27 mm 9 3 mm).

A 4D VolumeViewTM imaging sequence using Symme-
tryTM by Elekta (Elekta, Stockholm, Sweden) XVI (release
version 5.0.2) was used to acquire 4DCBCT for treatment
setup verification. For each 4DCBCT image, approximately
975 projection images were acquired, over a gantry rotational
range of 200° with rotational speed of 67°/min. The S20 col-
limator cassette was used to define the field of view and
imaging parameters were set to 120 kVp, 20 mA, 16 ms. The
final 4DCBCT reconstructed images were then exported from
XVI as a set of 10 phase indexed CT images in the Dicom
format (135 9 135 9 42 voxels, voxel dimensions of
2 mm 9 2 mm 9 6 mm).

3. RESULTS

The variability in the IJF method with respect to DIR
solution was assessed using ten peak inhale and exhale
4DCT phases from the DIR-LAB repository. Each image pair
was registered twice using the same DIR algorithm
(MILO24), but with different spatial smoothness parameters
(MILO parameter c = 0.5 and 0.6). The spatial accuracies of
the two DIR solutions for each case are detailed in Table I.

The Pearson correlation coefficient between the pair of FDJ
images generated from the two DIR solutions was computed
for all cases. The same process was applied to the IJF gener-
ated images. No normalizations or postprocessing procedures
were applied to the generated ventilation images. As detailed
in Table II, the average correlation values for the FDJ method
was 0.83 (0.03), while for the IJF method the average corre-
lation was 1.00 (0.00). These results are consistent with the
FDJ numerical analysis findings detailed in Ref. [12], as well
as in Sections 2 and 4. IJF operates on the rounded DIR dis-
placement values [see Eq. (11)], which implies that the IJF
Jacobian values are equivalent for DIR solution with the
same spatial accuracy. The images for 4DCT 6, which pro-
vide a representative example of the Table II results, are dis-
played in Figure 4.

Variability across modalities was assessed using 4DCT
and 4DCBCT images for five lung cancer patients being trea-
ted with radiotherapy. Both the 4DCT and 4DCBCT were
acquired prior to radiotherapy. For each patient, the FDJ and
IJF images were computed from the 4DCT and 4DCBCT. No
normalizations or postprocessing procedures were applied to
the generated ventilation images. Affine registration was
employed to spatially align the ventilation images, using the
maximum inhale phase from the lower resolution 4DCBCT as
the reference coordinate system. Pearson correlation coeffi-
cients between the spatially aligned IJF images generated from
the 4DCB and 4DCTwere computed, as they were for the FDJ
images as well (Table III). The IJF demonstrated good repro-
ducibility between the 4DCT and 4DCBCT acquisitions with
an average Pearson correlation of 0.77 (0.13). In contrast, the
average correlation for the FDJ images was 0.27 (0.11). The
highest IJF correlation of 0.95 was achieved in Case 1, which
is illustrated in Fig. 5. The poorest correlation value occurred
on Case 2, where a pronounced phase binning artifact is pre-
sent near the diaphragm on the 4DCT image. Such an artifact
is not present in the corresponding 4DCBCT (see Fig. 6).

4. DISCUSSION

The purpose of this work is to introduce a robust method
for computing transformation-based CT ventilation. The pro-
posed methodology addresses the CT ventilation problem
from an engineering/applied mathematics perspective, which
notes that a mathematical model and its corresponding

FIG. 3. An example of an initial subdomain decomposition (left) is defined as the Voronoi diagram generated from a voxel point cloud. The initial subregions are
randomly colored for display purposes. The integrated Jacobian formulation method takes each individual subregion (middle image shows an example) and
performs a morphological dilation until Eq. (27) is satisfied (right). [Color figure can be viewed at wileyonlinelibrary.com]
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numerical implementation must undergo verification and val-
idation before the methodology can be confidently employed
in practice.11 Having defined a mathematical model, verifica-
tion is the process of developing a numerical implementation
that accurately solves the mathematical model. Validation is
the process of evaluating whether the mathematical model
and its verified numerical implementation accurately describe
a physical phenomenon of interest. In this case, the physical
quantity we wish to describe is pulmonary ventilation and the
mathematical model is the Jacobian factor. The focus of this
study is on the verification portion of the transformation-
based CT ventilation model. While several physiological fac-
tors contribute to lung volume change, the DIR recov-
ered mapping only describes the apparent motion. Therefore,
the volume changes recovered with IJF, or any other Jaco-
bian-based method, describe the concerted effect of all fac-
tors. As such, the proposed method’s clinical utility cannot

be directly inferred from this work on verification, and must
be assessed separately with a rigorous validation study. This
is an immediate area of our future research.

