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Dissecting closely linked association signals
in combination with the mammalian
phenotype database can identify candidate
genes in dairy cattle
Zexi Cai* , Bernt Guldbrandtsen, Mogens Sandø Lund and Goutam Sahana

Abstract

Background: Genome-wide association studies (GWAS) have been successfully implemented in cattle research and
breeding. However, moving from the associations to identifying the causal variants and revealing underlying mechanisms
have proven complicated. In dairy cattle populations, we face a challenge due to long-range linkage disequilibrium (LD)
arising from close familial relationships in the studied individuals. Long range LD makes it difficult to distinguish if one or
multiple quantitative trait loci (QTL) are segregating in a genomic region showing association with a phenotype. We had
two objectives in this study: 1) to distinguish between multiple QTL segregating in a genomic region, and 2) use of
external information to prioritize candidate genes for a QTL along with the candidate variant.

Results: We observed fixing the lead SNP as a covariate can help to distinguish additional close association signal(s).
Thereafter, using the mammalian phenotype database, we successfully found candidate genes, in concordance with
previous studies, demonstrating the power of this strategy. Secondly, we used variant annotation information to search
for causative variants in our candidate genes. The variant information successfully identified known causal mutations and
showed the potential to pinpoint the causative mutation(s) which are located in coding regions.

Conclusions: Our approach can distinguish multiple QTL segregating on the same chromosome in a single analysis
without manual input. Moreover, utilizing information from the mammalian phenotype database and variant effect
predictor as post-GWAS analysis could benefit in candidate genes and causative mutations finding in cattle. Our study not
only identified additional candidate genes for milk traits, but also can serve as a routine method for GWAS in dairy cattle.
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Background
Over the last decade, the development of high density
single nucleotide polymorphism (SNP) arrays and next-
generation sequencing (NGS) technologies have made
genome wide marker sets available in many organisms
[1, 2]. Combining these with phenotypic records on
many individuals, genome wide associate studies
(GWAS) present a powerful tool to undercover genetic
variants associated with variation in the phenotype [3].
In human, numerous studies successfully identified

causal variants for traits such as height [4], bodyweight
[5] as well as several complex diseases [6]. However, in
livestock, long range linkage disequilibrium typically re-
sults in imprecise determination of quantitative trait loci
(QTL) locations and the associated genomic regions
containing several positional candidate genes. In
addition, two or more QTL located close to each other
may be misidentified as one QTL. In such situations,
additional analyses need to be performed to distinguish
multiple QTL located close to each other.
To resolve these issues, we need additional informa-

tion over and above association statistics. For traits with
Mendelian inheritance, techniques such as homozygosity
mapping and studies of recombinant haplotypes provide
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important clues due to the unambiguous association of
at least some genotypes with phenotypic differences. For
quantitative traits, no such close associations exist. How-
ever, genomic information of various types do allow rela-
tive prioritization among candidate variants. The
challenges are which information to consider post-
GWAS and how to combine them with GWAS statistics.
Expression quantitative trait loci (eQTL) mapping can
help; expression profiles as the dependent trait in a
GWAS have identified causal genes in some studies [7].
Nevertheless, eQTL studies are time consuming and ex-
pensive. Therefore, alternative approaches to incorporate
gene expression data into GWAS are needed. Other
sources of additional information like variants’ annota-
tion [8] and evolutionary conservation scores [9] have
been used. Unfortunately, these analyses need to be de-
signed on a case-by-case basis [10]. Their implementa-
tion is challenging in livestock due to the sparsity of
annotation data.
In this study, we used an approach to separate mul-

tiple closely linked QTL in dairy cattle by fixing the lead
SNP as a covariate. The analysis detects QTL chromo-
some by chromosome, and generates a list of lead SNPs
for each QTL. The method is demonstrated by applica-
tion to three milk yield traits in Nordic Holstein cattle.
Many previously identified loci were also confirmed
here. Furthermore, we used the mammalian phenotype
database to help find the candidate genes and Variant
Effect Predictor (VEP) annotations to screen for possible
causal mutations.

Results
We applied a GWAS analysis approach that automatic-
ally and iteratively accounts for the effects of QTL iden-
tified in previous iteration(s), a similar approach to
conditional analysis implemented in GCTA [11]. The
impact of pre-correction on type I error rate was
assessed by analyzing simulated data with the effect of a
quantitative trait nucleotide (QTN) added to the real
phenotypic data (for details on simulation, see Method
section). The candidate genes were picked as the closest
genes to the lead SNP and listed in Tables 1, 2 and 3.
The search for candidate genes started with the top SNP
location. However, the whole genomic region showing
strong associations with the trait was searched, as the
top SNP may not be always located closest to the causal
gene due to differences in: LD, imputation accuracy and
minor allele frequency. Therefore, we included discus-
sion on other relevant genes (based on association re-
sults, known gene function etc.) which could be
candidate genes underlying the QTL.
Our approach of including associated SNPs as covari-

ates in subsequent rounds of analyses did not increase
the type I error rates. We simulated one SNP as a QTN

and considered ten other SNPs with different levels of
LD (r2) with the QTN in order to test whether our
method introduces type I error into analysis when fixing
lead SNPs detected in previous iterations as covariates
[12]. We generated new phenotypes from the real
phenotypic value plus the simulated QTN effects. The
QTN’s contribution to individuals’ phenotypes was
obtained by multiplying the genotype dosage of the
QTN with the allele substitution effect which was drawn
from a normal distribution with a mean 20% of the
standard deviation (SD) of the phenotype and variance
as 1% of the phenotypic variance. The simulation was
repelicated 100 times. We detected the simulated QTN
as the lead SNP in the first round of all 100 replicates.
When the simulated QTN was included in the model as
a covariate, we did not observed any of the 10 SNPs in
LD with QTN to be significant (i.e., no false positives
detected).

