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An investigation into the role of inherited 
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cancer risk
Anna L. W. Huskey1,2 and Nancy D. Merner1*   

Abstract 

Objective:  This study was designed to determine if CEACAM mutations are associated with inherited risk of colorectal 
cancer. Recently, protein-truncating mutations in the CEACAM gene family were associated with inherited breast can-
cer risk. That discovery, along with aberrant expression of CEACAM genes in colorectal cancer tumors and that colo-
rectal cancer and breast cancer share many risk factors, including genetics, inspired our team to search for inherited 
CEACAM mutations in colorectal cancer cases. Specifically utilizing The Cancer Genome Atlas (TCGA) blood-derived 
whole-exome sequencing data from the colorectal cancer cohort, rare protein-truncating variants and missense vari-
ants were investigated through single variant and aggregation analyses in European American and African American 
cases and compared to ethnic-matched controls.

Results:  A total of 34 and 14 different CEACAM variants were identified in European American and African American 
colorectal cancer cases, respectively. Nine missense variants were individually associated with risk, two in African 
Americans and seven in European Americans. No identified protein-truncating variants were associated with CRC risk 
in either ethnicity. Gene family and gene-specific aggregation analyses did not yield any significant results.
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Introduction
Colorectal cancer (CRC) is the fourth most commonly 
diagnosed cancer in the US [1], and the lifetime risk 
of development is 4–5% [1, 2]. However, this risk can 
increase with many factors, including a family history of 
CRC [1]. Approximately 30% of CRC cases are familial 
[2, 3], and of those cases with a known genetic cause, the 
majority have Lynch syndrome [4]. However, up to 30% 
of familial cases are estimated to be genetically unsolved 
[5].

Attempting to discover new CRC genetic risk factors, 
herein, the CEACAM (Carcinoembryonic antigen-related 

cell adhesion molecule) gene family was investigated. 
CEACAM genes are a part of the Ig superfamily. These 
genes have diverse functions, including cell adhesion and 
signaling, influencing immunity, angiogenesis, and cancer 
[6–8]. Aberrant expression of CEACAM genes has long 
been associated with tumorigenesis, and atypical expres-
sion has been heavily linked to CRC development and 
progression [6, 8]. In 1965, CEA (more currently known 
as CEACAM5) was first identified as a tumor marker for 
CRC [9, 10]. Additionally, CEACAM6 is overexpressed in 
CRC and has been determined to increase invasiveness 
[11]. Contrarily, CEACAM1 [12, 13] and CEACAM7 [14] 
have decreased expression in CRC. Furthermore, somatic 
mutations in CEACAM1 [13] and CEACAM5 [15] have 
been detected in CRC tumors. Nonetheless, the impact 
of inherited CEACAM gene mutations on CRC risk has 
yet to be determined.
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Recently, rare protein-truncating variants (PTVs) in the 
CEACAM gene family were associated with the inher-
ited risk of breast cancer [16]. That discovery, along with 
aberrant expression of CEACAM genes in CRC tumors 
and that CRC and breast cancer share many risk factors, 
including genetics [1, 17, 18], inspired our team to deter-
mine if CEACAM mutations are associated with CRC 
inherited risk.

Main text
Methods
Blood-derived exomes of CRC cases in The Cancer 
Genome Atlas (TCGA) were analyzed to investigate 
if CEACAM mutations play a role in inherited risk. 
Through approved research project #10805, whole-
exome binary sequence alignment mapping (BAM) files 
were downloaded from the Genomic Data Commons 
(GDC) Data Portal Repository. Samples were acquired by 
setting specific filters. Filters under the ‘Cases’ category 
included Project (TCGA-COAD), Samples Sample Type 
(Blood-Derived Normal), and Race (‘Black or African 
American’ and ‘White’). The samples were further filtered 
under the ‘Files’ category, including Experimental Strat-
egy (WXS) and Data Format (BAM). A total of 48 sam-
ple files were obtained for African Americans and 199 for 
European Americans. These files were downloaded using 
the GDC Data Transfer Tool (version 1.2.0).