Current methods for transformation-based volume change
estimation rely on Jacobian approximations taken on individ-
ual voxels. As reported in the literature, the resulting ventila-
tion images are not well reproducible with respect to either
DIR algorithm or CT acquisition method.

The fundamental problem for FDJ ventilation is that accu-
rately estimating the Jacobian for an individual voxel with
finite differences requires a numerical precision that is higher
than what DIR spatial accuracy assessments can measure. As
a result, two DIR solutions with similar spatial accuracies can
produce substantially different ventilation images, which is
consistent with the findings in Ref. [12,30]. The standard
error analysis for hit-or-miss integral estimation is also con-
sistent with these findings. Consequently, the utility of CT

TABLE I. Integrated Jacobian formulation (IJF) Subregion Summaries. Ten four-dimensional computed tomography (4DCT) inhale/exhale phase test cases pro-
vided by www.dir-lab.com were used to assess the reproducibility of IJF and finite difference Jacobian methods with respect to registration accuracy (Table II).
A summary of the subregional domains used within the IJF method for deformable image registration (DIR) 1 (Table II), including: the number of voxels con-
tained in the target (inhale) image domain jXðTÞj, the minimum number of hits, H*, required to satisfy Eq. (27), the number of subregions, K, as defined by
Eq. (22), and the minimum/maximum number of voxels within the K subregions.

jXðTÞj H* K min jXk j max jXk j

4DCT 1 972 538 6108 642 5160 13 370

4DCT 2 1 537 594 6123 976 5341 13 546

4DCT 3 1 191 488 6116 774 5321 14 201

4DCT 4 881 357 6104 558 4510 13 188

4DCT 5 1 063 434 6112 696 5112 12 855

4DCT 6 1 194 354 6116 666 4491 13 012

4DCT 7 1 458 702 6121 869 4452 13 210

4DCT 8 2 000 263 6128 1175 4401 13 145

4DCT 9 653 069 6090 445 4350 13 112

4DCT10 1 155 485 6115 727 4258 14 466

TABLE II. Dataset four-dimensional comouted tomography (4DCT): ten 4DCT maximum inhale/exhale phase pairs.

DIR 1 Avg. mm error DIR 2 Avg. mm error

Mean absolute difference Pearson correlation

FDJ IJF FDJ IJF

4DCT 1 0.72 (0.91) 0.71 (0.90) 0.03 (0.03) 0.00 0.88 1.00

4DCT 2 0.70 (0.90) 0.69 (0.90) 0.02 (0.03) 0.00 0.87 1.00

4DCT 3 0.91 (1.07) 0.91 (1.07) 0.05 (0.05) 0.00 0.80 1.00

4DCT 4 1.26 (1.28) 1.26 (1.23) 0.06 (0.06) 0.00 0.86 1.00

4DCT 5 1.18 (1.49) 1.29 (1.49) 0.07 (0.06) 0.00 0.83 1.00

4DCT 6 0.97 (0.96) 1.09 (1.00) 0.06 (0.05 0.00 0.80 1.00

4DCT 7 0.90 (0.98) 1.03 (0.99) 0.06 (0.05) 0.00 0.79 1.00

4DCT 8 1.10 (1.24) 1.14 (1.23) 0.05 (0.05) 0.00 0.82 1.00

4DCT 9 1.02 (0.97) 1.02 (0.96) 0.06 (0.06) 0.00 0.83 1.00

4DCT10 0.98 (0.98) 1.02 (1.03) 0.06 (0.07) 0.00 0.80 1.00

Avg. (std): 0.83 (0.03) 1.00 (0.00)

Ten 4DCT inhale/exhale phase test cases provided by www.dir-lab.com were registered by two versions of the MILO deformable image registration (DIR) algorithm. The
spatial accuracies achieved by the two DIR approaches are given in average (SD) millimeter error with respect to 300 landmark point pairs. The Pearson correlation and
mean absolute difference between the FD ventilation images computed from DIR 1 and DIR 2 are given, as are the correlations between the IJF ventilation images
computed from DIR 1 and DIR 2.
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ventilation has been limited to applications that do not rely
on voxel-by-voxel accuracy of the generated CT ventilation
images. For example, functional avoidance radiotherapy,
which is one of the main clinical applications of CT ventila-
tion, generally relies on regional/lobar accuracy rather than
accuracy on a voxel level.31–37 Therefore, the development of
robust and reproducible numerical CT ventilation methods is
essential for broadening the scope of potential applications
and decreasing the uncertainty associated with evaluating CT
ventilation on a voxel level.