The GWAS of fat yield
Analyzing milk fat yield, our approach detected seven add-
itional QTL over and above the QTL detected in the first
round (Fig. 1 and Table 1). In Table 1, the first SNP on each
chromosome is the lead SNP from the first round of
GWAS analysis, the rest are the additional SNP(s) detected
on a chromosome. Sixteen SNPs on chromosome 14 have
the same P-value in the first round, and these SNPs are in
high LD with the two known causative polymorphisms in
DGAT1 [13], BTA14: 1802265 (rs109234250) and BTA14:
1802266 (rs109326954) (Additional file 1: Figure S1). The
variant effect predictor (VEP) [14] annotation showed these
two variants in DGAT1 are missense mutations. The sec-
ond strongest association signal was located on chromo-
some 5 with lead SNP, BTA5: 93948357 (rs209372883)
located within the intron of MGST1. MGST1 was previ-
ously reported associated with the milk fat content [15]. On
chromosome 26, our lead SNP pointed to COX15. In a hu-
man study, this gene was proposed involved in biosynthesis
of heme A [16]. Even though this gene is a promising pos-
itional candidate gene, no biological information currently
links this gene to milk fat yield. Another gene known to
affect milk fat content is SCD1 [17] located at chromosome
26: 21141592 ~ 21,148,318. Our lead SNP on chromosome
26 (BTA26:20547445, rs136702635) is located close to it.
We estimated the variance explained by QTL. The QTL
(16 QTL) found from the first round explained 22.77% of
the variance of de-regressed proof breeding value (DRP) for
fat yield and all QTL (23 QTL) explained 25.12% of the
DRP variance (Table 4).

The GWAS for protein yield
We ran the analysis on the milk protein yield (Fig. 2),
and found 33 lead SNPs (Table 2), 12 of which were de-
tected in the second or third round. The strongest
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association signal for protein yield was on BTA14 with
lead SNP BTA14:1835440 (rs208567981), located within
BOP1. The annotation of BTA14:1835440 (rs208567981)
is a missense mutation, and the SIFT annotation is toler-
ant. However, this signal is most likely due to the known
mutation in DGAT1. The lead SNP (rs208567981) was
in strong LD with SNPs located within DGAT1 and the
–log10(P) value of these 19 SNPs within DGAT1 were
larger than 47.99 (including two known causative vari-
ants in DGAT1, Additional file 1: Figure S2). This result
shows that the causal mutation may not necessarily be
the SNP in highest association. The second lead SNP of
this analysis is BTA6: 88477501, which is located near
the well-studied casein genes CSN1S1, CSN1S2, CSN3
and CSN2 [18]. We estimated the variance explained by
QTL. The QTL (21 QTL) found only from the first
round explained 10.85% of the DRP variance for protein
yield and all QTL (33 QTL) explained 15.34% of the
DRP variance (Table 4).

The GWAS for milk yield
We applied our analysis to milk yield (Fig. 3). A total of
26 lead SNPs (Table 3) were detected, out of which six
were detected in the second or third round. The most
significant association signal was in the DGAT1 gene.
The second most significant association signal was at
BTA20:29996719 (rs43116343), which is close to
MRPS30. A recent study showed MRPS30 to be associ-
ated with lactation persistence in Canadian Holstein cat-
tle [19]. This lead SNP is also close to the growth
hormone receptor, GHR [20]. The causative mutation of
GHR is BTA20:31909478 (rs385640152), and is known
to affect milk yield [20]. The third strongest lead SNP
was BTA5:93953487 (rs210234664). This SNP is close to
MGST1. A previous eQTL study showed MGST1 may
affect milk composition [21]. With our approach, we de-
tected BTA6: 38027010 (rs43702337) in the third round,
located in ABCG2. ABCG2 was previously reported to
affect milk yield in dairy cattle [22]. This SNP is a

Table 1 Lead SNPs from genome-wide associated regions for fat yield in Nordic Holstein cattle. Base positions are given as position
in UMD 3.1.1 [49]