The downloaded BAM files, which had previously been 
aligned to the hg38 human reference genome, were pro-
cessed using the remaining portions of a pipeline adapted 
from the Genome Analysis Toolkit’s (GATK’s) best prac-
tices pipeline [19]. Base quality scores were recalibrated 
using BaseRecalibrator. Following base recalibration, 
the BAM files underwent coverage calculations for the 
exome and each CEACAM gene. Samtools depth func-
tion [20, 21] was used to determine the exome coverage 
using a BED file generated from UCSC Table Browser 
with the specifications: clade (Mammal), genome 
(Human), assembly (Dec. 2013 (GRCH38/hg38), group 
(Genes and Gene Predictions), track (NCBI RefSeq), 
and table (UCSC RefSeq (refGene)) with genome as the 
region of interest and “Whole Gene” selected. Samtools 
coverage function [20, 21] was used to generate cover-
age values for the CEACAM genes from a set of gene-
specific intervals; including CEACAM1 (NM_001184815; 
chr19:42507306-42528481), CEACAM3 (NM_001815 at 
chr19:41796587-41811554), CEACAM4 (NM_001817; 
chr19:41618971-41627074), CEACAM5 (NM_004363; 
chr19:41708626-41730421), CEACAM6 (NM_002483; 
chr19:41755530-41772210), CEACAM7 (NM_006890; 
chr19:41673303-41688270), CEACAM8 (NM_001816 at  
chr19:42580243-42594924), CEACAM16 (NM_001039213; 
chr19:44699151-44710718), CEACAM18 (NM_001278392;  

chr19:51478643-51490605), CEACAM19 (NM_020219; 
chr19:44671452-44684355), CEACAM20 (NM_001102597;  
chr19:44506159-44529675), and CEACAM21 (NM_ 001098506; 
chr19:41576166-41586844). Furthermore, regarding vari-
ant calling, the recalibrated BAM files were converted 
into genome variant calling format (gVCF) files using 
HaplotypeCaller (GATK version 4.1.9). GenomicsDBIm-
portant was used to generate ethnic-specific CEACAM 
gene family datasets, which were obtained by extracting 
the CEACAM gene intervals listed above. This process 
was followed by the GenotypeGVCFs function to gener-
ate ethnic-specific VCF files (GATK version 4.1.9). The 
two ethnic-specific VCF files were then annotated using 
ANNOVAR (version June 2020). Variants were filtered 
to include rare PTVs (nonsense mutations, frameshift-
ing mutations, or splice-site affecting mutations) and 
missense variants with ethnic-specific minor allele fre-
quencies (MAFs) of < 1% in Exome Variant Server (EVS; 
National Heart, Lung, and Blood Institute (NHLBI) 
Exome Sequencing Project) [22]. Each variant was indi-
vidually investigated using the Fisher’s exact test [23, 24] 
in R (v 3.5.1), comparing MAFs of ethnic-specific TCGA 
CRC cases and EVS controls. Additionally, coverage 
values for each variant were assessed to determine the 
cohort’s average coverage at that genomic location. Sub-
sequently, PTVs and missense variants were investigated 
together and as individual groups in gene-based and 
gene family-based aggregation analyses using the Fisher 
method through the ‘sumlog’ command as part of the 
‘metap’ package within R [25, 26]. P-values were not cor-
rected for multiple testing. Lastly, missense pathogenic-
ity was predicted using Polyphen2 [27]. For all significant 
mutations, protein analysis using InterPro [28] and the 
Eukaryotic Linear Motif (ELM) resource [29] was carried 
out to identify CEACAM domains and binding motifs, 
respectively.

Results
The whole-exome BAM files downloaded from TCGA 
had an average exome coverage of 8X, ranging from 2.3X 
to 21.4X among the samples. Coverage values were also 
generated for each CEACAM gene (Additional file  1: 
Table S1). The average coverage for the gene family was 
22.9X, with 100% of the bases covered at least 1X (Addi-
tional file 1: Table S1).

After filtering for rare PTVs and missense variants in 
the entire CEACAM gene family within the TCGA CRC 
cohort, a total of 14 different variants were identified in 
African American cases (one frameshift and 13 missense; 
Additional file 2: Table S2), and 34 different variants were 
identified in European American cases (one frameshift, 
two splice, and 31 missense; Additional file 3: Table S3). 
All identified variants were heterozygous, and there were 
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no cases of compound heterozygosity. The average cov-
erage for the 14 variants identified in African Americans 
was 49X, ranging from 19 to 423X. Similarly, the average 
coverage for the 34 variants detected in European Ameri-
cans was 42X, ranging from 3 to 923X. No identified 
PTVs were associated with CRC risk in either ethnicity.

In African American cases, five of the 13 missense 
variants were classified as probably damaging; however, 
none of those mutations were associated with CRC risk. 
Only two variants were determined to be individually 
associated with African American CRC risk, including 
CEACAM3:p.(Y95N) and CEACAM8:p.(T247A), both 
predicted to be likely benign (Table 1).