Considering that frameworks based on measuring individ-
ual voxel volume changes induced by a DIR solution are
prone to numerical instability, our proposed methodology is
based on computing a series of more reliable subregional

volume change estimates. Thus, the IJF framework is pre-
mised on the ability to compute the warped subregion volume
obtained by applying the DIR spatial transformation to a ref-
erence subregion. Estimating volumes of general multidimen-
sional shapes is known to be a difficult problem.17 However,
lung volume masks are not difficult to obtain and are often
assumed to exist prior to DIR and CT ventilation computa-
tions in the radiotherapy setting. Moreover, the full lung vol-
ume is inherently discretized by the CT digital voxel grid.
These characteristics allow for the warped subregion volume
estimation problem to be cast as a simple sampling-based
integral approximation. In addition to providing a mathemati-
cal framework for characterizing uncertainty, the sampling-
based integral approach is defined in part by a membership
oracle [Eq. (10)] that respects the spatial accuracy of the DIR
solution (i.e., the oracle operates on the DIR solution rounded
to the nearest integer). As a result, the oracle evaluations are
equivalent for two DIR solutions with the same spatial accu-
racy. In this instance, the hit-or-miss sampling method and
standard Gaussian statistics are used to characterize the
uncertainty in the warped subregion volume estimates. How-
ever, it is certainly possible to incorporate more sophisticated
statistical modeling and Monte Carlo machinery into the gen-
eral IJF framework, or investigate the effect of adopting a
Bernoulli distribution model for the hit-or-miss uncertainties.
Although, considering that (a) N is assumed to be large and
that (b) the probability of the subregional oracle function
returning a “hit” (value of 1) will not be close to either zero
or one, the use of Gaussian statistics is sound.38 Moreover, it

FIG. 4. The finite difference Jacobian (FDJ) images (top) and the integrated
Jacobian formulation (IJF) images (bottom) computed for the same case with
two deformable image registration (DIR) solutions (Table I, four-dimensional
computed tomography 6). While there is a large visual difference between
the FDJ images, the IJF images are nearly identical. The estimated Jacobian
values indicate that the inhale-to-exhale lung motion recovered by the DIR
algorithm is a contractive mapping.

TABLE III. Four-dimensional computed tomography (4DCT) vs 4D cone
beam CT Jacobian values.

Mean absolute difference Pearson correlation

FDJ IJF FDJ IJF

Case 1 0.11 (0.09) 0.03 (0.02) 0.41 0.95

Case 2 0.13 (0.10) 0.06 (0.04) 0.12 0.61

Case 3 0.17 (0.15) 0.05 (0.04) 0.21 0.68

Case 4 0.10 (0.08) 0.04 (0.03) 0.32 0.82

Case 5 0.19 (0.17) 0.05 (0.03) 0.29 0.80

Avg. (Std): 0.27 (0.11) 0.77 (0.13)

Finite difference Jacobian (FDJ) and integrated Jacobian formulation (IJF) images
were created from the treatment planning (simulation) 4DCTs and the four-dimen-
sional cone beam CT images of five lung cancer patients. All images were
acquired prior to radiotherapy. The high correlation values between the CB and
CT IJF values indicate that the IJF is more reproducible with respect to acquisition
modality than FDJ.

FIG. 5. Finite difference Jacobian (FDJ) (top) and integrated Jacobian
formulation (IJF) (bottom) images computed from the four-dimensional cone
beam computed tomograhy (4DCBCT) and 4DCT images for the same
patient. (Table III, Case 1), superimposed on the inhale CBCT phase. The
4DCT FDJ and IJF images were mapped onto the inhale CBCT phase via
affine registration. While there is a large difference between the FDJ images
(Pearson correlation 0.41), the IJF images are very similar (Pearson correla-
tion 0.95). The estimated Jacobian values indicate that the inhale-to-exhale
lung motion recovered by the deformable image registration algorithm is a
contractive mapping.
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may be possible to devise an alternative to the sampling
approach based on applying level set or active contour meth-
ods to directly measure the warped subregional volumes.39

The numerical implementation of the IJF method involves
making a series of subregional volume change estimations
that satisfy an acceptable level of uncertainty in the relative
approximation error [Eq. (27)]. As opposed to the FDJ
method, individual voxel volume values are coupled together
via the subregional estimates. Thus, the individual values are
described as the solution to a constrained least squares prob-
lem [Eq. (26)]. The resulting IFJ ventilation images are
robust to small changes in DIR solution, as evidenced by the
numerical results described in Table II, whereas the FDJ
method’s results are consistent with the numerical analysis of
finite difference approximations (see Fig. 1). In particular,
two DIR solutions obtained for 4DCT test case 9 had an
equivalent average millimeter landmark error of 1.02, while
the Pearson correlation between the corresponding FDJ
images was 0.83. Variation with respect to the DIR solution
occurred consistently within the FDJ images across all ten
test cases. Conversely, the IJF method maintained a Pearson
correlation of 1.00 between the images generated from the
two DIR solutions on all ten cases.