BTA base position Imputation accuracy Effect –log10(p) Region Gene Annotation

2 126979882 0.9972 −1.31 11.46 126041707~ 127230070 PIGV (near) Downstream

2 85991577b 0.9542 1.30 8.91 85042155~ 86241732 ANKRD44 Intron

3 7226390 0.9998 −1.09 9.01 6264604~ 7476473 NOS1AP Intron

5 93948357 0.9906 3.28 62.41 93698481~ 94198475 MGST1 Intron

5 20284735b 0.9692 −1.30 9.79 20035379~ 20534779 5S_rRNA intergenic

6 95497933 0.9996 −1.45 14.76 95248213~ 95747954 PAQR3 intergenic

6 32950721b 0.4975 6.33 11.39 32367171~ 33200834 ENSBTAG00000047255 Intron

7 57287990 0.8807 −1.66 20.11 57038213~ 57538309 KCTD16 Intron

9 38715137 0.9809 −1.47 8.89 38345408~ 38965425 LAMA4 Intron

11 88771449 0.9876 1.16 10.43 88521462~ 89021477 ENSBTAG00000047976 intergenic

11 15323223b 0.8962 −1.32 9.81 14855568~ 15573444 TTC27 Intron

11 55681193c 0.9948 −1.60 9.91 55423855~ 55931229 CTNNA2 Intron

12 68965758 0.9957 −1.10 8.93 68502223~ 69216445 ENSBTAG00000045195 intergenic

14a 1802265 0.9398 −6.93 240.56 1549133~ 2049435 DGAT1 missense

14a 1802266 0.9362 −6.93 240.56 1549133~ 2049435 DGAT1 missense

15 65891100 0.9992 1.50 12.99 65363764~ 66141839 ELF5 intergenic

15 25044706b 0.9908 −1.17 9.80 24795472~ 25295470 ZBTB16 Intron

17 62543160 0.9898 1.14 10.49 62224291~ 62793298 TBX5 Intron

18 18970551 0.9442 −1.19 10.30 18341203~ 19220732 NKD1 intergenic

19 27522927 0.8500 −1.32 10.86 26625240~ 27773016 ASGR1 intergenic

20 22609736 0.9813 1.53 14.23 21664412~ 22859809 MAP3K1 intergenic

26 20547445 0.9993 −1.76 21.46 20297497~ 20797570 COX15 Intron

26 42408595b 0.9998 −1.21 10.30 41409014~ 42658925 TACC2 Intron

29 23609412 0.7717 2.06 10.73 22613737~ 23859451 ENSBTAG00000047094 intergenic

Total number of significant SNPs 54,435
a Fourteen additional SNPs on chromosome 14 located near DGAT1 gene had same highest P value (details on those not presented). b indicated this SNP was
found on second round, c indicated this SNP was found on third round
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missense variant; its SIFT annotation is “deleterious” and
has previously been proposed as a causative mutation [23].
We estimated the variance explained by QTL. The QTL
(20 QTL) found from the first round explained 18.85% of
the DRP variance for milk yield and all QTL (26 QTL) ex-
plained 21.29% of the phenotypic variance (Table 4).

Post-GWAS analysis using the mammalian phenotype
database
The criteria for selecting positional candidate genes was
the gene located closest to the lead SNP. For future
identification and research on genes biologically

associated with milk traits, we tried to find whether
there are other genes which should be considered as po-
tential candidate genes other than the candidate gene list
(Tables 1-3). Considering the high LD structure of cattle
population, the causal genes may be located within the
genome region in LD with lead SNPs. One source of
additional information that may help to prioritize genes,
is to find the link between the gene and the possible
function in the mammalian phenotype database related
to milk and milk-organ related traits [24]. Therefore, we
extracted genes which overlap with the LD region of the
lead SNP and search them in the mammalian phenotype

Table 2 Lead SNPs from genome-wide associated regions for protein yield in Nordic Holstein cattle. Base positions are given as pos-
ition in UMD 3.1.1 [49]
BTA base position Imputation accuracy Effect –log10(p) Region gene Annotation

1 63177947 0.9885 −1.94 12.35 61838881~ 63178271 ENSBTAG00000046854 (near) intergenic

2 124837669 0.9886 1.59 12.63 124834921~ 124837676 PTPRU Intron

3 17160521 0.9717 −1.15 8.76 15377852~ 17160986 S100A12 (near) Upstream

5 93511826 0.8626 −1.37 14.25 93087740~ 93511841 LMO3 (near) intergenic

5 21792183a 0.9813 −1.37 10.39 20072875~ 21792190 SNORD107 (near) intergenic

5 87923795b 0.9926 1.50 8.97 85996611~ 87924188 ETNK1 (near) intergenic

6 88477501 0.9962 −2.60 25.98 87154594~ 88477524 SLC4A4 Intron

6 48477272a 0.7329 1.49 13.59 46907022~ 48477298 ENSBTAG00000045570 (near) intergenic

6 88749792b 0.3222 −1.66 12.13 86831016~ 88749854 GC (near) intergenic

7 41372989 0.9999 −1.54 18.14 41085164~ 41373119 MGAT1 (near) intergenic

7 72100619a 0.9077 1.59 13.29 70118741~ 72100721 EBF1 (near) intergenic

8 93065787 0.8573 1.65 10.07 91065857~ 93066321 GRIN3A Intron

8 31538155a 1.0000 1.91 9.62 30388755~ 31538625 LURAP1L (near) intergenic

9 33267855 0.8655 −1.46 11.96 32627954~ 33267856 SLC35F1 (near) intergenic

10 93933304 0.8370 −1.36 9.90 92043775~ 93933391 SEL1L Intron

11 35512708 0.9999 −1.45 11.82 33534073~ 35512724 ENSBTAG00000027786 (near) intergenic