In European American cases, 10 of the 31 missense 
variants were predicted to be probably damaging, but 
only two of which were found to be associated with CRC 
risk, CEACAM1:p.(Y68C) and CEACAM18:p.(C357G). 
A total of seven variants were determined to be individu-
ally associated with CRC in European Americans, all of 
which were missense variants, including the two afore-
mentioned probably damaging missense variants and five 
predicted to be benign (Table 2).

Gene family and gene-specific aggregation analyses did 
not yield any significant results, including a combined 
assessment of PTVs and missense variants, as well as 

group analyses of PTVs, missense mutations, and prob-
ably damaging missense mutations.

Discussion
Upon surveying the CEACAM gene family for rare PTVs 
and missense variants in CRC cases from TCGA and con-
trols from the EVS, no gene-based or gene family-based 
associations with inherited risk of CRC were revealed. 
These results were unexpected due to the previous asso-
ciation of rare PTVs in the CEACAM gene family with 
inherited breast cancer risk [16], the known similarities 
between breast cancer and CRC risk [1, 17, 18], and the 
dis-regulation of CEACAM genes in CRC tumors [6, 8–
15]. Moreover, it has been demonstrated that CEACAM 
gene function can be affected by even minor genetic 
changes [27], and specific residues within CEACAM pro-
teins are crucial for normal function [12, 30, 31].

Despite the lack of association from aggregation 
analyses, individual variants were associated with CRC 
inherited risk (Tables 1 and 2). All associations involved 
individual missense variants; none involved PTVs, unlike 
the association of CEACAM PTVs with breast cancer risk 
[16]. Only four different PTVs were detected amongst all 
CRC cases, none of which overlapped between ethnici-
ties. In European American CRC cases, two splice variants 

Table 1  Significant rare mutations identified in TCGA CRC African American (AA) cohort

Gene Chr 19 
position

Mutation type Functional 
prediction—
polyphen

cDNA change Protein 
change

TCGA AA 
Colon MAF 
(%)

EVS AA MAF 
(%)

AA 
individual 
P-values

CEACAM3: 
NM_001815

41797807 missense benign: 0.159 c.283T > A p.(Y95N) 5.208 0.894 0.002

CEACAM8: 
NM_001816

42589003 missense benign: 0.001 c.739A > G p.(T247A) 4.167 0.931 0.015

Table 2  Significant rare mutations identified in TCGA CRC European American (EA) cohort

Gene Chr 19 
position

Mutation type Functional 
prediction—
polyphen

cDNA change Protein 
change

TCGA EA 
colon MAF 
(%)

EVS EA MAF 
(%)

EA 
individual 
P-values

CEACAM1: 
NM_001184815

42527262 missense probably-dam-
aging: 1.0

c.203A > G p.(Y68C) 0.503 0.070 0.046

CEACAM4: 
NM_001817

41625657 missense benign: 0.325 c.368G > A p.(R123E) 0.503 0.000 0.002

CEACAM8: 
NM_001816

42589735 missense benign: 0.005 c.425C > T p.(P142L) 0.503 0.012 0.006

CEACAM18: 
NM_001080405

51483229 missense probably-dam-
aging: 1.0

c.1069T > G p.(C357G) 0.503 0.059 0.036

51483284 missense benign: 0.013 c.1124A > G p.(Q375R) 0.503 0.059 0.036

CEACAM19: 
NM_020219

44681293 missense benign: 0.01 c.773G > C p.(R258T) 1.005 0.093 0.001

CEACAM20: 
NM_001102597

44512936 missense benign: 0.062 c.1445C > T p.(T482I) 0.503 0.000 0.002



Page 4 of 7Huskey and Merner ﻿BMC Research Notes           (2022) 15:26 

were detected, including CEACAM7:c.64 + 1G > T and 
CEACAM21:c.882 + 1G > A, and a frameshift muta-
tion was detected, CEACAM20:p.(F542Sfs*56). One 
frameshift mutation was detected in an AA CRC case, 
CEACAM21:p.(T32Pfs*47).