The IJF method represents a robust numerical method for
computing CT ventilation from DIR-measured volume
changes. However, the method is still susceptible to the
uncertainties induced by patient breathing variations and the
quality of the 4DCT acquisition. The effect of these uncer-
tainties becomes apparent when comparing the IJF ventila-
tion images generated from treatment planning 4DCT and
4DCBCT acquired for the same patient prior to radiotherapy.
Across five test cases, the Pearson correlations detailed in
Table III ranged between 0.61 and 0.95, with two cases scor-
ing at or below 0.69, and three scoring at or above 0.80. As
illustrated in Fig. 6, a large phase bin artifact is present near
the diaphragm of the 4DCTs for the two low scoring cases.
Recovered Jacobian values are near 1.0 in the regions around
the artifact and close to the diaphragm, indicating little to no
volume change in those areas. The corresponding CBCT IJF

image does not possess the acquisition artifact and conse-
quently does not depict a ventilation defect near the dia-
phragm. Considering that the high scoring cases did not
contain apparent binning artifacts, the results suggest that dif-
ferences between the IJF 4DCT and 4DCBCT ventilation
images for the high scoring cases were primarily induced by
variations in the patients’ breathing across the two imaging
sessions, whereas for the lower scoring cases, 4DCT acquisi-
tion artifacts are a significant confounding factor.

In recent work,30 a mean Spearman correlation of 0.60
(0.23) between 4DCBCT and 4DCT ventilation was reported,
whereas for intrafraction 4DCBCT-generated ventilation
images, a similar mean of 0.67 (0.20) was reported in Ref.
[29]. Moreover, the mean absolute differences demonstrated
by the FD method (Table III) ranged between 0.10 and 0.19,
which is consistent with previously reported mean absolute
differences measured between intrafraction 4DCBCT ventila-
tion images.29 The 0.77 (0.13) average Pearson correlation
measured between IJF 4DCBCT and 4DCT ventilation, as
well as corresponding mean absolute differences ≤0.06, rep-
resent progress in comparing ventilation images generated
from different modalities and at different time points. This
improvement reflects both the inherent numerical instability
properties of FDJ ventilation and the mechanisms for control-
ling DIR uncertainty built into the IJF method. We believe
the robust numerical stability of the IJF method can aid in
providing improved results to previously conducted valida-
tion studies and in future CT ventilation applications. As
such, an immediate area of our future research is to investi-
gate the correlation of IJF with previously acquired validation
data (such as those in Ref. [3,5,40]), as well as the potential
dosimetric consequences of IJF on radiotherapy functional
avoidance planning studies (such as those in Ref. [41,42]).

Since IJF is based on approximating subregional volume
changes, another area of future work will focus on alterna-
tives to the hit-or-miss sampling method for volume change
estimation, including level set method and more sophisticated
Monte Carlo approaches. Moreover, the current numerical
implementation treats the Jacobian value for each voxel as an

FIG. 6. The Integrated Jacobian Formulation image created from the four-dimensional cone beam computed tomograhy (Left) and radiotherapy planning 4DCT
(right) for a lung cancer patient (Table II, Case 2). The middle image depicts the CT-integrated Jacobian formulation image mapped onto the inhale CBCT phase.
The 4DCT (right) contains a large phase binning artifact at the diaphragm, resulting in significant variation between the CB and CT IJF images. Table II, Case 3
possess a similar phase binning artifact. The estimated Jacobian values indicate that the inhale-to-exhale lung motion recovered by the deformable image registra-
tion algorithm is a contractive mapping.
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unknown in a least squares optimization problem. Finite ele-
ment methods are well suited for integrated formulations and
could substantially reduce the computational workload of the
IJF method. Finally, the IJF optimization problem requires a
regularization model for the recovered ventilation image.
Models that allow discontinuities within the recovered solu-
tion, such as total variation, might be more appropriate con-
sidering that functional defects are likely to be contained
within lung lobes.

5. CONCLUSIONS

The IJF method for estimating volume changes from a
DIR spatial transformation is presented. The IJF method
recovers individual voxel volume changes from a series of
subregional volume change measurements. Uncertainty in the
subregional estimates is characterized using Gaussian statis-
tics and standard error analysis. Numerical experiments indi-
cate that the IJF method is robust with respect to variations in
DIR solution and demonstrates good reproducibility between
4DCT and 4CBCT acquisitions. An immediate area of
future research is to apply a similar verification process to
HU-based ventilation methods.
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