13 37208792 0.9279 −1.69 10.90 35572625~ 37208843 MKX (near) intergenic

13 77657858a 0.9906 1.17 9.52 76677111~ 77908632 PREX1 intron

14 1835440 0.7471 2.84 48.66 1448510~ 1836166 BOP1 Intron

14 67981742a 0.7652 1.78 11.60 65984180~ 67981772 STK3 (near) intergenic

16 32262983 0.9290 −1.52 12.79 30519873~ 32263130 SMYD3 Intron

18 57015407 0.9754 2.56 17.71 55015676~ 57015473 POLD1 Intron

18 15272231a 0.6697 −1.16 9.53 15032157~ 15272234 SNORA11(near) downstream

19 27522927 0.8500 −1.42 12.55 26422519~ 27522980 RNASEK (near) downstream

19 61014793a 0.8505 −1.08 8.65 60995058~ 61014874 KCNJ2 (near) intergenic

20 69006609 0.9920 −1.29 11.27 68120719~ 69006661 IRX1 (near) intergenic

20 9282667a 0.6747 1.71 10.93 7765154~ 9282923 MRPS27 intron

23 10974968 0.9304 −1.18 10.68 9127211~ 10975139 FGD2 (near) intergenic

25 36403719 1.0000 1.33 10.25 36112575~ 36403849 EPO (near) intergenic

26 37695494 0.9122 −1.41 14.76 36684176~ 37695588 KIAA1598 (near) intergenic

27 36304978 0.9834 1.06 8.52 35875452~ 36305040 ANK1 intron

29 17620617 0.9576 1.47 10.37 15650574~ 17620644 NARS2 intron

29 35459126a 0.9999 1.61 10.11 33464929~ 35459620 NTM intron

Total number of significant SNPs 38,439
aindicated this SNP was found on second round, b indicated this SNP was found on third round
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Table 3 Lead SNP from genome-wide associated regions for milk yield in Nordic Holstein cattle. Base positions are given as position
in UMD 3.1.1 [49]
BTA base position Imputation accuracy Effect –log10(p) Region Gene Annotation

2 80753895 0.9454 1.13 9.95 79587952~ 80754103 NABP1 (near) intergenic

3 56402959 0.9308 −1.36 11.68 56392727~ 56402961 ENSBTAG00000001873 (near) intergenic

4 101547644 0.7008 −1.66 12.65 100921921~ 101547648 CHRM2 (near) upstream

5 93953487 0.9726 −2.10 29.52 91953587~ 93953619 MGST1 (near) upstream

5 23022794a 0.7617 1.38 12.93 21101742~ 23022797 EEA1 (near) intergenic

5 85080296b 0.7619 −1.28 11.24 84425435~ 85080331 ENSBTAG00000009778 (near) intergenic

6 88847595 0.9009 −1.78 21.61 88612186~ 88847596 GC (near) intergenic

6 46901490a 0.7413 −1.28 11.45 46181675~ 46901554 SEL1L3 (near) intergenic

6 38027010b 0.9950 −4.75 9.47 36909885~ 38027583 ABCG2 missense

7 65370850 0.9848 −1.36 13.58 65256765~ 65370922 GLRA1 (near) intergenic

8 73877814 0.8453 −1.37 11.14 71877875~ 73877845 ENSBTAG00000010829 (near) upstream

8 42062591a 0.9595 −1.27 10.07 40245362~ 42062776 KCNV2 intergenic

9 33478527 0.8801 −1.25 9.23 31790030~ 33478670 NUS1 (near) intergenic

10 1989907 0.9469 −1.15 9.92 448434~ 1990092 ENSBTAG00000047622 (near) intergenic

13 36822330 0.9933 −1.66 10.74 36663680~ 36822395 MPP7 Intron

14# 1802667 0.7975 5.98 178.35 1702853~ 1797137 DGAT1 Intron

14 67577503a 0.8898 −2.16 11.04 66624772~ 67828111 OSR2 intergenic

15 54392611 0.9577 1.57 16.58 52771707~ 54393036 PPME1 Intron

16 28384260 0.9984 1.64 10.50 28012864~ 28384605 CNIH3 (near) Intergenic

17 66510224 0.9438 1.83 11.63 66119023~ 66510712 CORO1C Intron

18 46583346 0.9829 1.86 11.97 44583383~ 46583963 UPK1A (near) upstream

19 27442452 0.7904 −1.26 9.71 26592355~ 27442492 bta-mir-497 (near) upstream

20 29996719 0.9580 −2.95 31.02 27997007~ 29996870 MRPS30 (near) intergenic

23 25076472 0.9797 −1.34 9.23 23690289~ 25076491 GCM1 Intron

26 37716420 0.9790 −1.43 12.28 36730021~ 37966463 TRPA1 intergenic

28 34972377 0.9991 −1.29 9.81 33464705~ 34972672 ZMIZ1 intergenic

Total number of significant SNPs 57,808
#Eight additional SNPs on chromosome 14 had same highest P value. a indicated this SNP was found on second round, b indicated this SNP was found on
third round