Overall, 9 missense variants were determined to be 
individually associated with risk, two in African Ameri-
cans and seven in European Americans. Three asso-
ciated variants were within the Ig V-set (variable) 
domain (Fig.  1), including CEACAM1:p.(Y68C) and 
CEACAM4:p.(R123E), which were associated with Euro-
pean American CRC risk, and CEACAM3:p.(Y95N), 
which was associated with African American CRC risk 
(Fig.  1). The Ig V-set domain is crucial for the dimeri-
zation of many CEACAM proteins and their ability to 
function within normal ranges [31, 32]. In CEACAM1, 
mutating particular residues within the Ig V-set domain 
can affect the monomer-homodimer exchange and 
result in the protein staying in a monomeric state [31]. 
CEACAM1’s ability to dimerize is required for proper 
function [33–36]. Knowing that CEACAM1 dimeriza-
tion is crucial and CEACAM1’s current role in CRC 
[12, 13], CEACAM1:p.(Y68C) is a probable CRC inher-
ited risk factor. CEACAM3:p.(Y95N) has been reported 
as benign in ClinVar; however, limited information was 
provided for that clinical classification [37]. Considering 
CEACAM3 has potential links to CRC [38, 39], validat-
ing the association of CEACAM3:p.(Y95N) with AA CRC 
inherited risk is crucial in identifying possible risk fac-
tors. Lastly, CEACAM4 has been previously associated 
with thyroid cancer [40], but its role in CRC is unknown. 
Missense variants within the Ig V-set domain identified 
in this study could result in repressed dimerization and 
require further investigation.

Two statistically significant missense variants were 
identified in both CEACAM8 and CEACAM18. The two 
variants in CEACAM8, p.(P142L) and p.(T247A), were 
associated with CRC risk in European American and 
African American cases, respectively, and occur between 
functional domains of the protein (Fig.  1). Even though 
the role of these variants is unclear, CEACAM8 forms 
dimers with CEACAM6 and CEACAM1 [32, 35], both 
of which have previous associations with CRC [11–13]. 
CEACAM18 p.(C357G) and p.(Q375R) were significantly 
associated in European American CRC, and p.(C357G) 
was predicted to be pathogenic through PolyPhen2 [27]. 
These mutations occur after known functional domains 
for CEACAM18 (Fig. 1) but could influence how the pro-
tein interacts with the cell membrane. Beyond these two 
CEACAM18 variant associations, there is no known link 
between CEACAM18 and CRC.

A single missense mutation in both CEACAM19 
[p.(R258T)] and CEACAM20 [p.(T482I)] was associ-
ated with European American CRC. Both of these muta-
tions occur within the cytoplasmic region of the protein 
but before the ITAM binding motifs (Fig.  1). The pos-
sible impacts of these mutations are unclear; however, 
CEACAM19 and -20 have previous cancer links [41–45]. 
Furthermore, CEACAM20 has been determined to play 
a role in gut microbiome regulation [46, 47]. The micro-
biome is known to influence CRC risk and progres-
sion [1], which could explain CEACAM20’s role in CRC 
risk. Additionally, CEACAM gene expression is altered 
in Inflammatory Bowel Disease (IBD)[38, 48], another 
well-established risk factor for CRC [49–51]. Explor-
ing how CEACAM mutations and aberrant expression 
result in both IBD and CRC is extremely important. 

Fig. 1  Domain analysis of the significant rare mutations identified in TCGA-COAD cohort
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Unfortunately, IBD diagnoses were unavailable for TCGA 
CRC cases to explore that link.

Overall, this study aimed to determine if inherited 
CEACAM variants play a role in CRC risk. No gene- or 
gene family-based associations were identified, but nine 
individual missense variants in seven different CEACAM 
genes appear to be associated with inherited CRC risk. 
Further investigation is warranted.

Limitations
It is important to note that the TCGA CRC cohort is not 
a hereditary/familial CRC cohort. Though CEACAM 
variants do not appear to play a significant role in this 
cohort, studying hereditary/familial CRC cohorts could 
reveal different findings. Such investigations are impor-
tant considering that a large percentage of inherited CRC 
is suspected to be influenced by lower penetrant variants 
compounded with environmental factors [1, 5]. Further-
more, the TCGA CRC cohort was subdivided by eth-
nicity, and European American cases were represented 
~ 4X more than African American cases. This under-
representation is a concerning limitation, as African 
Americans have the highest CRC incidence and mortal-
ity rates of all ethnicities in the United States [52]. Both 
TCGA CRC ethnic groups had a limited number of cases, 
and with the prevalence of previous research linking the 
CEACAM genes to spontaneous CRC [6, 8, 11–15, 38, 
39, 53–55], more genetic and functional investigations of 
the CEACAM gene family should be carried out.
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