Fig. 1 Manhattan plot for association of SNP with fat yield in Nordic Holstein cattle. Red horizontal line indicates genome-wide significance
level [−log10(P) = 8.5]

Cai et al. BMC Genetics  (2018) 19:30 Page 5 of 12



database [24]. We only paid attention to two kinds of
phenotypes: “abnormal mammary gland development”
or “abnormal milk composition”. Eight genes from the
GWAS hits were also annotated as related to these two
types of phenotype. This annotation appears to have bio-
logical relevance, although the enrichment of these 8
genes in the mammalian phenotype database analyzed
by Fishers’ exact test was not significant. The results
showed four genes were reported to be related with “ab-
normal milk composition” (Table 5). Out of this list,
CSN1S1, CSN2, CSN3 and DGAT1 were reported in
dairy cattle and also identified in the present study. Fur-
thermore, we identified five genes related to “abnormal
in mammary gland development” (Table 6) in mamma-
lian phenotype database. In this list DGAT1 showed ab-
normal phenotype in both kinds of phenotype
description we searched. In addition to the well-studied
genes (CSN1S1, CSN2, CSN3 and DGAT1), the
remaining four genes are ELF5, CAT, STK3 and CHUK.
ELF5 is one of the candidate genes proposed by the

closest genes to lead SNP (BTA15: 65891100) associated
with the fat yield (Table 1). ELF5 was previously found
related to mouse mammary development [25] and may
also influence the milk content through milk protein
synthesis in cattle [26]. CAT is also located close to the
same lead SNP as ELF5. CAT is involved in several bio-
logical processes including GO term ‘responds to fatty
acid’ [27]. CHUK, close to BTA26: 20547445, is associ-
ated with fat yield (Table 1). This gene is known as a key
gene involved in mammary development in mice [28].
STK3 is the nearest gene to the second lead SNP
(BTA14: 67981742) on the same chromosome associated
with milk protein yield (Table 2). This gene was found
to play a pivot role in controlling cell proliferation [29]
and tumor suppression [30] in human studies.

Annotation of SNPs in LD with lead SNPs
As shown before, the causative mutation maybe located
in the neighboring region of the lead SNP. Therefore, we
extracted all SNPs in LD with leading SNPs (r2 > 0.2)
and annotated them using VEP [14]. We extracted
190,130 SNPs and obtained 203,120 annotations
(because some genes or transcripts overlap). The
majority of these SNPs are intergenic variants or intron
variants (Fig. 4a). Among the SNPs that changed the
coding sequence of the protein, most of them were
synonymous variants (Fig. 4b). Using this result, we
checked if we could prioritize candidate mutations in
the candidate genes. For example GHR, the well-known
causative mutation for GHR is BTA20:31909478
(rs385640152, F279Y) [20]. The annotation for this SNP
is a missense mutation and the SIFT score is 0.02 which
is ‘deleterious’.
Further, we checked whether we can detect some can-

didate mutations in the new candidate genes. Four genes
(CSN1S1, CSN2, CSN3 and DGAT1) were found related

Table 4 The genetics variants explained by QTL and the rest of
SNPs

Number of QTL V(G1)/Vpb (%)b V(G2)/Vpc (%)c

Fat1a 16 22.77 62.59

Fat2a 23 25.12 60.01

Prot1a 21 10.85 74.05

Prot2a 33 15.34 68.89

Milk1a 20 18.85 66.67

Milk2a 26 21.29 63.97
a Fat means the trait of fat yield, Prot means the trait of protein yield, Milk
means the trait of milk yield; 1 indicate the lead SNP list only included the
lead SNP from the first round, 2 indicated the lead SNP list included all lead
SNP found by our approach.b means the percentage of genetics variants
explained by the QTL, c means the percentage of genetics variants explained
by the rest of SNP other than QTL

Fig. 2 Manhattan plot for association of SNP with protein yield in Nordic Holstein cattle. Red horizontal line indicates genome-wide significance
level [−log10(P) = 8.5]
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to abnormal milk composition and DGAT1 related to
mammary gland development (Table 5 and Table 6) as
reported previously. In addition to DGAT1, we found
several tolerance missense mutations in CSN1S1 and
CSN2. In CSN3, we found three tolerance missense mu-
tations and one deleterious mutation (BTA6:87390632,
rs43703017). Moreover, in STK3, we also found toler-
ance missense mutations.

Discussion
Although functional gene clustering is weaker in eukary-
otes genomes than in prokaryotes genomes, functional
grouping of the genes with same or similar function still
exists [31]. Therefore, in GWAS analysis, we may fail to
detect the nearby genes and may treat them as one sig-
nificant signal. In our study, we used an analysis ap-
proach to detect multiple nearby QTL by iteratively
fixing the lead SNP as covariate. However, such an ap-
proach can inflate type I error rate [12]. To avoid intro-
ducing additional type I errors, we placed a condition
that the lead SNPs detected in the second and subse-
quent rounds must be found to be genome-wide signifi-
cant in the first round (i.e., significant according to
conventional GWAS criteria). In addition, we tested our
approach on simulated data with a simulated QTN and
multiple SNPs with various levels of LD with the QTN.

In 100 replicates, we found no additional SNP in LD
with the QTN other than the simulated causative vari-
ants. By using this analysis, we were able to detect mul-
tiple QTL (as well as designating the lead SNP for each
QTL) on a chromosome automatically. For example, we
detected a known QTL on BTA6 (BTA6:38027010,
rs43702337) in the third round and also another QTL at
46 Mb (in the second round). This SNP is located in the
gene ABCG2 which was previously reported to affect
milk yield in dairy cattle [22] and this lead SNP was the
most probable causative mutation [23]. Furthermore,
our approach also showed the potential to distinguish
closely linked QTL. For example the lead SNPs on
chromosome 6 of protein content, we detect the first as-
sociation signal at BTA6: 88477501 and the third associ-
ation signal at BTA6: 88749792. Similar conditional
analyses were also applied in human and other livestock
studies [32–34]. Here, we analyzed one lead SNP at a
time, as opposed to Bolormaa et al. [34] who included
all lead SNPs simultaneously in the model. We also
compared the genetic variants explain by the QTL found
by first round and all the QTL found by our approach.
The results showed the QTL found at second and third
round did explain more phenotype variants (Table 4).
Post GWAS, we face the challenge of identifying the

candidate genes. The conventional method is to use the
nearest gene, but this may miss the target as many-a-
time the lead SNP may not be from the causal gene.
This could be due to imputation inaccuracies, multiple
QTL in the vicinity or random chance factor. Therefore,
we need to use additional information to prioritize the
candidate genes. In this study, we used the mammalian
phenotype database to search for candidate genes from
the genes located in association regions. The mammalian
phenotype is based on mouse mutation lines. As a test,
we extracted all genes located within LD of the lead

Fig. 3 Manhattan plot for association of SNP with milk yield in Nordic Holstein cattle. Red horizontal line indicates genome-wide significance
level [−log10(P) = 8.5]

Table 5 Genes related to “abnormal milk composition”
phenotype in the mammalian phenotype database [24]
overlapped with milk QTL identified in the present study

Gene name Location Phenotype

CSN1S1 BTA6: 87,141,556–87,159,096 abnormal milk composition

CSN2 BTA6: 87,179,502–87,188,025 abnormal milk composition

CSN3 BTA6: 87,378,398–87,392,750 abnormal milk composition

DGAT1 BTA14: 1,795,351–1,804,562 abnormal milk composition
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SNPs for all three milk yield traits and searched for re-
lated phenotype terms. Here, we searched for two
phenotype terms ‘abnormal mammary gland develop-
ment’ and ‘abnormal milk composition’. We successfully
identified some well-known genes affecting milk related
traits in cattle as well as new candidate genes (Table 5
and Table 6). For the term ‘abnormal milk composition’,
we identified four genes. All of which were reported pre-
viously in different studies [35, 36], and only DGAT1 is
the nearest gene to the lead SNP on chromosome 14.
Another term we searched is ‘abnormal in mammary
gland development’ and found five genes. CAT and
CHUK are not the nearest genes to the lead SNP. How-
ever, differences between mice and cattle may introduce
some false positives. In all, using this strategy we not
only found some well-studied genes missing from the
nearest genes method (pick the gene which is nearest to
lead SNP as candidate genes), but also identified new
candidate genes which may be helpful in finding causal
factors.
We also face another challenge of identifying the

causative variant once the causal gene is identified as
levels of linkage disequilibrium in cattle are high [37]. In
many cases the causative variant is not the lead SNP
[38] but another SNP hidden within the LD of the lead
SNP. In human studies, there are different strategies to
prioritize variants [10]. In this study, information from
Ensembl [14] was used to prioritize potential causative
variants. In our case, the DGAT1 and ABCG2 can be de-
tected in our lead SNP list, and the causative mutation
of both can be detected in VEP annotation as missense

variants. GHR was found nearby the location of lead
SNPs. For ABCG2 and GHR, the SIFT score show these
mutations as ‘deleterious’. For DGAT1, even though the
SIFT showed these two mutations are tolerated the
amino acid of the protein is changed. Therefore, the im-
pact of moderate and high reported by VEP can be con-
sidered as possible causative mutations, while SIFT score
can be used to provide additional support.
In summary, our analysis approach can distinguish

nearby association signals of multiple QTL. In our study,
we found candidate genes reported by previous studies.
Followed by searching genes within the LD region of the
lead SNPs, we can find high confidence candidate genes.
Lastly, using VEP can help us to find putative causative
mutations within candidate genes and provides a good
source for further functional validation. However, our
approach will not be able to pinpoint causal variants lo-
cated in the non-coding and regulatory regions due to
lack of annotation of the cattle genome.

Conclusions
In this study, we designed an approach for detecting
closely linked multiple association signals and performed
the analysis in Nordic Holstein cattle for milk, fat and
protein yields. The results showed we not only detected
most of the well-known genes affecting these three milk
yield traits but also detected additional candidate genes.
Post-GWAS, we used information from the mammalian
phenotype database and variant effect predictor to con-
firm known genes and causative mutations. In the mean-
while, we detected additional genes which might be

Table 6 Genes related to “abnormal of mammary gland development” in the mammalian phenotype database [24] overlapped with
milk QTL identified in the present study

Gene name Location Phenotype

CAT BTA15: 65,779,325–65,815,261 decreased mammary gland tumor incidence

ELF5 BTA15: 65,824,442–65,854,386 abnormal mammary gland development

STK3 BTA14: 67,677,676–67,987,801 increased mammary gland tumor incidence

DGAT1 BTA14: 1,795,351–1,804,562 abnormal mammary gland development

CHUK BTA26: 20,966,010–21,008,277 abnormal mammary gland growth during pregnancy

Fig. 4 The VEP annotation of SNPs in linkage disequilibrium (LD > 0.20) with leading SNPs. a The summary of all annotation. b The summary of
annotation that change the protein coding sequence
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contributing to variation in milk traits in Nordic Hol-
stein cattle. Therefore, we concluded our approach can
be used routinely for GWAS studies in dairy cattle.

Methods
Phenotype and genotype data
No animal experiments were performed in this study,
and therefore, approval from the ethics committee was
not required.
Phenotypic records for Nordic Holstein cattle are kept

in a centralized database (Nordic Cattle Genetic Evalu-
ation, NAV. http://www.nordicebv.info/). Breeding
values for milk, fat and protein yield (MY, FY and PY)
are based on production figures expressed in kilograms
taken from routine milk records and then combined into
an index for each trait. For details on genetic evaluation
for milk yield traits in Nordic countries see (http://www.
nordicebv.info/production). The breeding values used
for association analysis were de-regressed proof breeding
values [39, 40] from the routine genetic evaluation by
NAV and were available for 5382 progeny tested Hol-
stein bulls.
The association study was carried out by using im-

puted WGS data, as previously described by Iso-Touru
et al. [41] and Wu et al. [42]. A total of 4921 bulls were
genotyped with the Illumina BovineSNP50 BeadChip
(54 k) ver. 1 or 2 (Illumina, San Diego, CA, USA). The
54 k genotypes were imputed to WGS variants by a 2-
step approach [43]. First, all animals were imputed to
the high-density (HD) level by using a multibreed refer-
ence of 3383 animals (1222 Holsteins, 1326 Nordic Red
Dairy Cattle, and 835 Danish Jerseys), which had been
genotyped with the Illumina BovineHD BeadChip. Sub-
sequently, these imputed HD genotypes were imputed to
the WGS level by using a multibreed reference of 1228
animals from Run4 of the 1000 Bull Genomes Project
[1] (1148 cattle, including 288 individuals from the glo-
bal Holstein population, 56 Nordic Red Dairy Cattle, 61
Jerseys, and 743 cattle from other breeds [1] and add-
itional data from Aarhus University (80 individuals, in-
cluding 23 Holsteins, 30 Nordic Red Dairy Cattle, and
27 Danish Jerseys).
Different variant calling pipelines were used for the

1000 Bull Genome Project data and the in-house Nordic
data at Aarhus University. The whole genome sequence
data at Aarhus University was analyzed as described by
Brøndum et al. [44]; while the same for 1000 Bull
Genome Project was described by Daetwyler et al. [1].
Detailed guidelines are available at http://www.1000bull-
genomes.com. Data from both sources were available as
VCF files. The data from the two sources were combined
using Picards MergeVCFs (https://broadinstitute.github.
io/picard/). As the 1000 Bull Genomes Project only
shares data after variant calling, some markers were not

called for all animals in the combined dataset. To avoid
large gaps of missing markers in the dataset, only
markers that were called in both the Nordic and the
1000 Bull Genomes Project datasets were kept. For posi-
tions containing both a SNP and an INDEL, the INDEL
was discarded, as the imputation methods rely on unam-
biguous sequences of variants. Positions with disagree-
ments between alleles for sequence and HD data were
also deleted. Reference genotype probability data was
run through BEAGLE [45] and all markers with an R2

value (squared correlation between the true and imputed
allele dosages) below 0.9 were removed from the original
sequence data. This was done in order to remove poorly
imputed markers that might have adverse effects on the
imputation procedures.
Imputation from 54 k to HD genotypes to HD and im-

putation to the WGS level were undertaken with IMPUTE2
v2.3.1 [46] and Minimac2 [47], respectively. The imputation
to whole genome sequence was done in chunks of 5 Mb
with the length of buffer region of 0.25 Mb on either side.
A total of 22,751,039 biallelic variants were present in the
imputed sequence data. After excluding SNP with a minor
allele frequency below 1% or with large deviation from
Hardy–Weinberg proportions (P < 1.0− 6), 15,355,402 SNPs
on 29 autosomes in Nordic Holstein cattle were retained
for association analyses. The average accuracy (r2-values
from Minimac2) was 0.85 for across breed imputation.
Information on the distribution of imputation accuracy as a
function of minor allele frequency has previously been
published [42].

The methodology of multiple QTL detection
We developed an analysis approach to run the condi-
tional GWAS analysis, similar to the GCTA-COJO ap-
proach in GCTA [11]. However, GCTA-COJO uses
GWAS summary data while we have reanalyzed the data
after fitting only the lead SNP(s) on a chromosome. Fur-
thermore, we used imputed dosage data instead of num-
ber of copies of the reference allele. This takes account
of inaccuracies in genotype imputation. We first per-
formed a single SNP GWAS analysis using GCTA [11]
for each chromosome as the first round. Then we
ranked the SNP based on their –log10P value in the
GWAS. The SNP with the largest –log10P value, the lead
SNP, within each chromosome was identified. An
experiment-wise 0.05 type I error rate after Bonferroni
correction for 15,335,402 simultaneous tests corresponds
to a threshold of –log10P ≈ 8.5. If the –log10P value of
the lead SNP exceeded 8.5; we extracted the lead SNP’s
genotype dosage, fitted it as a covariate, and scanned the
whole chromosome again as the second round. If the
result of second round detected another SNP with a –
log10P value exceeding 8.5 and this SNP also was signifi-
cant in the first round (–log10P > 8.5), we extracted the
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allele dosage of this SNP and fixed it as another covari-
ate and scanned the chromosome in a third round. This
same procedure was iterated until no additional SNP
remained significant. The lead SNP in each round were
collected to build a lead SNP list. Moreover, in each
round solo SNP, that is, SNP with no other significant
SNP within a 1 Mb region were removed. A boundary
for each QTL peak was defined as follows: for each
QTL, we scanned the 1 Mb region up- and down-stream
of each lead SNP, if SNP –log10P value decreased by
more than 3 units compared to the value at the leading
SNP and the region is larger than 0.25 Mb we set this
SNP as a boundary, otherwise we set ±0.25 Mb as the
boundary. The list of candidate genes were generated
from the closest annotated genome feature to the lead
SNP list.

Testing the type I error rate using simulation data
We used simulated phenotype data to test whether our
approach to detecting multiple QTL on a chromosome by
incorporating previously identified QTL as covariates, in-
flates the type I error rates [12]. We selected a SNP ran-
domly from the genome as a causative mutation (QTN)
with a MAF (Minor Allele Frequency) between 0.05 and
0.10 and in Hardy Weinberg equilibrium. Ten additional
SNP with different levels of LD (linkage disequilibrium, r2)
with the simulated QTN were selected. These 10 SNPs
have different r2 with the QTN as follows: one with 0.9–1,
one with 0.8–0.9, one with 0.8–0.7, one with 0.7–0.6, one
with 0.6–0.5, one with 0.5–0.4, one with 0.4–0.3, one with
0.3–0.2 and two with less than 0.2. Allele substitution
effects at the QTL were sampled from a univariate normal
distribution with mean of 20% of the standard deviation of
phenotype and variance equal to 1% of the phenotypic
variance. We repeated this simulation and applied our
analysis 100 times. Lastly, we investigated how many
times we found a SNP in LD with the simulated QTN
after we fix the simulated causative mutation as a
covariate i.e. false positive detection.

LD calculation and annotation
We calculated the pairwise r2 between lead SNP and all
other SNPs on the same chromosome using PLINK [48]
and extracted all the SNPs which have r2 > 0.2 with the lead
SNP. All these SNPs were annotated by VEP (Variant Effect
Predictor) [14]. To find the candidate genes, we extracted
all the genes which overlap with LD regions of the lead
SNP and searched these gene entries in the Mammalian
Phenotype database [24]. We collected all the lead SNPs
and calculated the pairwise r2 with SNPs in the
chromosome. The boundary was set to the last SNP that
has r2 > 0.2. Then we extracted all the genes overlapping
these regions and searched them in the database. We found
411 genes located in the LD regions, of which 375 have

gene symbols. These 375 genes were searched in the
database and 364 have mutation lines with phenotype
descriptions in the Mammalian Phenotype database. We
refined results using two terms for phenotypes: ‘abnormal
in mammary gland development’ and ‘abnormal in milk
production’.

The genetics variants explained by QTL
We used the lead SNP list to generate the genetic relation-
ship matrix (GRM) as group 1. Then we excluded all flank
2.5 Mb SNPs of the lead SNP from the imputed HD data
to generate GRM as group 2. At last, we estimated vari-
ance explained by these two groups for each trait. The
whole analysis was conducted using GCTA [11].

Additional file

Additional file 1: Figure S1. The locuszoom figure of previous report
causative mutation of DGAT1 of the genome-wide association result in fat
content of milk in Nordic Holstein cattle and Figure S2. The locuszoom
figure of previous report causative mutation of DGAT1 of the genome-wide
association result in fat content of milk in Nordic Holstein cattle. BOP1 was
not include in USCS refFlat file. (DOCX 551 kb)
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